
Timing Attack against Implementation of a
Parallel Algorithm for Modular Exponentiation

Yasuyuki Sakai1 and Kouichi Sakurai2

1 Mitsubishi Electric Corporation,
5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan

ysakai@iss.isl.melco.co.jp
2 Kyushu University,

6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
sakurai@csce.kyushu-u.ac.jp

Abstract. We describe a parallel algorithm for modular exponentiation
y ≡ xk mod n. Then we discuss timing attacks against an implemen-
tation of the proposed parallel algorithm for modular exponentiation.
When we have two processors, which perform modular exponentiation,
an exponent k is scattered into two partial exponents k(0) and k(1),
where k(0) and k(1) are derived by bitwise AND operation from k such
that k(0) = k ∧ (0101 · · · 01)2 and k(1) = k ∧ (1010 · · · 10)2. Two partial
modular exponentiations y0 ≡ xk(0)

mod n and y1 ≡ xk(1)
mod n are

performed in parallel using two processors. Then we can obtain y by
computing y ≡ y0y1 mod n. In general, the hamming weight of k(0)

and k(1) are smaller than that of k. Thus fast computation of modular
exponentiation y ≡ xk mod n can be achieved. Moreover we show a
timing attack against an implementation of this algorithm. We perform
a software simulation of the attack and analyze security of the parallel
implementation.

Keywords: Parallel modular exponentiation, Montgomery multiplica-
tion, Side channel attack, Timing attack, RSA cryptosystems

1 Introduction

1.1 Timing Attack

Smart cards are one of the major application fields of cryptographic algorithms,
and may contain sensitive data, such as RSA private key. Some implementa-
tions of cryptographic algorithms often leak “side channel information.” Side
channel information includes power consumption, electromagnetic fields and tim-
ing to process. Side channel attacks, which use side channel information leaked
from real implementation of cryptographic algorithms, were first introduced by
Kocher [Ko96,KJJ99]. Side channel attacks can be often much more powerful
than mathematical cryptanalysis. Thus, many literatures on side channel crypt-
analysis have been published [IT02,IYTT02,OS00,Sc00,Wa99,WT01].

J. Zhou, M. Yung, Y. Han (Eds.): ACNS 2003, LNCS 2846, pp. 319–330, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

320 Y. Sakai and K. Sakurai

In this paper, we focus on a timing attack against an implementation of a
parallel algorithm for modular exponentiation which will be described in later
section. The running time of a cryptographic device can constitute an infor-
mation channel, providing the attacker with valuable information on the secret
parameters involved. The timing attack is the attack to determine a secret pa-
rameter from differences between running times needed for various input val-
ues. The timing attack was first introduced by Kocher at Crypto 96 [Ko96]. He
showed that a careful statistical analysis could lead to the total recovery of secret
parameters.

In [DKLMQW98] a successful timing attack against a modular exponentia-
tion without Chinese Remainder Theorem (CRT) was implemented. In [SQK01]
further improved timing attacks were proposed. These attacks assume that im-
plementations do not use CRT for modular exponentiation. In [Sc00] Schindler
presented a powerful timing attack against an implementation using CRT. The
exponent of modular exponentiation can be a secret parameter in RSA-based
cryptosystems. Thus we must implement modular exponentiation very carefully.

In RSA-based cryptosystems, modular exponentiation is the most expensive
part in implementation. Therefore, it is very attractive to provide algorithms
that allow efficient implementation of modular exponentiation. Montgomery’s
method [Mo85] perform modular multiplication without a division instruction
which is an expensive operation in almost processors. Thus this method can
achieve computational speed-up and is often used in implementations of modu-
lar exponentiation. Timing attacks described in the above literature were against
modular exponentiation with Montgomery’s method. The running time of Mont-
gomery’s method for modular multiplication depends on the input value. If the
intermediary result of the multiplication is greater than the modulus, an “extra
subtraction” has to be performed. The extra subtraction lead differences between
running times needed for various input values. Previous works on timing attacks
against the modular exponentiation [DKLMQW98,SQK01,Sc00] made good use
of the timing differences. Dhem et. al. presented a practical attack such that
a secret exponent of 512 bits can be totally recovered with 300,000 time mea-
surements [DKLMQW98]. In their attacks, an attacker has to know information
on the implementation such that modular exponentiation is implemented with
the binary method and Montgomery’s multiplication. Walter et. al. gave a way
to recover a secret exponent without knowledge of the modulus or input values
[WT01].

