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Abstract. The existing distributed signcryption is designed for dis-
tributing a signcrypted message to a designated group. However, it does
not provide confidentiality of sender ID and its extension to a group
signcryption has certain weakness. This study solves the weakness and
extends to an efficient group signcryption. In addition, the proposed
distributed signcryption provides with sender ID confidentiality. The
extension to a group signcryption is more efficient in computational
load than the existing scheme. Moreover, the group manager doesn’t
need to keep and generate his group member’s secret information. It
can enhance the strength of security in the protocol.
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1 Introduction

The signcryption [Zhe1] is an asymmetric cryptographic method that can si-
multaneously provide message confidentiality and unforgeability with a lower
computational and communicational overhead based on two shortened versions
(SDSS1 and SDSS2) of DSS [DSS]. As a result, various signcryption schemes have
been designed with additional properties [BD98,KM02,LM00]. Originally, sign-
cryption could only be verified by a single designated verifier. However, a variant
scheme with multiple designated verifiers was proposed by Zheng for the first
time [Zhe2]. Thereafter, Mu and Varadharajan proposed the distributed sign-
cryption using distributed encryption [MN99] in [MV00], where any party can
“signcrypt” a message and distribute it to a designated group, and any member
in the receiving group can “unsigncrypt” the message. However, this method
does not provide confidentiality to the person who signcrypts the message, while
the extension for group signcryption involves lots of additional complexities in
computational load and some problems as a group signcryption.

Accordingly, the current paper presents a new distributed signcryption
scheme that includes sender ID confidentiality and almost the same computa-
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tional cost as the existing scheme. Since the existing signcryption scheme requires
the sender certificate to verify the signcryption in advance, it cannot provide the
confidentiality of sender ID without an additional overhead. In contrast, the
proposed scheme avoids this extra overhead, plus non-repudiation by trusted
party is offered to open the signcryption in the case of dispute. Furthermore, the
proposed scheme is extended to a group signcryption with properties of group
signatures and deals with the problems related to the existing extended scheme,
which is too complicated to satisfying some requirements, such as anonymity
and traceability. Especially, it is serious issue that a group manager generates
and keeps his member’s secrete information in the existing protocol. It makes
a forgery possible by a malicious group manager. Considering these kind of
problems, we renovate its extended group signcryption. The proposed extended
scheme also has more efficient computational load for both signcryption and
unsigncryption than the existing extended scheme.

The remainder of this paper is organized as follows. The next section out-
lines the original signcryption and the distributed encryption scheme, then Sec-
tion 3 explains the existing distributed signcryption and its extension. Section
4 presents the new schemes. Section 5 analyzes the security of the proposed
schemes and compares their computational cost with those of previous schemes.
Some final conclusions are given in Section 6.

2 Preliminaries

This section briefly reviews the original signcryption [Zhe1] and distributed en-
cryption [MN99]. Throughout this paper, p denotes a large prime number, Zp

∗

a multiplicative group of order q for q|(p− 1), and g ∈ Zp
∗ a primitive element.

2.1 Signcryption

Signcryption [Zhe1] refers to a cryptographic method that involves the func-
tions of encryption and digital signature simultaneously. The main advantage
of the scheme is the savings in computational cost of encryption and signa-
ture compared to traditional signature-then-encryption. Signcryption is based
on the Digital Signature Standard(DSS) with a minor modification that makes
the scheme more computationally efficient. The modified DSS is referred to as
SDSS of which there are two versions. The total procedure is as follows. Assume
Alice signcrypts a message and Bob unsigncrypts the message. (xa, ya = gxa)
and (xb, yb = gxb) are the private key and public key pairs for Alice and Bob,
respectively. Where hash(·) denotes a strong one-way hash function, hashk(·)
a keyed one-way hash function with key k, and Ek(Dk) a symmetric encryp-
tion(decryption).
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Alice
choose z ∈R Zq

compute k = yz
b mod p

split k into k1 and k2
compute r = hashk2(m)

s = z(r + xa)−1mod q if SDSS1
s = z(1 + xa · r)−1mod q if SDSS2
c = Ek1(m)

