
Optimized χ2-Attack against RC6

Norihisa Isogai�, Takashi Matsunaka, and Atsuko Miyaji

Japan Advanced Institute of Science and Technology.
{isogai, t-matsuna, miyaji }@jaist.ac.jp

Abstract. In this paper, we make progress on χ2-attack by introducing
the optimization. We propose three key recovery attacks against RC6
without post-whitening, and apply these three key recovery algorithms
to RC6. We discuss their differences and optimization and thus our
best attack can break 16-round RC6 without pre-whitening with
128-bit key (resp. 16-round RC6 with 192-bit key) by using 2117.84

(resp. 2122.84) chosen plaintexts with a success probability of 95% (resp.
90%). As far as the authors know, this is the best result of attacks to RC6.

Keywords: Block Cipher, Cryptanalysis, RC6, χ2-attack

1 Introduction

RC6 [11] is a block cipher designed by Rivest et al. in 1998. RC6-w/r/b means
that four w-bit-word plaintexts are encrypted with r rounds by b-byte keys.
Currently, RC6-32/20 is recommended to give sufficient resistance against the
known attacks [1,2,3,5,7,9,12,13]. In this paper, RC6-32 is simply denoted by
RC6. RC6 operates as an unit of w-bit word using five basic operations such as
an addition, a subtraction, a bitwise exclusive-or, a multiplication, and a data
dependent rotation. Therefore, this block cipher has a wonderful capability for
performing high-speed software implementation especially on Intel processors.
Up to the present, linear attacks, differential attacks, and χ2-attacks against
RC6 and some simplified variants of RC6 have been analyzed intensively. Ta-
ble 1 summarizes the previous results on RC6. In [2], the security of RC6 against
the differential and linear cryptanalysis was given. They estimated that 12-round
RC6 is not secure against the differential cryptanalysis. As for linear cryptanal-
ysis using multiple approximations and linear hulls, it was reported that RC6
with 16 or more rounds is secure. As a result, they concluded that 20-round
RC6 is secure against differential and linear cryptanalysis. In [12], on the other
hand, a correct key of 14-round RC6 with 256-bit key can be recovered by using
multiple linear attack, and a weak key of 18-round RC6 can be recovered with
the probability of about 1/290.

The χ2-attack is one of the most effective attacks on RC6. The χ2-attack was
originally proposed by Vaudenay as an attack on the Data Encryption Standard
� The author is currently with Matsushita Information System Research Laboratory

Nagoya Co., LTD.

J. Zhou, M. Yung, Y. Han (Eds.): ACNS 2003, LNCS 2846, pp. 16–32, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Optimized χ2-Attack against RC6 17

(DES) [14], and Handschuh et al. applied that to SEAL [6]. In [5,7,9], the χ2-
attacks were applied to RC6 or a simplified variant of RC6. The χ2-attack can
be used for both distinguishing attacks and key recovery attacks. Distinguishing
attacks handle plaintexts in such a way that the χ2-value of a part of ciphertexts
becomes significantly a higher value. Key recovery attacks have to rule out all
wrong keys, single out exactly a correct key by using the χ2-value, and thus they
often require more work and memory than distinguishing attacks. In [5,7], they
just focused on such plaintexts that outputs high χ2-value on ciphertext, and in
[9], they made progress by introducing a notion of variance as well as χ2-value
itself. But, unfortunately, optimization of χ2-value has never been discussed,
that is, what level of variance is optimal.

In this paper, we propose three key recovery attacks against RC6 without
post-whitening and discuss the differences and optimization. We also apply the
key recovery attacks to RC6 and demonstrate one of them on RC6-8. Our key
recovery attack itself gives a remarkable impact on RC6: our best attack can
break 16-round RC6 without pre-whitening with 128-bit key (resp. 16-round
RC6 with 192-bit key) by using 2117.84 (resp. 2122.84) chosen plaintexts with a
success probability of 95% (resp. 90%).

This paper is organized as follows. Section 2 summarizes the notation, RC6
algorithm, and the χ2-test. Section 3 investigates the χ2-statistic of RC6. Sec-
tion 4 presents three key recovery attacks against RC6 without post-whitening,
Algorithms 2, 3, and 4. We evaluate the security against RC6 in Section 5.
Conclusion is given in Section 6.

