A Key Recovery Mechanism for Reliable Group
Key Management

Taenam Cho and Sang-Ho Lee

Dept. of Computer Science and Engineering, Ewha Womans University,
11-1 Daehyun-Dong, Seodaemun-Gu, Seoul 120-750, Korea
{tncho, shlee}@ewha.ac.kr

Abstract. Secret group communication can be achieved by encryption
messages with a group key. Dynamic groups face the problem of chang-
ing the group key whenever members join or leave. One of the solutions
to this problem is to send the updated group key to members via rekey
messages in a secure manner. The recovery of lost keys consequently be-
comes important because a member cannot decrypt the group data if he
loses these messages. Saving messages and resending them by KDC (Key
Distribution Center) not only requires large saving space, but also causes
the transmission and decryption of unnecessary keys. Furthermore, the
keys in the unsaved messages cannot be recovered. This paper proposes
an efficient method for recovering group keys. The group key generation
method presented in this paper is simple, enabling us to recover group
keys without storing and eliminating the transmission and decryption of
useless auxiliary keys.

1 Introduction

One of the most important security issues in group communication is confi-
dentiality. Confidentiality is necessary in limiting user access to data from dis-
tributed simulations or secret corporate conferences, as well as in maintaining
billing information of commercial images and online Internet broadcast sources.
To achieve confidentiality, only allowed users should gain access to data through
encrypted communication using a shared group key[16]. Therefore, it requires
safe sharing of the group key only among valid members and securing data
against invalid members. Secure sharing of keys involves a KDC that distributes
updated keys via rekey messages to members as other members join or leave.
In such a system, the loss of rekey messages would disable the reception of the
updated group keys, causing an inability to decrypt group data and possibly the
failure of decryption of any follow-up rekey messages transmitted. Such reliabil-
ity issues still remain to be solved[9][10]. Several methods to increase reception
rates have been introduced[I8][I4][I9], but none of them address the problem
in the recovery of lost keys. Another research[I1] proposed a scheme in which
a member may calculate the lost keys using verification information. However,
this proposal ignores the possibility of the member’s loss of the verification infor-
mation also, in which case he still cannot recover the lost keys. Therefore, more

J. Zhou, M. Yung, Y. Han (Eds.): ACNS 2003, LNCS 2846, pp. 372-B86] 2003.
© Springer-Verlag Berlin Heidelberg 2003

A Key Recovery Mechanism for Reliable Group Key Management 373

research is required, especially on the problems caused by members’ log-in/out
and communication delays. This paper proposes a method based on a model in
which a KDC generates and distributes keys to members, and also allows the
recovery of lost keys when key updates are made after keys have been lost by
communication delays or member’s log-out.

There are 7 sections in this paper. Section 2 explains the requirements that
a group key management must fulfill. Related studies are described in Section
3, and Section 4 proposes a key recovery mechanism. Security, reliability and
efficiency analysis are found in Section 5. In section 6, the parameters for opti-
mization are derived. Finally, section 7 presents the conclusion and suggestions
for future research.

2 Requirements

The group key must be shared only with legitimate members, and those who are
no longer legitimate members or are yet to join the group should not be allowed
to access the group data. To achieve this, the following requirements must be

met[TT][5].

— GKS (Group Key Secrecy): guarantees that it is computationally infeasible
for an adversary to discover any group key.

— FS (Forward Secrecy): guarantees that a passive adversary who knows a
contiguous subset of old group keys cannot discover subsequent group keys.

— BS (Backward Secrecy): guarantees that a passive adversary who knows a
subset of group keys cannot discover preceding group keys.

FS is ensure that a member cannot learn about new group keys after he leaves
the group. BS is ensure that a joining member cannot learn about the previous
group keys even after he joins. To fulfill these requirements, KDC must update
the group key whenever a member joins or leaves the group. Group members
are required to buffer any encrypted data and rekey messages they received until
the encrypting keys arrive[I8][14] [19][I5]. The legal members must be guaranteed
that they can decrypt the data even if the data are transmitted while they are
logged off. Our objective is not to recover all of the lost keys, but to recover the
only the keys that are needed to decrypt the data and useful keys. Therefore, this
paper defines the condition on key recovery for reliable group key management.