−→ (c, r, s) −→ Bob
k = (ya · gr)s·xbmod p if SDSS1
k = (yr

a · g)s·xbmod p if SDSS2
split k into k1 and k2
compte m = Dk1(c)
verify r? = hashk2(m)

2.2 Distributed Encryption

Distributed encryption [MN99] has a single public key together with one or more
decryption keys. As such, its range can be extended to group. Consider a group
of members with a public key, referred to as the group public key. Each member
of the group has a group private key that matches with the group public key.
Any member of the group can then decrypt the message using his or her group
private key.

Initialization of a group. A group manager that is trusted by the members
of the group is assumed. The group manager is responsible for constructing
the group public key and updating group members. In order to construct a
group including n members, the manager selects a set of integers, εi ∈R Zq

for i = 1, 2, ..., n and computes the coefficients α0, ..., αn ∈ Zq of the following
polynomial:

f (x) =
n∏

i=1

(x− εi) =
n∑

i=0

αix
i (1)

This function has the following property: Define g ∈ Z∗
p and gi ← gαimod p

for i = 0,1,...,n, which produces

F(ε�) =
n∑

i=0

gi
ε�

i

= 1 mod p (2)

This is because F (ε�) = gf(ε�) and f(ε�) = 0 in Zq, where ε� is a element
of the set {εi}. That is an important property of the system. However, there
is the weak point if the polynomial {gi} is used as group public key. In that
case, an adversary would add another illegal ε′

i to the set {εi} by using the
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{gi} polynomial. Thus, to avoid this weakness, the method given in [MN99]
is adopted. For the given {α0, α1, ..., αn}, a new set is defined {α′

0, α
′
1, ..., α

′
n},

where α′
0 = α0, α

′
n = αn, α′

1 = ... = α′
n−1 =

∑n−1
i=1 αi. Define βi ← gα′

iand
A� =

∑n−1
i=1,j=1,i �=j αjε

i
�, then the property(Equation (2)) still holds:

F ′(ε�) = g−A�

n∏

i=0

βi
εi

� = g−A�g
∑n

i=0
α′

iε
i
� = 1mod p (3)

In order to construct a group public key, the group manager picks a ran-
dom number γ ∈R Zq, then computes its inverse γ−1 and parameters ρ� ←
−γA� mod q for member �. The group public key is defined as an n + 2 tuple,
{β0, ..., βn+1} ← {β0, ..., βn, gγ−1}. The manager keeps γ and all {αi} secret and
gives ε� and ρ� to a group member � who then uses ε� and ρ� as her group private
key pair.

Distributed Encryption and Decryption. If Alice wants to send a message
m securely to a designated group G, she picks the encryption key, k, computes
w = hash(m), and then encrypts m to obtain the ciphertext c = (c1, c2) as
follows:

c1 ← {a0, ..., an+1} ← {gkβw
0 , βw

1 , ..., βw
n+1}, c2 = mgkmodp.

Let Bob be the group member and his group private key pair be (εb, ρb). Bob
does the following:

c′
1 ← a0(

n∏

i=1

a
εi

b
i )aρb

n+1 = gk(
n∏

i=0

gwαiε
i
b) = gkgwf (εb) = gkmodp

After computing c′
1 using his group private key pair (εb, ρb), Bob can de-

crypt ciphertext c = (c1, c2) from c2/c′
1. Any member who has his group pri-

vate key pair in G can then decrypt the ciphertext c to obtain m. Once m is
obtained, Bob verifies the correctness of the encryption by checking whether
c1 = {gkβw

0 , βw
1 , ..., βw

n+1} using gk and w.

3 Existing Distributed Signcryption

This section explains the existing distributed signcryption along with its ex-
tension, then considers their security and efficiency [MV00]. The group is con-
structed as described in Section 2 and some of notations are also the same as in
Section 2.

3.1 Distributed Signcryption

Assume that Alice is the sender who signcrypts a message m and sends the
message to a designated group. Bob is a member of the designated group and
he unsigncrypts the message.
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The signcryption. Alice does the follows and sends to Bob or the designated
group the signcrypted message (c1, c2, r, s).