Table 1. Attacks on RC6

Attack Target RC6 Rounds #Texts
Linear Attack [2] RC6 16 2119

χ2 Attack [7] RC6 with 256-bit key 15 2119

Multiple Linear Attack [12] RC6 with 192-bit key 141 2119.68

χ2 Attack [9] RC6W2 with 128-bit key 17 2123.9

Our result RC6P3 with 128-bit key 16 2117.84

RC6 with 192-bit key 16 2122.84

1: A weak key of 18-round RC6 with 256-bit key can be recovered by 2126.936 plaintexts
with the probability of about 1/290.
2: RC6W means RC6 without pre- or post-whitening.
3: RC6P means RC6 without post-whitening.

2 Preliminary

We summarize the notation, RC6 algorithm, and the χ2-test, used in this paper.

2.1 Notation

Let us use the following notation:
+ : addition;
− : subtraction;

18 N. Isogai, T. Matsunaka, and A. Miyaji

⊕ : bitwise exclusive-or;
r : number of rounds;

a ≪ b : cyclic rotation of a to the left by b-bit;
a ≫ b : cyclic rotation of a to the right by b-bit;

(Ai, Bi, Ci, Di) : input of the i-th round; (A0, B0, C0, D0) : plaintext;
(Ar+2, Br+2, Cr+2, Dr+2) : ciphertext after r-round encryption;

Si : i-th subkey;
lsbn(X) : least significant n-bit of X;

msbn(X) : most significant n-bit of X;
Xi : i-th bit of X;

f(x) : x × (2x + 1);
F (x) : f(x) (mod 232) ≪ 5;
x||y : concatenated value of x and y.

We denote the least significant bit (lsb) to the 1st bit, and the most significant
bit (msb) as the 32-th bit for any 32-bit element.

2.2 Block Cipher RC6

Algorithm 1 (RC6 Encryption Algorithm)
1. A1 = A0; B1 = B0 + S0; C1 = C0; D1 = D0 + S1;
2. for i = 1 to r do: t = F (Bi); u = F (Di);

Ai+1 = Bi; Bi+1 = ((Ci ⊕ u) ≪ t) + S2i+1; Ci+1 = Di;

Di+1 = ((Ai ⊕ t) ≪ u) + S2i;

3. Ar+2 = Ar+1 + S2r+2; Br+2 = Br+1; Cr+2 = Cr+1 + S2r+3; Dr+2 = Dr+1.

Parts 1 and 3 of Algorithm 1 are called pre-whitening and post-whitening, re-
spectively. We call the version of RC6 without post-whitening to, simply, RC6P.

2.3 χ2-Test

We make use of the χ2-tests for distinguishing a non-uniformly random dis-
tribution from uniformly random distribution [7]. Let X = X0, ..., Xn−1 be a
sequence with ∀Xi ∈ {a0, · · · , am−1}. Let Naj (X) be the number of Xi which
equals aj . The χ2-statistic of X, χ2(X), estimates the difference between X and
the uniform distribution as follows:

χ2(X) =
m

n

m−1∑

i=0

(
Nai

(X) − n

m

)2
.

Table 2 presents each threshold for 63 degrees of freedom. For example, (level,
χ2) = (0.95, 82.53) for 63 degrees of freedom in Table 2 means that the value
of χ2-statistic exceeds 82.53 in the probability of 5% if the observation X is
uniform.

3 χ2-Statistic of RC6

We improve the distinguishing attacks in such a way that the χ2-values become
significantly high and that the available number of plaintexts is not reduced.

Optimized χ2-Attack against RC6 19

Table 2. Selected threshold values of χ2-distribution with 63 degrees of freedom

Level 0.50 0.60 0.70 0.80 0.90 0.95 0.99
63 degrees of freedom 62.33 65.20 68.37 72.20 77.75 82.53 92.01