— KR (Key Recovery): legitimate members must be able to recover the lost
group keys and useful auxiliary keys from KDC.

3 Related Studies

There are efficient solutions for scalable group key management in dynamic
groups. Fiat and Noar suggested a solution that prevents the coalitions of more
than & users from group data[3]. Mittra proposed Iolus[7] in which the group

374 T. Cho and S.-H. Lee

m, leaves myjoins

KEKs

Fig. 1. A binary key-tree and key updates

is divided into several subgroups to be controlled independently. Another popu-
lar scheme, on which ours is based, is to employ a key-tree (LKH: Logical Key
Hierarchy)[T6][17]. LKH is secure against any number of corrupt users, and their
rekey sizes are proportional to logn, where n is the group size, whereas Iolus
requires a communication overhead proportional to the subgroup size. The im-
provement of the key-tree is based on the assumption that key-trees are balanced.
The balance of the key-tree can be maintained by periodically updating[8] or by
using AVL-tree[IZ]. The key values may be generated using a pseudo random
number generator[17][§][12] or derived from child nodes’ keys[11][1][13][2]. Since
our method can be easily applied to other key-trees, the key-tree may be as-
sumed to be in its simplest form, as a balanced binary tree. In this section, we
introduce the binary key-tree with the studies for reliability.

3.1 Key Management Using a Key-Tree

Initially, KDC constructs a balanced binary key-tree whose leaf nodes nodes
correspond to initial group members; the initial group may be empty. Each node
of the tree is associated with a key. All members possess keys that are on the path
from their leaf nodes to the root. The root key is the group key, and other keys
are auxiliary keys; they will be called KEKs (Key Encryption Keys) hereafter
(Refer to figure 1 (a)).

If mg3 in figure 1 (a) leaves, KDC updates the keys that mgs possesses; KDC
eliminates k3, k34 and replaces ky 4, k17 with k7 4, k] 7 (Refer to figure 1 (b)).
Each new key is encrypted using its child keys and multicasted to other members;
the rekey message may be such as {{k/174}k1,2,{k/174}k4,{k/177}k;4,{k/1,7}k5,7}~ If
mg joins in figure 1 (b), the key-tree is changed as shown in figure 1 (c). Each
updated key is encrypted using the old key and the rekey message {{k7 s},
{58} ks.m» {k1,8} 8, -} 1s multicasted. {M }re, represents the encrypted message
M of using a key, key. Therefore, the size of rekey message is proportional to
the height of key-tree, O(logn).

A Key Recovery Mechanism for Reliable Group Key Management 375

A Partitioned message groups
{7} Weighted sets

-,

Fig. 2. Message composition

3.2 Group Key Management for Reliability

A group key distribution method with reliability was first proposed on
Keystone[18]. This scheme proposes the utilization of FEC (Forward Error Cor-
rection) by the UDP transfer. [T9], pointing out that the UDP transfer is in-
capable of dealing with burst errors, suggested a method of transferring rekey
messages in divisions of many blocks. All keys needed by members are packed
in a single block, and blocks are transmitted multiple times after RSE (Reed
Solomon Error) codes are attached to each of them. [I5] considers that keys on
the upper levels of the key-tree are shared by a larger number of members, and
it groups keys into several weighted classes. Keys of higher weights are enti-
tled to more frequent transmissions. The 7 triangles in figure 2 indicate divided
message blocks, and the 3 rectangles drawn in dotted lines indicate blocks with
different weights. The three methods described above aim at better key update
massage reception rates in soft real-time. This means that key loss cannot be
completely prevented, and retransmissions are made repeatedly to prepare for
key loss. However, these methods neglect the possibility of additional key up-
dates taking place while previous retransmissions are delayed or not completed.
Similarly, if a member is logged out, previous messages that should have been
buffered may become lost. The two cases are the same in that the lost messages
are not the last rekey messages.

In ELK[IT], key verification information called hint is piggybacked on data
for key recovery. The member who loses a rekey message message applies a brute
force search for the lost keys. They can verify the candidate keys by checking
them against the verification information. This method, invented to reduce data
flow, necessitates large amounts of calculations by members. Nevertheless, if a
member loses both the rekey message and the data, he can neither recover the
lost keys nor decrypt the subsequent rekey messages. Therefore, a key recovery
mechanism via KDC is necessary, not only for the recent rekey message but also
for arbitrary past keys.