Choose z ∈R Zq and compute k = gzmodp
Split k into k1 and k2
Compute r = hashk2(m)
Compute s = z(k · r + xa)−1mod q if SDSS1

s = z(k + xa · r)−1mod q if SDSS2
Compute w = hash(m)
The encrypted message is as follows:

c1 ← {a0, ..., an, an+1} ← {{g
krβw

0 , βw
1 , ..., βw

n+1} (SDSS1)
{gkβw

0 , βw
1 , ..., βw

n+1} (SDSS2)
c2 = Ek1(m)

The unsigncryption. Bob who is one of the designated group members and
has his group private key pair (εb, ρb) can unsigncrypt the signcrypted message
by discovering the secret session key k as follows:

For SDSS1

k ← (yaa0(
∏n

i=1 a
εi

b
i )aρb

n+1)
s = (yagrk

∏n
i=0 gwαiε

i
b)s

= (yagrkgwf(εb))s = gzmod p

For SDSS2

k ← (yr
aa0(

∏n
i=1 a

εi
b

i )aρb

n+1)
s = (yr

agk
∏n

i=0 gwαiε
i
b)s

= (yr
agkgwf(εb))s = gzmod p

Then Bob splits k into k1 and k2 as agreed earlier and verifies m? = Dk1(c2)

Its extension to a group signcryption. The distributed signcryption can
be extended to a group signcryption, which enables a member of group to
signcrypt a message on behalf of the group and send it to another member in
another group. Consider two designated group GA and GB , then assume that
Alice belongs to the group GA and wants to send a signcrypted message m to
the group GB which Bob belongs to. Let’s introduce Alice’s εa that is one of
his group private key pair satisfying f(εa) = 0 mod p (defined in section 2.2).
Bob also has a counterpart key εb. The group public keys for GA and GB are
{β0, β1, ..., βn+1} and {β0, β1, ..., βn+1}, respectively. Both public keys have the
same form as those given earlier. In order to signcrypt the message, Alice needs
to do the following and keeps (z, k, w) secret:
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Choose z ∈R Zq and compute k = gz mod p
Split k into k1 and k2
Compute w = hash(m)
Compute the signing commitment, uj ← β

w

j for j = 1, ..., n
Compute r = hashk2(m)
Compute sj = z(εj

a − ruj) mod q for j = 1, ..., n

The signcrypted message is as follows:
c1 ← {a0, ..., an, an+1} ← {gkrβw

0 , βw
1 , ..., βw

n+1}
c2 ← {a0, u1, ..., un, an+1} ← {gz−rkβ

w

0 , u1, ..., un, β
wρa

n+1 }
c3 = Ek1(m)

Sends the signcrypted tuple (c1, c2, c3, r, s1, ..., sn) to GB .

Then The verification process by Bob belonging to GB includes session key
recovery as in the following step:

Recover session key k

k = [a0(
∏n

i=1 a
εi

b
i )aρb

n+1][a0(
∏n

j=1 u
ruj

j β
sj

j )an+1]

= [gkrβw
0 (

∏n
i=1 β

wεi
b

i )βρb

n+1][g
z−rkβ

w

0 (
∏n

j=1 β
wεj

a

j )β
wρa

n+1]

= [grk
∏n

i=0 β
wεi

b
i ][gz−rk

∏n
j=0 β

wεj
a

j ]
= gz mod p

Then Bob verifies the correctness of a0 and a0 using the recovered session
key.

3.2 Consideration

Distributed signcryption and its extension can be useful in a distributed envi-
ronment where an entity signcrypts a message and a group unsigncrypts the
message. However, it can not provide sender ID confidentiality and its extension
is unsuitable for a group signcryption. Thus, the current study mainly focuses
on dealing with these two problems.