1.2 Parallel Algorithm

Recently Garcia et. al. gave parallel algorithms for elliptic scalar multiplica-
tion [GG02]. When we have plural devises, which can perform elliptic scalar
multiplications, we scatter a given scalar into several sub-scalars. Partial scalar
multiplication are carried out with sub-scalar in parallel on plural devises. Then
scalar multiplication can be computed with the outputs from the devises. Non-
zero bits in scalar representation can be distributed into plural devises. Thus this

Timing Attack against Implementation of a Parallel Algorithm 321

parallel algorithm provides an efficient implementation. This algorithm for ellip-
tic scalar multiplication can be easily extended to modular exponentiation. In
this paper we show a parallel algorithm for modular exponentiation. Our parallel
algorithm can achieve speed-up of computation. However, as we noted before,
computational advantage can not be enough for implementations, especially on
smart cards. That is, side channel attacks have to be cared when we implement
our parallel algorithm.

1.3 Our Contribution

In this paper we first describe a parallel algorithm for modular exponentiation.
Then the computational efficiency will be discussed. Our parallel algorithm can
gain speed in modular exponentiation if we have plural devises for modular
exponentiation. When we have b processors, the computational complexity can
be reduced to (t − 1)S + (�H(k)/b� + b − 1)M on the best case, where t and
H(k) denote the bitlength of k and hamming weight of k respectively, S andM
denote modular squaring and multiplication respectively.

Moreover we analyze vulnerability of implementations of our parallel algo-
rithm against the timing attack. We will state that there is difficulty in the attack
against our parallel implementation. We adopt Dhem’s strategy [DKLMQW98]
based timing attack. We make an experiment on the timing attack with software
simulation. Our results show that Dhem’s method based attack can still work
against the parallel implementation.

2 Parallel Algorithm for Modular Exponentiation

In this section we describe a parallel algorithm for modular exponentiation y ≡
xk mod n. Garcia et. al. [GG02] gave a parallel algorithm for elliptic scalar
multiplication, which is the basis of our algorithm.

2.1 The Algorithm

Assume that a t-bit non negative integer k has a binary representation k =
(kt−1 · · · k1k0) , ki ∈ {0, 1}. We divide the binary representation of k in �t/b�
blocks of b bits each one and then we scatter k into k(0), k(1), · · · , k(b−1). The
binary representation of the block k(i) is formed by �t/b� blocks of b bits set
to 0, except for the i-th bit, which has the same value that the i-th bit of the
corresponding block of the binary representation of k. Thus we can define k(i),
for i = 0, · · · , b− 1, as follows.

k(0) = k0 + kb2b + k2b22b + · · ·+ k(� t
b �−1)b2

(� t
b �−1)b

k(1) = k12 + kb+12b+1 + k2b+122b+1 + · · ·+ k(� t
b �−1)b+12

(� t
b �−1)b+1

...
k(b−1) = kb−12b−1 + k2b−122b−1 + k3b−123b−1 + · · ·+ kb� t

b �−12
b� t

b �−1

322 Y. Sakai and K. Sakurai

That is

k(i) =
� t

b �−1∑

j=0

kjb+i2jb+i

for i = 0, 1, · · · , b − 1, where we consider some padding bits bl = 0 for t − 1 <
l < b�t/b� − 1.

Clearly we have

k = k(0) + k(1)+, · · · , +k(b−1).

Thus we can compute the modular exponentiation y ≡ xk mod n by the following
equation.

xk mod n =
((

xk(0)
mod n

) (
xk(1)

mod n
)
· · ·

(
xk(b−1)

mod n
))

mod n

The exponent set {k(0), k(1), · · · , k(b−1)} can be easily obtained from k by bitwise
AND operation with the appropriate mask.

We show the algorithm for parallel modular exponentiation in Algorithm 1.

Algorithm 1 Parallel modular exponentiation
Input x, n, k
Output y ≡ xk mod n

1. Bits scattering:

Compute the set
{

k(0), k(1), · · · , k(b−1)
}

2. Parallel computation:
Using b processors, compute in parallel the exponentiations

y ≡
((

xk(0)
mod n

) (
xk(1)

mod n
)
· · ·

(
xk(b−1)

mod n
))

mod n

3. Return y

Notice that in the case that block-length b equals to one, Algorithm 1 is
equivalent to the simple modular exponentiation.

2.2 Computational Complexity

Let we discuss the computational complexity of the parallel modular exponen-
tiation Algorithm 1. Assume k has the bitlength t and has the hamming weight
H(k). Then we have the following theorem [GG02].