376 T. Cho and S.-H. Lee
4 A Basic Key Recovery Mechanism

KDC maintains a binary key-tree as described in section 3.1 in our scheme.
Whenever a member joins or leaves, KDC updates keys by executing procedure
1 or 2 respectively.

1. Authenticate the joining member, m,,, and send a new key, k,, to m,,.

2. Create a leaf node n,, and a internal node n,,
and associate k, and a new key k, to them, respectively.

3. Let ns and ks be the shallowest leaf node in the current key tree, 7., and its key.
Let the corresponding keys from parent of ns to the root be < ki, ki,, ..., ki, >.
Replace ns with n,, and attach ns and n, to n, as child nodes.

4. Update < kiy, kiy, ..., ki, > to < ki, ki, ki, >

5. Encrypt < kp, ki, ki,, ki, > with k, and unicast it to m..

Encrypt k, with ks and k{J with k;; (1 <j < h), and multicast it to members.

Procedure 1. Join protocol

1. Let m,, and n, be the leaving member and the corresponding leaf node
in 7., respectively.
Let ns and n, be the sibling and the parent node of n.,, respectively.
Let the corresponding keys from parent of n, to the root be < k;,, ki, , ..., ki, >
2. Replace n, with ng, and remove n, and n,.
. Update < kiy, kiy, ..., ki, > to < ki, ki,, ... ki, >
4. Encrypt each key of < kj ,ki,, ..., ki, > with its child node keys,
and multicast it to remaining members.

w

Procedure 2. Leave protocol

A naive solution of recovering a message which is not the last rekey message is
message retransmission; KDC sets the number of key recovery-supporting mes-
sages, w, as a system parameter, and prepares enough buffers in which messages
of w can be stored. The appropriate value of w should be determined according
to characteristics of applications. At key recovery request by a member, buffers
are scanned for the requested message. The message, if it is found, is unicas-
ted to the member. If the buffers are not holding the message, the member is
notified of recovery inability. This method is simple but incomplete in that mes-
sages not stored in buffers cannot be recovered. If some of the lost KEKs are
updated again before the lost rekey message is recovered, they become useless
thereafter because they can no longer be used to decrypt other keys. In other
words, the simple recovering of lost rekey message leads members to decrypt
KEKs for which their uses have vanished. We further discuss this inefficiency in
section 4.2 in detail. This section proposes a method that can perform efficient
recovery at the loss of previous rekey message as well as the last message. This
method also allows members to eliminate unnecessary key decryptions.

A Key Recovery Mechanism for Reliable Group Key Management 377

event,; event,,,
GK,, GK,
LN ee e
Ty i
RKey,, RKey, RKey,,,

Fig. 3. Events, key-trees and rekey messages

4.1 Notations

In this section, we define the notations to explain our scheme with the following
terms:

— event;: An event which causes the i*" key update. It is either the join or the
leave of a member.

— T;: The key-tree after the i*" update from event; takes place (Refer to figure
3).

— RKey;: The rekey message that contains keys updated from T;_1 to T; (Refer
to figure 3).

— GK;: The root key of T; which is the group key updated by RKey; in which
case ¢ is the version number of the group key (Refer to figure 1 and 3).

— m;: The member whose identifier is 7.

— k;: The key shared only by the member m; and KDC.

— ki j: The key shared by KDC and the members ranging from m; to m; when
the key-tree is traversed by DFS (Depth First Search) (Refer to figure 1 and
3).

— pathi: The path from the leaf node of mg to the root in 7;.. For example,
pathy in figure 4 is < ki, k1 2,k 4, k7 7 >.

— RZ: The common path of path? and path? (Let the event, be caused by my).
For example, R} in figure 4 is < ki 4, k] 7 >.

— 149: The level of the lowest node of RZ. For example, [} in figure 4 is the level
of k1 4 , 2 (Note that the root’s level is 1 and level of a node is larger than
that of the parent node by 1).

— PRFjey(s): A pseudo random function that performs the mapping of s with
the key, key[4].