Distributed signcryption. Distributed signcryption cannot provide sender
ID confidentiality, as in the unsigncrypting procedure, the verifier cannot verify
the signcryption message (c1, c2, r, s) without the signer’s public key ya as
follows:

For SDSS1 For SDSS2

k ← (yaa0(
∏n

i=1 a
εi

b
i )aρb

n+1)
s k ← (yr

aa0(
∏n

i=1 a
εi

b
i )aρb

n+1)
s
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In this case, either the sender must give his certificate to the designated group
in advance or someone who belongs to the designated group and wants to verify
the signcryption must know the sender’s public key, ya based on their own ef-
forts. This, of course, is another overhead in this protocol. Therefore, distributed
signcryption cannot be used in applications requiring sender ID confidentiality
such as electronic voting scheme and registration step in group signature. In
electronic voting, sender information should be hided to other voters except ad-
ministrators and in group signature, anyone who wants to join a group registers
his commitment that represents himself to group manager without revealing his
secret information.

Its unsuitable extension to group signcryption. Group signcryption
should include the properties of both group signature and signcryption. The
following outlines the weakness as regard group signcryption.

First, when initially constructing a group, the group manager computes and
creates group private key pairs {(εi, ρi)}ni=1 for all the members. In this case,
if an adversary successfully attacks the manager, all secret information about
the group members will be compromised. For example, assume that a member’s
group private key (ε�, ρ�) is revealed after an attack on the group manager.
The attacker can impersonate the member and forge a signcryption message. As
such, this kind of situation is very dangerous in the protocol related to groups.
Furthermore, a malicious group manager can forge one of his group member
easily. Because the above reasons, most of the group signatures avoid revealing
the member’s secret information to the manager [AT00,BS01,CS97,LW02].

Second, in unsigncryption, the verifier needs to know which group member
sent the signcrypted message in advance, thereby it creates more overhead in
the signcryption protocol, where all messages are encrypted by symmetric and
asymmetric encryption.

Finally, the overall protocol is too complicated as regards the modular arith-
metic to satisfying some requirements such as anonymity and traceability.

4 The Proposed Schemes

This section presents a new distributed signcryption scheme with sender ID
confidentiality and extends it to an efficient distributed signcryption as a group
signcryption by solving the above mentioned weakness.

4.1 A Distributed Signcryption with Sender ID Confidentiality

The group manager initializes a group, as in Section 2.2, then remainder of the
situation is that same as in the existing scheme.

Signcryption. Alice does the following and sends to Bob who belongs to a des-
ignated group the message (c1, c2). Where, Certa is Alice’s certificate including
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her public key, x||y means the concatenation of x and y and the rest of notations
are the same as in Section 3.

Choose z ∈R Zq and compute k = gzmodp
Split k into k1 and k2
Compute r = hashk2(m)
Compute s = z(r + xa)−1mod q if SDSS1

s = z(1 + xa · r)−1mod q if SDSS2
Compute w = hash(m)
The encrypted message is as follows:

c1 ← {a0, ..., an, an+1} ← {kβw
0 , βw

1 , ..., βw
n+1}

c2 = Ek1(m||r||s||Certa)

Instead of using the session key, k, for computing s, it is used in computing
c1 in the form of kβw

0 like ElGamal encryption [ElGa]. This method make it
possible to recover the session k without knowing r, s and insert r, s, and Certa
in c2 encryption. Therefore, the property of sender ID confidentiality is provided
in the proposed scheme.

The unsigncryption. Bob or any one of the designated group members can
unsigncrypt the signcrypted message using his (εb, ρb) based on discovering the
secret session key k as follows:

k ← a0(
∏n

i=1 a
εi

b
i )aρb

n+1 = gz
∏n

i=0 gwαiε
i
b = gzgwf(εb) = gzmod p

Split k into k1 and k2
Decrypt Dk1(c2) = m||r||s||Certa
Verify r? = hashk2(m)

gz? = (ya · gr)s if SDSS1 or gz? = (g · yr
a)s if SDSS2

Instead of using only the session key recovery in unsigncryption, signature
verification follows the session key recovery. With this two step, sender ID con-
fidentiality can be provided. It is obvious that the recipient can unsigncrypt the
message by following process above. The only way to decrypt is to have one of
group member’s secret key pair, εb, along with ρb, which gives f(εb) = 0 mod q.
Alice has to use the designated group public key, otherwise no one in the group
can unsigncrypt the message. Alice also has to use her private key, xa, to com-
pute s, since his public key is used to verify the signcryption. If s doesn’t embed
xa, xa cannot be removed by using public key ya in the verification.