Theorem 1. Assume each individual exponentiation is performed by the binary
method (Algorithm 2). The parallel exponentiation Algorithm 1 has the compu-
tational complexity, on the best case,

(t− 1)S + (�H(k)/b�+ b− 1)M
and, on the worst case,

Timing Attack against Implementation of a Parallel Algorithm 323

(t− 1)S + (H(k)− 1)M

where M and S denote modular multiplication and modular squaring, respec-
tively.

The computational complexity of the parallel exponentiation can be evalu-
ated by the individual exponentiation which has the most expensive complexity.
Since the most significant bit kt−1 is 1 by assumption, one of the individual
exponentiation has to perform t− 1 modular squarings.

On the best case, all the bits set to one in the binary representation of k are
equally scattered among the exponent set {k(i)}, so the computational cost is
perfectly balanced on all the individual exponentiation.

The worst case implies that there exists some index i, for 0 ≤ i ≤ b − 1,
such that all of bit “1” are mapped to k(i) and then xk(i)

mod n = xk mod n.
In such the case, the computational cost is the same as the traditional binary
exponentiation.

The computational cost for computing the set {k(0), k(1), · · · , k(b−1)} from k
can be ignored, because we can obtain the set by simple bitwise AND operations.

3 Timing Attack against Modular Exponentiation

In this section we explain a framework of the timing attack against implemen-
tation of the basic modular exponentiation without CRT.

3.1 Modular Exponentiation

In this paper we consider the binary representation for a given exponent and the
left-to-right binary (square-and-multiply) method for modular exponentiation.
The left-to-right binary method for modular exponentiation y ≡ xk mod n can
be described as Algorithm 2.

Algorithm 2 Left-to-right binary method of modular exponentiation

Input x, n, k, where k = (kt−1kt−2 · · · k0), ki ∈ {0, 1} for 0 ≤ i ≤ t − 2 and
kt−1 = 1

Output y ≡ xk mod n

1. y ← x
2. for i from t− 2 downto 0

y ← y2 mod n
if ki = 1 then

y ← y · x mod n
endfor

3. return y

The timing attack will be demonstrated on an implementation with the fol-
lowing algorithms.

324 Y. Sakai and K. Sakurai

– The modular exponentiation is performed by Algorithm 2.
– The modular exponentiation is performed without CRT.
– Modular multiplication and modular squaring are performed with Mont-

gomery’s method.

In the Montgomery’s method, when the intermediate value during the com-
putation becomes larger than the modulus n, we have to perform “extra subtrac-
tion.”

The goal for an attacker is to recover the exponent k, which can be a secret
parameter of the decryption and the signature generation in RSA-based cryp-
tosystems. The attacker determine a secret parameter k from differences between
running times needed for various input values x.

3.2 Model of the Attacker

We assume that the attacker can be modeled as the following.

– The attacker has access to a device which perform modular exponentiation
with a secret exponent.

– The attacker can measure the running time of the total (not partial) modular
exponentiation with various input x.

– The attacker knows the modulus n.
– The attacker has the knowledge of the implementation. In this paper, we as-

sume that the modular exponentiation is performed by the method described
in the previous section.

The attack algorithm will be developed with the assumption that the running
time of modular exponentiation only depend on the base x but not on other
influences.

3.3 Dhem’s Method of Timing Attack

Dhem et. al. proposed a practical timing attack against an implementation
of modular exponentiation without CRT [DKLMQW98]. In this subsection we
briefly explain their strategy. See [DKLMQW98] for details. Our timing attack,
which will be described in the next section, will be developed based on their
attack.

Assume again that a given exponent k has binary representation k = (kt−1
· · · k1k0), where k ∈ {0, 1}, kt−1 = 1. Their attack recovers the exponent bit by
bit from kt−2 to the least significant bit k0. Notice that the MSB kt−1 is always 1.
We start by attacking kt−2. When kt−2 = 1, at Step 2 of Algorithm 2, modular
multiplication with Montgomery’s method has to be performed. For some input
x, intermediate value can be larger than the modulus n, and then the extra
subtraction has to be performed. For the other input x, the extra subtraction

Timing Attack against Implementation of a Parallel Algorithm 325

is not required. Let X be the set of inputs. We can define two subsets of inputs
X1, X2 ⊂ X as follows.