This section refers to the member who has requested a key recovery as mg, and
to the lost rekey message and the group key as RKey,r and GK,., respectively.
The group key, at the time of KDC receiving the key recovery request message
from mg, is GK..

378 T. Cho and S.-H. Lee

m, leaves

Fig. 4. Key Updates, T3, path] and R}

GK, GK

r+I

® group key

@ KEKs contained in R (i=r, r+1)
i"""% undecryptable keys

¢~ | decryptable keys

encrypt the new key using

C@previous key
keys in the left and right sides
are the same

pathf pamf, | pam? paml, |pam? path},

@1, W) =17, (© 5 <15,

Fig. 5. In case of event,+1 = join

4.2 Observations

The following are observed from the analysis of the characteristics of LKH.

(1) If one key of the key-tree is updated due to event;, then its ancestor keys are
updated as well. That is, for arbitrary r and g, if we let the length of RY be vy,
then RY consists of the highest y keys of path? (Refer to section 4.1 and figure 4).

(2) Suppose m, misses RKey,. Then m, cannot decrypt the following keys of
RKey,+1 due to the loss of RKey,:

(a) In the case of event,+1 = join, m, cannot decrypt the keys whose levels
are less than or equal to [Z, since the keys used to encrypt those new keys
are lost in RKey, (Refer to figure 5).

(b) In the case of event, 1 = leave and 19 > I? |, mg cannot decrypt any of

the keys in R . The rekey message for R}, is constructed as a chain in

A Key Recovery Mechanism for Reliable Group Key Management 379

Gk,

i

G, ;

.

@ group key

@ KEKs contained in R} (i=r, r+1)
r~ " decryptable keys

»>encrypt the parent key using
ko child key
keys in the left and right sides
are the same

path? pam?, | pah? pah®, |pam? pamf,

@WE- WEe ©Eel

Fig. 6. In case of event,+1 = leave

which each key is encrypted using its child key. If I > I7, |, the first key of
the chain is lost in RKey, (Refer to figure 6 (a)). As the decryption of the
chain must begin with the first key, anyone who does not know the first key
cannot decrypt the keys in the chain.

(3) mgq can decrypt the following keys of RK ey, 1 without recovering RK ey,.:

(a) In case of event, 1 = join, m, can decrypt the nodes whose levels are
greater than [?, because the keys used to encrypt these keys are not lost in
RKey, (Refer to figure 5 (c)).

(b) In the case of event,,1 = leave and I < I, |, my can decrypt all the
keys in R}, |, because the first key of the chain is not lost in RKey, (Refer
to figure 6 (b) and (c¢)). Anyone who knows the first key can decrypt all the
keys in the chain.

(4) The first rekey message that m, can decrypt without recovering RKey, is
RKeys. <= s is the minimum value such that [? <% A eventys = leave.

(Proof) It can be proven by induction on s.
(a) In the case that the first index of rekey message that m, can decrypt is
s=r+1:

If event, 1 = leave N1Z < 1], then m, can decrypt R}, by (3)-(b);
he can do so only if event, 1 = leave A1 < I | by (2).

(b) In the case that the first index of rekey message that m, can decrypt is
s=r+1i,1>2:

Since m, cannot decrypt any of the keys of R‘TIH, eventy41 = joinVId >
12, by (3). Consider the case of event, ;1 = join first. If IZ > I |, the

380 T. Cho and S.-H. Lee

levels of the undecryptable keys in figure 5 (a) are less than or equal to 1%
the two lowest keys in RY are the same keys in path; ;. In the case of [{ <
I 11, the keys whose levels are less than or equal to /] are not decryptable
by (2)-(a). Similarly in the case of event, 1 = leave AlIZ > 1], the keys
whose levels are less than or equal to [? are not decryptable. That is,
mg only does not know the keys whose levels are less than or equal to
19 on the pathy,,. The effect is the same as m, losing Ry, such that
19 =11,,. So, we can apply the same idea to j (r < j < i) repeatedly.
Consequently, if m, can decrypt R}, then event; = leave A 1% < [?. And
as R} is the first decryptable rekey message, event; = join V 1% > l]q for
Jjlr < j<i).

(5) If my can decrypt RKeys(r < s) without recovering RKey,, then he can
decrypt all rekey messages thereafter.