3.1 Overview of Experiments

The previous results [7,9] of χ2-statistic are summarized as follows: 1. 10-bit
outputs of lsb5(Ar+1)||lsb5(Cr+1) lead to much stronger biases if both lsb5(A0)
and lsb5(C0) are fixed and both B0 and D0 introduce zero rotation in the 1st
round;
2. 10-bit outputs of lsb5(Ar+1)||lsb5(Cr+1) lead to much stronger biases if
lsb5(A0) is fixed, lsb5(C0) = 0, and both B0 and D0 introduce zero rotation
in the 1st round;
3. 2n-bit outputs (n = 3, 4, 5) of lsbn(Ar+1)||lsbn(Cr+1) lead to much stronger
biases if lsb5(A0) = 0, lsb5(C0) = 0, and both B0 and D0 introduce zero rotation
in the 1st round.
In other words, the previous key recovery algorithms make use of the distin-
guishing algorithms that fix lsbn(A0), lsbn(C0), or both and that introduce zero
rotation in the 1st round. However, fixing the 1st-round rotation requires much
memory for the key recovery attack and reduces the available number of plain-
texts [7]. Here, in order to investigate other conditions that have almost the same
effect but that do not reduce the available number of plaintexts, we conduct the
following three experiments.

Test 1: The χ2-test on lsb3(Ar+1)||lsb3(Cr+1) in the case of which lsb5(A0)||
lsb5(C0) is set to 0.
Test 2: The χ2-test on lsb3(Ar+1)||lsb3(Cr+1) in the case of which lsb5(B0)||
lsb5(D0) is set to 0.
Test 3: The χ2-test on lsb3(Ar+1)||lsb3(Cr+1) in the case of which lsb4(B0)||
lsb4(D0) is set to 0.

Test 1 corresponds to the previous χ2-test [7,9]. Since we have known in
[9] that the χ2-value of lsbn(Ar+1)||lsbn(Cr+1) (n = 2, 3, 4) outputs almost
the same bias, we present only the results of n = 3 to compare the differ-
ence between lsb5(A0)||lsb5(C0) = 0 and lsb5(B0)||lsb5(D0) = 0. Test 2 or 3
fixes lsb5(B0)||lsb5(D0) or lsb4(B0)||lsb4(D0) instead of lsb5(A0)||lsb5(C0), re-
spectively. Our experiments generate all plaintexts by using M-sequence [8].
For example, 118-, 123-, and 128-bit random numbers are generated by M-
sequence, whose primitive polynomials of M-sequence are x118 +x36 +x8 +x+1,
x123 + x16 + x12 + x + 1, and x128 + x7 + x2 + x + 1, respectively. Our platforms
are IBM RS/6000 SP (PPC 604e/332MHz × 256) with memory of 32 GB and
PC cluster system (Pentium III/1GHz × 50) with memory of 12.5 GB. All tests
use 103 keys and 102 kinds of plaintexts, and thus conduct 105 trials in total.

20 N. Isogai, T. Matsunaka, and A. Miyaji

3.2 Test 1 and Test 2

The results of Tests 1 or 2 are shown in Tables 3 or 4, respectively. These results
indicate that Test 1 outputs more bias than Test 2, but that Test 2 also outputs
enough bias by using the same number of plaintexts. As reported in [9], we do
not necessarily need much bias like level of 0.95 as in [7] to recover a correct
key, which will be also shown in the subsequent sections. In fact, the level of
more than 0.57 is enough for key recovering. Furthermore if we employ Test 1 to
key recovery algorithm, the 1st-round rotation has to be fixed to zero in order
to maintain the effect after post-whitening. However it requires extremely much
memory. Considering these conditions, we employ Tests 2 and 3 to key recovery
algorithm.

3.3 Test 2 and Test 3

Table 5 shows the results of Test 3. Tables 4 and 5 indicate that Test 2 outputs
higher χ2-value with fewer number of plaintexts than Test 3; but that Test 3
also outputs enough high bias.

Suppose that lsbn(B0)||lsbn(D0) is fixed to some value except
lsbn(B0)||lsbn(D0) = 0 (n = 4, 5). Then, lsbn(A2)||lsbn(C2), i.e.
(lsbn(B0) + lsbn(S0)) (mod 2n)||(lsbn(D0) + lsbn(S1)) (mod 2n), is fixed in the
same way as lsbn(B0)||lsbn(D0) = 0. Namely, whatever value lsbn(B0)||lsbn(D0)
(n = 5, 4) in Test 2 or 3 is fixed to, the same result as Table 4 or 5 is expected.
Thus, we can generalize Test 2 or 3 to use any plaintext by just classifying it
to each lsbn(B0) and lsbn(D0), and thus the number of available plaintexts in
each Test is 2128.