X1 = {x ∈ X|x · x2 has to be performed with extra subtraction}
X2 = {x ∈ X|x · x2 can be performed without extra subtraction}

If the value of kt−2 is 1, then we can expect that the running times for the inputs
x ∈ X1 to be slightly higher than the corresponding times for x ∈ X2.

On the other hand, if the actual value of kt−2 is 0, then the modular mul-
tiplication in Step 2 will not be performed. In this case, for any input x, there
is no reason that the extra subtraction is induced. Therefore, the separation
in two subsets should look random, and we should not observe any significant
differences in the running time.

When the attacker wants to guess the bit kt−2, he should take the strategy
below.

Algorithm 3 Guessing kt−2

1. Generating two subsets X1, X2:
For various inputs x, the attacker does the following simulation with the
knowledge of the implementation. At modular multiplication phase in Step
2 of Algorithm 2 with i = t−2, if the extra subtraction has to be performed,
x should be classified into X1. Else if the extra subtraction is not required,
x should be classified into X2.

2. Measuring the running times:
Using the device, on which modular exponentiation is implemented, the at-
tacker measures the running time of modular exponentiation for x ∈ X1 and
x ∈ X2.

3. Guessing kt−2:
The attacker does a statistical analysis on the difference of the running times
between x ∈ X1 and x ∈ X2. Then he guesses kt−2 = 0 or 1.

Based on the time measurement, the attacker has to decide that the two
subsets X1 and X2 are significantly different or not. Some statistical analysis
can be of help. Possible use for statistics could be the mean value and χ2 test.

The attacker first guesses the bit kt−2 based on Algorithm 3. The same
strategy can be applied continuously bit by bit from MSB to LSB. The attacker
may recover the total secret exponent k.

There is a more subtle way to take advantage of our knowledge of Mont-
gomery’s method: instead of the multiplication phase, we could turn ourselves
to the square phase at Step 2 of Algorithm 2 [DKLMQW98]. The same strategy
as multiplication phase described before can be applicable.

326 Y. Sakai and K. Sakurai

4 A Timing Attack against the Parallel Modular
Exponentiation

In this section we consider a timing attack against the parallel algorithm for
modular exponentiation Algorithm 1. Two parallelized exponentiation will be
discussed.

4.1 The Difficulty

The total running time of the parallel algorithm for modular exponentiation
depends on the most low-speed partial exponentiation among xk(0)

mod n,

xk(1)
mod n, · · · , xk(b−1)

mod n. This property causes difficulty such that the run-
ning time of a cryptographic device could not constitute an information channel
on all bits of k.

Let we consider the case of two parallelism. In that case two partial exponents
k(0) and k(1) should be derived from the given exponent k as below.

k(0) = k ∧ (0101 · · · 01)2
k(1) = k ∧ (1010 · · · 10)2

where ∧ denotes bitwise AND operation.
The computational complexity of the partial modular exponentiations using

left-to-right method of modular exponentiation Algorithm 2 can be evaluated as

(ti − 1)S +
(
H(k(i))− 1

)
M (1)

for i = 0, 1, where ti denotes the bitlength of k(i). Note that k(1) always has
bitlength t. The hamming weight H(k(i)) of the partial exponents k(i) has sig-
nificant effect on the running time of the total modular exponentiation.

In the next subsection we will discuss this effect.

4.2 The Case That Hamming Weight of k(0) and k(1) Are almost
the Same

We can state the following theorem.

Theorem 2. Assume that the running time of modular exponentiation can be
evaluated by the number of modular multiplication and squaring required, that is,
other influences can be ignored. Let k(0) and k(1) are derived from k by masking
as before. If the following equation holds, the running time of the two partial
modular equations xk(0)

mod n and xk(1)
mod n have almost the same running

time.

H(k(0))− “the run-length of the leading bit 0 in k(0)”− 1 = H(k(1))− 1 (2)

Timing Attack against Implementation of a Parallel Algorithm 327

Proof. Notice that the MSB of k(1) is always 1. The evaluation (2) can be easily
derived from (1). 	

Following is a small example.

k = 1 1 1 1 · · · 1 1 0 1
k(0) = 0 1 0 1 · · · 0 1 0 1
k(1) = 1 0 1 0 · · · 1 0 0 0

In this case, the running time of xk(0)
mod n and xk(1)

mod n can be almost the
same.

For randomly chosen input x, The running time of the total exponentiation
xk mod n could be an information on k(0) and k(1).