(Proof) Since m, can decrypt RKeys, events = leave NI < [(Refer to (4)).
As we described above, since the levels of the keys that m, cannot decrypt
are less than or equal to [¢, there are no undecryptable keys on the levels
that are greater than [Z. That is, m, knows every keys on path?, therefore,
he can decrypt all rekey messages thereafter.

(6) The keys that are not used to encrypt any other group keys or KEKs are not
necessarily recovered or decrypted. In other words, if m, can decrypt R? and
recover GK;(r < i < s), the KEKs of R! (r <i < s) whose levels are less than
or equal to [4 are not useful for m,.

4.3 Basic Key Recovery Algorithm

The basic idea of our scheme is searching s that satisfies the conditions started
in section 4.2 (4), and then transmitting GK,, ..., GK,_1 that are the lost or
undecryptable group keys, to mg. In effect, KDC eliminates the transmission
of useless KEKs, and the member who loses the rekey message has no need to
decrypt those keys. The maximum size of R{ is logan, the height of the key-tree.
Therefore, when (s — r) >logan, retransmitting R may be more efficient than
our scheme. However, the expected value of s — r is very small; we will analyze
this value in section 5. Our scheme is as follows.

(1) Group Key Generation Method

KDC generates group keys in the following manner that any version of the
group key can be generated at any time, while satisfying GKS, FS and BS.
MKey is a secret key which is only known to KDC, and the version of the
group key is increased by 1 whenever the group key is updated beginning
from 1.

GK; = PRFyxey(i).

A Key Recovery Mechanism for Reliable Group Key Management 381

(2) Node Structure of Key-tree

Each node of the key-tree has an array flag|0, ..., w-1] and last to calculate
17 2-bit flag[i%w] of each node records event; that causes an update of its
key value. last indicates the last index of an event that causes an update
of the corresponding key. Whenever event; occurs by m,, flag[i%w] of the
nodes on pathy is set to event;, and last is set to i. Note that flags are used
repeatedly with period w. Therefore, whenever key update and key recovery
procedure are executed, past values of flags must be cleared and the value
of last adjusted appropriately.

(3) Key Recovery Algorithm

KDC maintains the current key-tree, T. only. Receiving the key recovery
request for RKey, from my, KDC processes the procedure 3.

1. Check if ¢ — 7 + 1 < w. Then,
1.1 Calculate [{.
// This value is the lowest level of node of pathl
// whose flag[i%w] is join or leave.
1.2 By using flags, search for s that satisfies the conditions of observation (4).
1.3 If such an s exists,
1.3.1 Then, send GK,, ..., GK,_1 to my.
1.3.2 Otherwise,
// It means that there are no rekey messages decryptable
// by mgq without recovering RKey,. In this case, although
// KDC should send R}, it does not have any value of past keys.
// KDC can use the current key-tree only.
Send GK,, ..., GK.—1 and the keys of path? whose levels are
less than or equal to 7.
// As the levels of undecryptable keys due to the loss of RKey,
// are less than or equal to I, m4 can decrypt RZ and GK..
2. Else, i.e., ¢ —r > w, // KDC cannot calculate .
2.1 Send GK,, ..., GK.—1 and pathl to my.
// The keys are unicasted to mgq after being encrypted using kq.

Procedure 3. A basic key recovery algorithm

5 Analysis

5.1 Security and Reliability

Our rekey algorithm is the same as the previous algorithm[T6] [T7], except for
the group key generation method. The group key is generated by PRF in our

382 T. Cho and S.-H. Lee

scheme. PRF is calculated by using the secret key of KDC, M Key, as a key and
the version number of the group key as a seed. Characteristics of the PRF[4]
make it computationally infeasible to predict the value of the function or the
key even if an attacker knows a set of group keys. Therefore, FS and BS can be
guaranteed because even a member who possesses certain parts of the group keys
is unable to calculate the preceding/succeeding keys or M Key. These properties
can be provided using HMACI6] as a PRF. Another security point is in the key
recovery procedure. We assume that KDC maintains members’ information, such
as the subscription period, for membership management. Using this, KDC can
check the validity of members’ key recovery requests. An adversary may try to
obtain group keys by guessing the group key or M Key, or by eavesdropping on
the key recovery messages. Because of the property of PRF, an adversary cannot
discover M Key or group keys by guessing even though the version number of
group key is public. Thus, GKS is guaranteed if the encryption algorithm is
secure; note that the recovered keys are encrypted using the individual key of
the member.