There is each naturally-extended key recovery attack that makes use of Test
2 or 3 as χ2-test. In the next section, we apply Test 2 or 3 to the key reovery
algorithm to RC6P, Algorithms 2 and 3, or 4. The number of available plaintexts
of Algorithms 2 and 3, or 4 is 2118 and 2123, or 2128, respectively. These further
differ in the number of classifications, which has an influence on the memory size
or variance of key recovery attacks. Classification means the number of groups,
in which plaintexts are classified and the average of χ2-value is computed. In the
subsequent sections, we will see how these differences work on each corresponding
key recovery attack.

3.4 Slope

To extend our discussion on lower rounds to that on higher rounds, we estimate
the slope of Tests 2 and 3 as in [7], that is, how many plaintexts are required to
get similar values in a χ2-test on r + 2 rounds compared with r rounds. Table 6
shows the number of plaintexts required for the χ2-values with each level of 0.55,
0.60, 0.65, and 0.70, and estimates that each average slope of Test 2 (resp. Test
3) is 216.01 (resp. 216.03). Both Tests output almost the same slope, but Test 2
outputs slightly smaller slope than Test 3. This is because Test 2 fixes more bits
of input than that of Test 3. In our estimation, we take each largest value 216.04

Optimized χ2-Attack against RC6 21

or 216.06 as each slope of Test 2 or 3 to make our estimation strict, respectively.
In the following sections, we will show Algorithms 2 and 3 to RC6P, Algorithms 5
and 6 to RC6 (resp. Algorithm 4 to RC6P, Algorithm 7 to RC6), which are based
on Test 2 (resp. Test 3). Each algorithm conducts the same χ2-test as that of
each corresponding Test. Therefore, to extend our discussion on lower rounds to
that on higher rounds, we use the slope of each corresponding Test.

Table 7 shows the efficiency of each Test from the point of view of distin-
guishing attack. Considering the number of available plaintexts of Test 2 (resp.
Test 3), 2118 (resp. 2120), Test 2 (resp. Test 3) can distinguish output of 15-round
RC6 from a randomly chosen permutation by using 2112.0 plaintexts (resp. 2112.90

plaintexts). Test 2 can work better than Test 3 from the point of view of distin-
guishing attack as we noted the above. In the subsequent sections, we will show
some key recovery algorithms based on Test 2 or 3 that differ each other in the
number of classifications.

Table 3. The χ2-value on lsb3(Ar+1)||lsb3(Cr+1) in Test 1 (the average of 105 trials)

2 rounds 4 rounds
Texts χ2-value Level Variance # Texts χ2-value Level Variance

28 63.402 0.538 126.731 224 63.489 0.541 127.840
29 63.875 0.554 129.299 225 64.028 0.560 129.847
210 64.729 0.584 133.864 226 65.006 0.593 134.789
211 66.415 0.640 142.293 227 67.052 0.660 144.714
212 69.939 0.744 157.668 228 71.000 0.771 167.825

Table 4. The χ2-value on lsb3(Ar+1)||lsb3(Cr+1) in Test 2 (the average of 105 trials)

3 rounds 5 rounds
Texts χ2-value Level Variance # Texts χ2-value Level Variance

28 63.224 0.532 125.883 224 63.262 0.533 126.990
29 63.416 0.538 126.119 225 63.429 0.539 127.497
210 63.819 0.553 129.069 226 63.790 0.552 128.212
211 64.669 0.582 132.916 227 64.521 0.578 131.408
212 66.352 0.638 140.551 228 66.373 0.639 140.554

4 Cryptanalysis against RC6 without Post-whitening

We present three key recovery algorithms against RC6P, and discuss their dif-
ferences and the optimal condition to attack to RC6P. The main idea of these
algorithms follow [9], but we fix some bits out of lsbn(B0)||lsbn(D0) instead of

22 N. Isogai, T. Matsunaka, and A. Miyaji

Table 5. The χ2-value on lsb3(Ar+1)||lsb3(Cr+1) in Test 3 (the average of 105 trials)

3 rounds 5 rounds
Texts χ2-value Level Variance # Texts χ2-value Level Variance

29 63.166 0.530 125.506 225 63.251 0.533 128.115
210 63.449 0.540 127.468 226 63.450 0.540 127.756
211 63.878 0.555 128.891 227 63.849 0.554 130.461
212 64.865 0.589 132.279 228 64.800 0.586 132.642
213 66.778 0.651 141.879 229 66.744 0.650 141.138