4.3 The Case That the Difference between Hamming Weight of k(0)

and k(1) Is Large

When H(k(0)) is significantly larger than H(k(1)), the running time of the total
modular exponentiation xk mod n can be regarded as that of xk(0)

mod n.
Therefore, in this case any information on k(1) can not be leaked in the running
time of total modular exponentiation. Then the attacker has little chance to
recover k(0) from the running time.

When the relation between H(k(0)) and H(k(1)) is far from the evaluation
(2) in theorem 2, how better chance for successful attack the attacker can get
may depend on the following.

– The ratio of the running time of the extra subtraction to the running time
of xk(0)

mod n.
– The influences on running time other than Montgomery’s method of modular

multiplication and squaring.

4.4 An Algorithm for Attack against the Parallel Implementation

In this subsection we state an algorithm for timing attack against our parallel
algorithm of modular exponentiation Algorithm 1. We consider the two paral-
lelized implementation.

Similar to the attack against traditional modular exponentiation, described
in the previous section, we define the model of the attacker as follows.

– The attacker has access to a device which perform the modular exponentia-
tion with a secret exponent.

– The attacker can measure the running time of the total (not partial) modular
exponentiation with various input x.

– The attacker knows the modulus n.
– The attacker has the knowledge of the implementation such that:
• The modular exponentiation is performed by the two parallelized algo-

rithm (i.e. b = 2).

328 Y. Sakai and K. Sakurai

• The each partial modular exponentiation is performed by left-to-right
binary method.

• The partial exponentiations are performed without CRT.
• Modular multiplication and modular squaring are performed with Mont-

gomery’s method.

We assume again that the MSB kt−1 of the secret exponent k is always 1.
We also assume that the MSB of k(1) is always 1 by appropriate masking. The
strategy for guessing ki is quite similar to Algorithm 3. Algorithm 4 shows the
strategy to guess the second significant bit kt−2 of the given exponent k.

Algorithm 4 Guessing kt−2 in the two parallelized implementation

1. Generating two subsets X1, X2:
For various inputs x, the attacker does the following simulation with the
knowledge of the implementation. At modular multiplication phase in Algo-
rithm 1 with i = t−2, if the extra subtraction has to be performed, x should
be classified into X1. Else if the extra subtraction is not required, x should
be classified into X2.

2. Measuring the running times:
Using the device, on which modular exponentiation is implemented, the at-
tacker measures the running time of modular exponentiation for x ∈ X1 and
x ∈ X2.

3. Guessing kt−2:
The attacker does a statistical analysis on the difference of the running times
between x ∈ X1 and x ∈ X2. Then he guesses kt−2 = 0 or 1.

The attacker first guesses the bit kt−2 based on Algorithm 4. The same
strategy can be applied continuously bit by bit from MSB to LSB. The attacker
may recover the total secret exponent k.

5 An Experiment

In this section we show an experiment on the attack to recover the secret expo-
nent k. As in the previous section, we will consider the two parallelized imple-
mentation of our Algorithm 1 (i.e. b = 2). We made a software simulation on
Pentium IV-based PC, running at 1.8 GHz. Programs were written in C-language
with VC++ 6.0 compiler.

In this environment, when the modulus n and the exponent k has the size
of 128 bits, the mean value of clock cycles needed to perform extra subtraction
was several hundreds. We used the mean value for statistical analysis as follows.

– For guessing ki, if the difference of the mean value of the running time
between input x ∈ X1 and input x ∈ X2 is larger than several hundreds
clock cycles, then the attacker should guess ki = 1.

Timing Attack against Implementation of a Parallel Algorithm 329

– If the difference is smaller than several hundreds clock cycles, then the at-
tacker should guess ki = 0.

In the case that both n and k has 128 bits size, when we took 100,000 time
measurements, the following results were obtained by our experiment.

– When the relation between two partial exponents k(0) and k(1) almost holds
equation (2), we successfully recovered the entire exponent k.

– When the relation between two partial exponents k(0) and k(1) is far from
equation (2), one of the partial exponents k(0) or k(1) can be recovered.

Countermeasure. For an implementation of our parallel algorithm for mod-
ular exponentiation, possible countermeasures could be similar way as the case
of traditional implementation of modular exponentiation with Montgomery’s
method. Always performing (“dummy”) extra subtraction strategy could be a
counter measure [HQ00,Wa99], but lead extra computational cost.

6 Conclusion and Further Work

In this paper we described an algorithm for parallel modular exponentiation,
and then the computational efficiency has been discussed. Moreover, we showed
a timing attack against an implementation of our parallel algorithm.