KDC is capable of recovering arbitrary group keys at members’ requests be-
cause group keys can be calculated only from M Key and the group key version
in our scheme. KDC also calculates group keys and KEKs that cannot be de-
crypted without the recovery of the lost keys. Our method, therefore, provides
reliability with successful key recovery.

5.2 Efficiency

(1) Additional Storage on KDC

Let K be the bit length of a key. In the naive solution, KDC needs additional
storage of approximately 2wK-logn bits to buffer past rekey messages. The
required storage is increased to about 2wn bits in our scheme since each node
of the tree has to have a flag. However, this may be reduced optimally. The
optimization will be described in section 6.

(2) Traffic Amount and the Number of Encryptions/Decryptions

The loads on KDC and members are estimated by the number of key encryp-
tions/decryptions and the amount of traffic is measured by the number of trans-
mitted keys. For the analysis of the average and the worst case, let p=c—7r+1
and t = s — r; p indicates that how many key updates occur after the loss of
RKey,; t indicates the number of undecryptable rekey messages due to the loss
of RKey,. Let the average size of R! be w.

In the case that the lost rekey message is not within the recovery window w,
our scheme still can recover the lost message that the naive solution cannot. Such
recovery would require as much work load as would the worst case. Otherwise, in
the naive solution, logan or 2-logan keys are transmitted for join or leave events,
respectively. Thus, the average number of keys to be transmitted is 1.5-logan.
Because m, cannot decrypt RKey,, ..., RK ey, in the worst case, he may decrypt
logan keys for each RKey; after recovering the RKey,. In average, he may

A Key Recovery Mechanism for Reliable Group Key Management 383

Table 1. The number of computations and transmissions

" T Subjecls KDC Traflic Member
Cases " (Criteria) | (The number of | (The number | (The number of
Methods T—_ | encryptions) of keys) decryptions)
Naive solution - - N.A.
e w Proposed scheme p-l+log,n | p—1+log,n | p—1+log,n
Warst Naive solution] 2-log, n p-log, n
case 1+ — _
S — Proposed scheme p-l+log,n | p—1+log,n | p—1+log,n
Naive solution 0 1.5-log, » -t
Average
Proposed scheme t 4 t

decrypt u keys for each RKey;(r < i < s). In our scheme, KDC transmits ¢
keys, RKey,, ..., RKeys_1. In the worst case, when ¢ = p, KDC transmits p — 1
group keys, GK,, ..., GK._; and logaon keys of path?. The number of encryptions
of KDC and the number of decryptions of a member is equal to the number of
transmitted keys.

Comparisons between the proposed method and the naive solution are made
on Table 1. It shows that our scheme reduces the traffic amount and process
load on members instead of the load on KDC, except for the traffic amount in
the worst case. However, the practical efficiency of schemes should be estimated
not by its performance in the worst case but by that on average. In section 6,
we will derive the expected value of ¢.

6 Optimization and Analysis on Expectation

As described in section 5.2, the storage of KDC in our scheme is proportional to
the group size. It is not scalable for large groups. To eliminate this constraint, we
try to attach flags only to the highest nodes of the key-tree instead of attaching
it to all nodes. In this section, we derive the appropriate level of the node to
which to attach flag and analyze u and t for average efficiency.

6.1 Space Optimization

For simplicity, we assume that n = 2" for some h. Let the keys of path®, ordered
by from the root to the leaf, be k;,, ki, , ..., ki, . Assume also that event, occurs
with the join or leave of m,. Without loss of generality, let m, be the rightmost
member in the key-tree. Then as shown in figure 7, the leftmost n/2 members
need only the root key k;, . Next n/2% members need 2 keys, k;, and k;,. The total
number of key updates for group members, except for m,, is Z?Zl(Z_i ‘i) =
(2 — longn“) -n. If the probability of key losses for all members is uniform, the
expected number of keys to be recovered, u, is 2 — % ~ 2.