Table 6. log2(#texts) and the slope required for the χ2-value of each level (the average
of 105 trials)

Test 2 Test 3
Level 3 rounds 5 rounds slope 3 rounds 5 rounds slope
0.55 9.92 25.89 15.97 10.80 26.83 16.03
0.60 11.45 27.49 16.04 12.26 28.32 16.06
0.65 12.17 28.17 16.00 13.00 29.00 16.00
0.70 12.71 28.72 16.01 13.53 29.57 16.04

average 16.01 16.03

Table 7. log2(#texts) and linear equations for Tests 2 and 3 (the average of 105 trials)

Test 2 Test 3
Level 3 rounds 5 rounds linear equation 3 rounds 5 rounds linear equation
0.99 15.7 31.8 8.02r − 8.30 16.6 32.6 8.03r − 7.55

lsbn(A0)||lsbn(C0) or the first-round-rotation amount. Intuitively, our algorithms
fix some bits out of lsbn(B0)||lsbn(D0), check the χ2-value of lsb3(Ar)||lsb3(Cr),
and recover both lsb2(S2r) and lsb2(S2r+1) of r-round RC6P. Here we set
(yb, yd) = (lsb3(Br+1), lsb3(Dr+1)), (xc, xa) = (lsb5(F (Ar+1)), lsb5(F (Cr+1))),
(sa, sc) = (lsb2(S2r), lsb2(S2r+1)), s = sa||sc, and (S3

2r, S
3
2r+1) = (0, 0), where

xa (resp. xc) is the rotation amounts on Ar (resp. Cr) in the r-th round.

4.1 Key Recovery Algorithms Based on Test 2

Algorithm 2 and 3 are based on Test 2 in Section 3. Algorithm 2 averages the
χ2-value among 210 classifications, while Algorithm 3 averages it among 215

classifications.

Algorithm 2
1. Choose a plaintext (A0, B0, C0, D0) with (lsb5(B0), lsb5(D0)) = (0, 0)

and encrypt it.
2. For each (sa, sc), decrypt yd||yb with a key (S3

2r||sa, S3
2r+1||sc) by 1 round1.

1 Since any (S3
2r, S

3
2r+1) outputs the same χ2-value of z [9], we may decrypt y by

setting (S3
2r, S

3
2r+1) = (0, 0).

Optimized χ2-Attack against RC6 23

The decryptions of yd and yb are set to za and zc, respectively,
which are denoted by a 6-bit integer z = za||zc.

3. For each value s, xa, xc, and z, update each array by incrementing
count[s][xa][xc][z].

4. For each s, xa, and xc, compute χ2[s][xa][xc].
5. Compute the average ave[s] of {χ2[s][xa][xc]}xa,xc for each s and output

s with the highest ave[s] as lsb2(S2r)||lsb2(S2r+1).

Algorithm 3
1. Choose a plaintext (A0, B0, C0, D0) with lsb5(D0) = 0, set t = lsb5(B0),

and encrypt it.
2. For each (sa, sc), decrypt yd||yb with a key (S3

2r||sa, S3
2r+1||sc) by 1

round. The decryptions of yd and yb are set to za and zc,
respectively, which are also denoted by a 6-bit integer z = za||zc.

3. For each value s, t, xa, xc, and z, update each array by
incrementing count[s][t][xa][xc][z].

4. For each s, t, xa, and xc, compute χ2[s][t][xa][xc].
5. Compute the average ave[s] of {χ2[s][t][xa][xc]}xa,xc,t for each s and

output s with the highest ave[s] as lsb2(S2r)||lsb2(S2r+1).