4.2 An Efficient Extension to Group Signcryption

Next, the proposed scheme is extended to a efficient group signcryption. There
are five procedures involved in group signcryption: setup, join, signcryption,
unsigncryption, and tracing or open, which means opening the identity of the
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group member who issued the signcryption together with a proof of this fact,
enabling a member of one group to signcrypt a message on behalf of the group
and send it to another member in another group with anonymity.

Setup. To derive the information related a group, the group manager computes
the following values:

– p, q, and g are the same as the above and h ∈ Z∗
p is newly generated.

– GA group manager’s RSA signature key denotes dA , verification key eA, and
nA a large RSA modulus with two random prime factors of approximately
equal length. It satisfies eA · dA ≡ 1 mod φ(nA), where φ(nA) is Euler phi
function.

The manager keeps dA as his secret signature key and opens (p, q, g, h, nA, eA)
as the system parameters.

Join. Each entity who wants to join a group generates his own group private
key ε� and computes τ�(= hε�mod p) as group membership key. Then he transfers
τ� to the group manager through secure channel and proves to the manager that
he knows the discrete logarithm of τ to the base h. ε� should be kept secret
by the entity. The group manager doesn’t need to keep and generate his group
member’s all secret information. It can enhance the strength of security. Each
group manager generates v�(= τdA

� modnA) as membership certificate like [CS97].
Using RSA signature is simple and efficient for verifying whether τ� is valid or
not. In order to setup a group, the manager computes the coefficients of following
polynomial:

f (x) =
n∏

i=1

(x− τi) =
n∑

i=0

αix
i (4)

Let {α′
i} and {βi} be define like Section 2.2, and define A� =

∑n−1
i=1,j=1,i �=j αjτ

i
� ,

then Equation (4) has the following property:

F ′(τ�) = g−A�

n∏

i=0

βi
τ i

� = g−A�g
∑n

i=0
α′

iτ
i
� = gf(τ�) = 1 mod p (5)

In order to make a group public key, the manager picks a random number
γ and computes its inverse and ρ� as in the distributed encryption. The group
public key is defined as {β0, ..., βn+1} ← {β0, ..., βn, gγ−1}. Then the manager
keeps γ, all {αi}, and {τ�} secret and gives v� and ρ� to group member �.

Signcryption. After the above group construction, consider two designated
groups, GA and GB , and assume that Alice belongs to GA and Bob is one of
recipients belonging to GB . In order to signcrypt the message m, Alice needs to
do the following using his εa, τa, and va :
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Choose z and t ∈R Zq and compute k = gzmodp
Split k into k1 and k2
Compute r = hashk2(m)
Compute s = z(r + εa · t)−1mod q if SDSS1

s = z(1 + εa · r · t)−1mod q if SDSS2
Compute w = hash(m)
Compute λa = (teA · τa mod nA)mod q, δa = gεat, and θa = t · va mod nA

The encrypted message is as follows:
c1 ← {a0, ..., an+2, } ← {kβwτa

0 , βwτa
1 , ..., βwτa

n+1, g
λa}

c2 = Ek1(IDGA
||m||r||s||δa||θa)

Where, IDGA
is identity of group GA. It also includes its group manager’s

public information (nA, eA) . The rest notations are the same as in previous
section.