Using this fact, we can reduce the amount of additional storage needed by
KDC. If we maintain flags on only the nodes whose levels are less than or

384 T. Cho and S.-H. Lee

@ Updated Keys
B Joining or Leaving Member

T I
n/2 n/4 :;;Ln‘;';

Fig. 7. The number of related members for each key

equal to v, the amount of storage is about 2w - (2¥ — 1) bits. If [2 > v for some
r and ¢, as all flags of pathd are set to event,, KDC cannot know the real 2.
In this case, we regard ¢ as logah. Therefore, the expected number of keys to
be recovered converges to 2 as follows:

ST)+ (=S 27 b= b} = 2 Bt
For various v and n, the expected number of keys to be recovered is shown in
table 2. If we set v to 4 when n is not greater than 1 million, and to 5 otherwise,
we can maintain the number of keys to be recovered below 3. As a result, the
additional storage for KDC is reduced to 62w bits regardless of the group size.

6.2 Expectation of the Amounts of Traffic

Now, we analyze the expected value of ¢t which is a major factor of efficiency
in our scheme. We assume that the probabilities of the occurrence of a member
join and that of a leave are equal. The probability of ¢ = i is 27". For each i, the

probabilities of 14 < 12, , ¢ =17, and ¢ > I] | are 27%, 27 and 1 — 27"t

Table 2. Key recovery message size, u according to v

"';---f?__& 100 1,000 10,000 [1.0-05 |1.6=06 1.1+07 | 1.E+08 |1.E=09 |1.B+10
5 259 348 | 432 | 515 | 508 681 | 764 | 847 | 030
3 214 | 261 | 3203 | 345 | 387 428 | 470 | 501 | 553
4 1.97 224 245 2.66 287 3.08 3729 349 370
5 1.92 208 220 230 2.40 | 261 2732 2.82
5 191 202 | 208 | 213 | 219 224 | 220 | 234 | 239
7 192 200 | 203 | 206 | 200 211 | 214 | 216 | 219
g - 1s9 |20 | 203 | 204 205 | 206 | 208 | 2ow

log, it | 664 997 [1329 [1661 [1993 2325 |2658 [2990 [33.22

A Key Recovery Mechanism for Reliable Group Key Management 385

Table 3. Expectations of computations and traffic amount

T — Subjects KD Traffic Member
T (Criteria) | (The number {The rumber | (The number of
Methods "] of encryptians) of keys) decryptions)
Naive Sclution 0 1.5-log, » 6(9)
Proposed Scheme 3 3 3

respectively. Consequently, for an arbitrary [, the probabilities of 19 < 17,

=12 and > 12, ave I (22) = (1 - 4) 00 (%) = £ (1 -)
and 2?:1 (277 (1 —27")) = & (1 — 2259), respectively. Since the probability
of s = r+11is equal to that of (12 <! | Aevent, 1 = leave), it is about 1/3. The
probability of s = + 2 is equal to that of (I > I, | V event, 1 = join) A (I <
l:f+2 A event,yo = leave), and it is about 2/9. In general, the probability of s =
7+t is about 2¢71 /3%, so the expectation of ¢ is lim;_, 22:1 (t-271.371) = 3.

We implemented LKH with the balancing method proposed in [§]. The result
of this experimentation shows that u converges to 3. Based on this result, the
average of computations and the traffic amount are presented in table 3. As
shown in table 3, the number of computation and the traffic amount of our
scheme are constants, and the number of decryptions is reduced to 1/3 of the
decryptions required by the naive solution in maximum.

7 Conclusion and Future Work

This paper analyzed and defined problems related to rekey message loss and to
members’ log-out. Based on this analysis, we proposed a key recovery mechanism
that recovers arbitrary group keys efficiently and eliminates transmission and
decryptions of useless KEKs without storing any rekey messages. Our scheme
reduced the average traffic amount and the number of decryptions for members
at the cost of encryption overheads at KDC from those of the naive solution.
Our scheme is based on binary a key-tree, which is the simplest form of LKH.
Other schemes such as [1] and [2] are designed to improve the efficiency of LKH.
It is expected that our scheme can be applied to those schemes with slight
modification. However, more exact analysis on the efficiency is necessary.