Table 8 shows the results of Algorithms 2 and 3 on 4-round RC6P: SUC, the
average of χ2-values ave[s] on recovered keys, the level, and the variance, where
SUC is the success probability among 1000 keys. Before comparing the results
of Algorithms 2 and 3 (Table 8) with that of Test 2 (Table 4), we may review
the fact of distribution of the mean [4], that is, for the mean µ or the variance
σ2 of a population, the mean or the variance of the distribution of the mean
of a random sample with the size n drawn from the population are µ or σ2/n,
respectively. Plaintexts in Algorithm 2 or 3 are classified into 210 or 215 groups
of {xa, xc} or {lsb5(B0), xa, xc} and ave[s] is computed over each group. On the
other hand, all plaintexts are uniformly distributed to each group since they are
randomly generated by M-sequences in our experiments. Therefore, the χ2-value
ave[s] in Algorithm 2 or 3 is computed by using 1/210 or 1/215 times the number
of plaintexts in Table 8. Applying this discussion to the experimental results, we
see that the above fact of distribution of the mean exactly holds in Algorithms 2
and 3: the average of χ2-value on 218 −222 or 223 −225 plaintexts in Algorithm 2
or 3 corresponds to that of 28 − 212 or 28 − 210 plaintexts in the case of r = 3 of
Table 4; the variance of χ2-values in Algorithm 2 or 3 corresponds to about 1/210

or 1/215 as much as that of Table 4; the averages of χ2-values by using 223 − 225

plaintexts in Algorithm 3 are roughly equal to those by using 218−220 plaintexts
in Algorithm 2; and the variances of χ2-values by using 223 − 225 plaintexts in
Algorithm 3 are about 1/25 as much as those by using 218 − 220 plaintexts in
Algorithm 2. We also remark that the level of χ2-value more than 0.57 or 0.53
is enough for key recovering in Algorithm 2 or 3, respectively.

Let us discuss the security in higher rounds. Since Algorithms 2 and 3 are
based on the χ2-test of Test 2, we may expect that the slope in Test 2 holds in
Algorithms 2 and 3. By using detailed experimental results in Table 9 and the

24 N. Isogai, T. Matsunaka, and A. Miyaji

slope in Test 2, the number of plaintexts required for recovering a key in r-round
RC6P with the success probability of 95%, log2(#texts), is estimated to

log2(#texts) =
{

8.02r − 10.48 (Algorithm 2)
8.02r − 7.98. (Algorithm 3).

Let us investigate the amount of work by setting one unit of work to one en-
cryption. Algorithms 2 and 3 encrypts each plaintext and decrypts a cipher-
text by 1 round with each key candidate. Therefore, the amount of work is
#texts× (1+1/r×24). Thus, by substituting the number of available plaintexts
2118 or 2123, Algorithm 2 or 3 can break 16-round RC6P by using 2117.84 or 2120.34

plaintexts, 2118.84 or 2121.34 work, and 220 or 225 memory with a probability of
95%, respectively.

Table 8. The average of χ2-value and the variance in Algorithms 2, 3, and 4 on 4-round
RC6P (in 1000 trials)

Algorithm 2 Algorithm 3
#texts SUC χ2-value Level Variance #texts SUC χ2-value Level Variance

218 0.097 63.122 0.5280 0.1241 221 0.122 63.102 0.5273 0.0020
219 0.155 63.261 0.5329 0.1260 222 0.247 63.114 0.5278 0.0022
220 0.344 63.534 0.5425 0.1289 223 0.526 63.157 0.5293 0.0026
221 0.744 64.096 0.5621 0.1278 224 0.938 63.278 0.5336 0.0038
222 0.995 65.187 0.5994 0.1316 225 1.000 63.561 0.5435 0.0044

Algorithm 4
#texts SUC χ2-value Level Variance

223 0.117 63.011 0.5241 0.0003
224 0.177 63.020 0.5244 0.0004
225 0.347 63.037 0.5250 0.0004
226 0.768 63.067 0.5261 0.0005
227 1.000 63.139 0.5286 0.0005

Table 9. log2(#texts) required for key recovering of 4-round RC6P with each success
probability (in 1000 trials)

Success Algorithm 2 Algorithm 3 Algorithm 4
Probability #texts χ2-value Level #texts χ2-value Level #texts χ2-value Level

95% 221.6 64.539 0.5778 224.1 63.295 0.5341 226.6 63.102 0.5273
50% 220.4 63.721 0.5507 223.0 63.157 0.5293 225.4 63.045 0.5253

4.2 Key Recovery Algorithm Based on Test 3

Algorithm 4 is based on the χ2-test of Test 3 in Section 3 and averages it among
218 classifications.