Unsigncryption. Bob or any member of GB can unsigncrypt the signcrypted
message using his (τb, ρb) based on discovering the secret session key k as follows:

k ← a0(
∏n

i=1 a
τ i

b
i )aρb

n+1 = gz
∏n

i=0 gwαiτ
i
b = gzgwf(τb) = gzmod p

Split k into k1 and k2
Decrypt Dk1(c2) = IDGA

||m||r||s||δa||θa

Compute λ′
a = (θa

eA mod nA) mod q
Verify r? = hashk2(m)

gz? = (δa · gr)s if SDSS1 or gz? = (g · δr
a)s if SDSS2

an+2? = gλ′
a

It is obvious that the recipient can unsigncrypt the signcrypted message by
the above process. The only way to decrypt is to have a group membership key,
τb, along with ρb, which gives f(τb) = 0 mod q. Alice has to use the designated
group public key, otherwise no one in the group can unsigncrypt the signcrypted
message. Alice also has to use her valid group keys, εa and τa, and member-
ship certificate va to compute the signcryption (c1, c2), since only valid key and
certificate can be accepted in the verification of the signcryption. Even though
a group manager may release the group anonymous key, τa or τb, by accident,
no malicious attacker can impersonate any group member without knowing the
valid pair, (εa, va) or (εb, vb).

Tracing or Open. In case of disputes, Bob forwards the c1 and w(= hash(m))
to group GA’s manager after decrypting c2 message and knowing the group GA’s
identity. Then, only the manager can find the group member, Alice, who issued
this signcryption by testing {ai ? = (βw

i )τ�}n+1
i=1 for all his group members’ τ� in

GA. After this procedure, disputes can be solved by the group manager. But it
causes large computational loads for very large group, so there has more rooms
for improving it as a future work.
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5 Analysis

This section presents an analysis of the security and computational load of the
proposed schemes compared with the existing schemes.

5.1 Analysis of the Signcryption with Sender ID Confidentiality

Security. For the signcryption schemes to be secure, following conditions must
be satisfied [Zhe1].

– Unforgeability: A dishonest verifier is in the best position to forge signcrypted
text because he knows the original message m and corresponding signature
r, s. Thus, it is shown that even the dishonest verifier can not succeed to
forge the signcrypted text. For successful forging attack, a dishonest verifier
must find another message m′ where the hash value is r or another valid
signcrypted pair, m′||r′||s′||Cert′a. Considering the former, it is impossible
for the attacker to find other message m′ with the hash value r because the
keyed hash function behaves random function. Regarding the later case,
even if a dishonest verifier can generate m′ and its hash value r′, he cannot
generate corresponding s′ as he doesn’t know the secret key of the signer, xa.

– Non-repudiation: When a kind of dispute occurs, the recipient forwards a
decrypted signcryption pair m||r||s||Certa to a trusted third party. Then
the third party can settle the dispute by verifying the following:

recover key k = (ya · gr)s if SDSS1 or k = (g · yr
a)s if SDSS2

verify r? = hashk2(m)

– Confidentiality: The whole signcrypted message (c1, c2) is encrypted by
symmetric and asymmetric encryption. Therefore, it has a stronger or
same confidentiality compared with [Zhe1] and [MV00]. Plus, sender ID
confidentiality is also satisfied because sender’s ID is included in the
encrypted message, c2. Thus, an adversary can not discover any information
without decrypting the ciphertext c2.

Computational cost. The computational cost was considered as regards mod-
ular arithmetic, including modular exponentiation, modular multiplication, and
modular inverse, then compared with the existing scheme, as shown in Table 1,
since most of the computational time is spent on these modular arithmetic. In
Table 1, Iq is denoted as the number of inverse in mod q, Mq(Mp) as the number
of multiplication in mod q(p), and Ep(Eq) as the number of exponentiation in
mod p(q). As result, the proposed scheme had almost the same computational
cost compared to the existing scheme, yet the proposed scheme was more effi-
cient in signcryption. However, when the size n increased, the cost was almost
the same.
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Table 1. Cost comparison between the proposed scheme and the existing scheme.