The proposed method is triggered by key recovery requests from members
to KDC. Keys are more likely to be lost in cases of unstable networks. Such
cases result in an increase in recovery requests, congesting data transmissions to
KDC. Combinations created with methods of [1§], [14] or [I9] could prevent the
problem. These methods alone would require repeated transmission with recep-
tion percentages close to 100%. Therefore, recovering the lost messages by the
proposed method, after the application of the method of repeated transmission
to guarantee appropriate degrees of reception rates, would be more efficient.
Research on proper reception rates are needed in the future to maximize the
efficiency.

386

T. Cho and S.-H. Lee

References

1.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

D. Balenson, D. McGrew and A. Sherman, “Key Management for Large Dynamic
Groups: One-way Function Trees and Amortized Initialization,” IETF Internet
Draft, 1999.

. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas, ”Multicast

Security: A Taxonomy and Some Efficient constructions,” Proc. of IEEE INFO-
COMM’99, Vol. 2, pp708-716, 1999.

A. Fiat and M. Naor, ”Broadcast Encryption,” Advances in Cryptology: Proc. of
Crypto’93, LNCS 773, pp480-491, 1994.

. O. Goldreich, S. Goldwasser and S. Micali, “How to Construct Random Functions,”

Journal of the ACM, Vol.83, Issue 4, pp792-807, 1986.
T. Hardjono, B. Cain and B. Doraswamy, “A Framework for Group Key Manage-
ment for Multicast Security,” IETF Internet Draft, 2001.

. H. Krawczyk, M. Bellare and R. Canetti, “HMAC: Keyed-hashing for Message

Authentication,” TETF RFC 2104, 1997.

S. Mittra, ”Iolus: A Framework for Scalable Secure Multicasting,” Proc. of ACM
SIGCOMM’97, Vol.27, Issue 4, pp277-288, 1997.

M. J. Moyer, J. R. Rao and P. Rohatgi, “Maintaining Balanced Key Trees for
Secure Multicast,” IRTF Internet Draft, 1999.

. http://www.ietf.org/html.charters/msec-charter.html

http://www.securemulticast.org/msec-index.htm

A. Perrig, D. Song and J. D. Tygar, “ELK, a New Protocol for Efficient Large-
Group Key Distribution,” 2001 IEEE Symposium on Security and Privacy, pp247—
262, 2001.

O. Rodeh, K. P. Birman and D. Dolev, “Optimized Group Rekey for Group Com-
munication Systems,” Network and Distributed Systems Security 2000, pp37—48,
2000.

S. Rafaeli, L. Mathy and D. Hutchison, “EHBT: An Efficient Protocol for Group
Key Management,” 3rd International Workshop on Networked Group Communi-
cations, pp159-171, 2001.

S. Setia, S. Zhu and S. Jajodia, “A Scalable and Reliable Key Distribution Protocol
for Group Rekeying,” Technical Report, George Mason Univ., 2002.

S. Setia, S. Zhu and S. Jajodia, “A Comparative Performance Analysis of Reliable
Group Rekey Transport Protocols for Secure Multicast,” Proc. of the Performance
2002 Conference, 2002.

C. K. Wong, M. Gouda and S. S. Lam, “Secure Group Communications using Key
Graphs,” Proc. of ACM SIGCOMM, Vol 28, Issue 4, pp68—79, 1988.

D. Wallner, E. Harder and R. Agee, “Key Management for Multicast: Issues and
Architectures,” IETF RFC 2627, 1999.

C. K. Wong and S. Lam, “Keystone: A Group Key Management Service,” Proc.
of International Conference on Telecommunications, 2000.

X. B. Zhang, S. S. Lam, D. Lee and Y. R. Yang, “Protocol Design for Scalable and
Reliable Group Rekeying,” Proc. of SPIE Conference on Scalability and Traffic
Control in IP Networks, 2001.

	Introduction
	Requirements
	Related Studies
	Key Management Using a Key-Tree
	Group Key Management for Reliability

	A Basic Key Recovery Mechanism
	Notations
	Observations
	Basic Key Recovery Algorithm

	Analysis
	Security and Reliability
	Efficiency

	Optimization and Analysis on Expectation
	Space Optimization
	Expectation of the Amounts of Traffic

	Conclusion and Future Work