If one of the partial exponent k(0) or k(1) is recovered, that is half bits of
given exponent k is recovered, some number theoretic approaches (e.g. [BDF98])
could be applicable for total break.

Moreover, we demonstrated that the similar strategy as Dhem’s attack can be
applicable to our parallel modular exponentiation. But we showed the difficulty
of the timing attack, which is caused from the parallelism.

To extend our attack to larger n and k, possible further work could be:
Attacking on the modular square phase may be useful for the timing attack
[DKLMQW98]. Error detection strategies [DKLMQW98,Sc00,SQK01] for the
parallel exponentiation should be considered.

References

[BDF98] D. Boneh, G. Durfee, and Y. Frankel, “An attack on RSA given a small
fraction of the private key bits,” Advances in Cryptology – ASIACRYPT’98, LNCS,
1514 (1998), Springer-Verlag, 25–34.

[DKLMQW98] J.F. Dhem, F. Koeune, P.A. Leroux, P. Mestré, and J.J. Quisquater,
“A practical implementation of the timing attack,” CARDIS 1998, LNCS, 1820
(1998), Springer-Verlag, 175–190.

[GG02] J.M.G. Garcia and R.M. Garcia, “Parallel algorithm for multiplication on el-
liptic curves,” Cryptology ePrint Archive, Report 2002/179, (2002),
http:eprint.iacr.org.

330 Y. Sakai and K. Sakurai

[HQ00] G. Hachez and J.J. Quisquater, “Montgomery exponentiation with no final
subtractions: Improved Results,” Cryptographic Hardware and Embedded Systems
– CHES 2000, LNCS, 1965 (2000), Springer-Verlag, 293–301.

[IT02] T. Izu and T. Takagi, “Fast parallel elliptic curve multiplications resistant to
side channel attacks,” Public Key Cryptography – PKC 2002, LNCS, 2274 (2002),
Springer-Verlag, 335–345.

[IYTT02] K. Itoh, J. Yajima, M. Takenaka, and N. Torii, “DPA countermeasures by
improving the window method,” Cryptographic Hardware and Embedded Systems
– CHES 2002, (2002).

[KJJ99] P.C. Kocher, J. Jaffe, and B. Job, “Differential power analysis,” Advances in
Cryptology – CRYPTO’99, LNCS, 1666 (1999), Springer-Verlag, 388–397.

[Ko96] P.C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems,” Advances in Cryptology – CRYPTO’96, LNCS, 1109 (1996),
Springer-Verlag, 104–113.

[Mo85] P.L. Montgomery, “Modular multiplication without trial division,” Math.
Comp., 44 (no. 170) (1885), 519–521.

[OS00] K. Okeya and K. Sakurai, “Power analysis breaks elliptic curve cryptosystems
even secure against the timing attack,” INDOCRYPT 2000, LNCS, 1977 (2000),
Springer-Verlag.

[Sc00] W. Schindler, “A timing attack against RSA with the Chinese Remainder Theo-
rem,” Cryptographic Hardware and Embedded Systems – CHES 2000, LNCS, 1965
(2000), Springer-Verlag, 109–124.

[SQK01] W. Schindler, J.-J. Quisquater, and F. Koeune, “Improving divide and con-
quer attacks against cryptosystems by better error detection correction strategies,”
Proc. of 8th IMA International Conference on Cryptography and Coding, (2001),
245–267.

[Wa99] C.D. Walter, “Montgomery exponentiation needs no final subtractions,” Elec-
tric Letters, LNCS, 35 (no. 21) (1999), 1831–1832.

[WT01] C.D. Walter and S. Thompson, “Distinguishing exponent digits by observ-
ing modular subtractions,” RSA Conference 2001, LNCS, 2020 (2001), Springer-
Verlag, 192–207.

	Introduction
	Timing Attack
	Parallel Algorithm
	Our Contribution

	Parallel Algorithm for Modular Exponentiation
	The Algorithm
	Computational Complexity

	Timing Attack against Modular Exponentiation
	Modular Exponentiation
	Model of the Attacker
	Dhem's Method of Timing Attack

	A Timing Attack against the Parallel Modular Exponentiation
	The Difficulty
	The Case That Hamming Weight of $k^{(0)}$ and $k^{(1)}$ Are almost the Same
	The Case That the Difference between Hamming Weight of $k^{(0)}$ and $k^{(1)}$ Is Large
	An Algorithm for Attack against the Parallel Implementation

	An Experiment
	Conclusion and Further Work