Cost Signcryption Unsigncryption
SDSS1 SDSS2 SDSS1 SDSS2

Iq 1 1 - -
The Mq 3 2 - -

existing Mp 1 1 n + 2 n + 2
scheme Eq - - n − 1 n − 1

Ep n + 4 n + 4 n + 2 n + 3
Iq 1 1 - -

The Mq 1 2 - -
proposed Mp 1 1 n + 2 n + 2
scheme Eq - - n − 1 n − 1

Ep n + 3 n + 3 n + 3 n + 3

5.2 Analysis of the Extension to a Group Signcryption

Security. For the group signcryption schemes which include properties of sign-
cryption and group signature at the same time to be secure, following conditions
must be satisfied [AT00,BS01,CS97,LW02,Zhe1].

– Correctness: This means that the signcryption produced by a group member
must be accepted by the unsigncryption, which can be shown by inspection
of the protocol.

– Unforgeability: Only valid group members are able to signcrypt a message on
behalf of the group, which is similar to distributed signcryption with sender
ID confidentiality. hashk(·), keyed hash function, behaves as a random
function, while the group private key, εa, can not be revealed to anyone,
making the protocol unforgeable.

– Anonymity: With a valid decrypted message, identifying the individual
who signcrypt the message is computationally hard for anyone but the
group manager. As the sender’s information is hidden in the form of
δa(= gεat) and θa(= t · va), and t is changed at every session, no information
about sender ID is revealed by IDGA

||m||r||s||δa||θa in the proposed scheme.

– Unlinkability: Deciding if two valid decrypted messages (IDGA
||m||r||s||δa||

θa) and (IDGA
||m̂||r̂||ŝ||δ̂a|| θ̂a) were computed by the same group member

is computationally hard. As for anonymity, the problem of linking two
decrypted message reduces to decide whether δa and δ̂a are released from
same member or θa and θ̂a are released from same member. This is related
to discrete logarithm and finding random number changed at every session.

– Exculpability: Neither a group member nor the group manager can signcrypt
on behalf of other group members. No one can obtain any information about
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a group private key εi from δi(= gεit). Thus, the value εi is computationally
hidden. Moreover, a group manager can not signcrypt on behalf of his group
member because computing discrete logarithms is assumed to be unfeasible.

– Traceability: It was shown in above protocol.

– Coalition-resistance: This means that a colluding subset of group members
cannot generate a valid signcryption that the group manager is unable to
link to one of the colluding group members. Each group manager signs
his members’ group membership key τi by an RSA signature and transfer
it, vi, to each member. As such, no colluding subset can generate a valid
correlated εi, τi, and vi in the signcryption without the help of the right
member and the manager.

– Confidentiality: It is the same as the confidentiality of Section 5.1

Computational cost. The computational cost was also considered as regards
modular arithmetic, as shown in Table 2. The situations and notations were
almost the same as those in Table 1, MnA

was the number of multiplication in
mod nA and EnA

was the number of RSA exponentiation in mod nA. In our
scheme, a minor RSA signature computation was used to avoid an impersonation
attack and minor inverse in mod q was used for computing s. As result, the
proposed scheme was more efficient than the existing scheme. Especially, with
group size n growing, our scheme was more efficient in both signcryption and
unsigncryption than the existing one.

Table 2. Cost comparison between the proposed extension and the existing extension.

Cost Signcryption Unsigncryption
SDSS1 SDSS2 SDSS1 SDSS2

The Mq 2n+3 2n+3 n n
existing Mp 1 1 3n+3 3n+3

extension Eq n-1 n-1 n-1 n-1
Ep n+7 n+7 3n+1 3n+1
Iq 1 1 - -

The Mq n+4 n+5 - -
proposed Mp 1 1 n+2 n+2
extension Eq - - n-1 n-1

Ep n+5 n+5 n+4 n+4
MnA 2 2 - -
EnA 1 1 1 1
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6 Conclusion

The current study proposed a new distributed signcryption including confiden-
tiality of sender ID that does not involve any additional computational cost, plus
an extension for efficient group signcryption. When compared with the extension
of the existing scheme, the proposed scheme is more efficient in computational
cost and provides additional advantages. Especially the group manager doesn’t
need to keep and generate his member’s secret information. It can enhance the
strength of security in the protocol. The new scheme has potential applications
in electronic commerce and other areas.
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