Optimized χ2-Attack against RC6 25

Algorithm 4
1. Choose a plaintext (A0, B0, C0, D0), set (tb, td) = (lsb4(B0), lsb4(D0)),

and encrypt it.
2. For each (sa, sc), decrypt yd||yb with a key (S3

2r||sa, S3
2r+1||sc) by 1

round. The decryptions of yd and yb are set to za and zc, which
are also denoted by a 6-bit integer z = za||zc.

3. For each value s, tb, td, xa, xc, and z, update each array by
incrementing count[s][tb][td][xa][xc][z].

4. For each s, tb, td, xa, and xc, compute χ2[s][tb][td][xa][xc].
5. Compute the average ave[s] of {χ2[s][tb][td][xa][xc]}tb,td,xa,xc for each s,

and output s with the highest ave[s] as lsb2(S2r)||lsb2(S2r+1).

Table 8 shows the results of Algorithm 4. Algorithm 4 classifies plaintexts into
218 groups of {lsb4(B0), lsb4(D0), xa, xc} and averages χ2-value over each group.
In the same discussion as Algorithms 2 and 3, we see that the average of χ2-
values by using 227 plaintexts in Table 8 is roughly equal to that by using 29

plaintexts in the case of r = 3 of Table 5; and the variance of χ2-values by using
227 plaintexts in Table 8 is about 1/218 as much as that by using 29 plaintexts
in the case of r = 3 of Table 5. We note that the χ2-value level of more than
0.527 is enough for key recovering in Algorithm 4.

Let us discuss the security in higher rounds. In the same discussion as
Algorithms 2 and 3, we apply the slope of Test 3 in that of Algorithm 4. By
using more detailed experimental results in Table 9 and the slope of Test 3, the
number of plaintexts required for recovering a key in r-round RC6P with the
success probability of 95%, log2(#texts), is estimated to

log2(#texts) = 8.03r − 5.52.

By substituting the number of available plaintexts 2128, Algorithm 4 can break
16-round RC6P by using 2122.96 plaintexts, 2123.96 work, and 228 memory with
a probability of 95%.

4.3 Comparison of Algorithms 2, 3, and 4

Algorithms 2, 3, and 4 differ mainly in the number of classifications. In other
words, they differ in the number of plaintexts that the χ2-values are averaged. We
investigate how such a difference influences on a key recovery algorithm. Table 10
summarizes results of three algorithms: the applicable rounds and the efficiency.
Algorithm 4 can break 16-round RC6P in the success probability of 95% with
the lowest level of χ2-value, at most 0.528. Because, the more the number of
classifications is, the smaller the variance of χ2-value are, as we reviewed the fact
above. The smaller variance is one of necessary factors to single out a correct
key as in [9]. However, in contrast to [9], Algorithm 4 is not the most efficient
attack of three algorithms. Three algorithms can analyze RC6P with the same
number of rounds. That is, it does not necessarily holds that the more number
of classifications, the larger applicable rounds. Generally, the larger the number
of classifications, the lower level of χ2-value are required to recover a correct key
but the more necessary plaintexts and work are required. On the other hand,

26 N. Isogai, T. Matsunaka, and A. Miyaji

there exists an upper limit of the available plaintexts and work amount. This is
why the optimization of the number of classifications is necessary.

There are two factors of the number of both available texts and classifi-
cations to discuss the optimization. Fixing the number of available texts to
2128, let us investigate the optimal number of classifications: the χ2-value is av-
eraged over groups {lsb3(B0), lsb3(D0), xa, xc}, {lsb4(B0), lsb4(D0), xa, xc}, or
{lsb5(B0), lsb5(D0), xa, xc}, namely the number of classifications is 216, 218, or
220, respectively. This means that we optimize Algorithm 4 by changing the
number of classification. Table 11 shows the results, which indicates that the
key recovery attack with 218 classifications, i.e. Algorithm 4, is the optimal. The
number of classifications of Algorithms 2 and 3 is also optimized to attack RC6
well.

Table 10. Comparison of Algorithms 2, 3, and 4 on RC6P: applicable rounds and the
efficiency

Algorithm #classifications #available texts nemory rounds #texts work χ2-value (level) variance
2 210 2118 220 16 2117.84 2118.84 64.539 (0.578) 0.1319
3 215 2123 225 16 2120.34 2121.34 63.295 (0.535) 0.0039
4 218 2128 228 16 2122.96 2123.96 63.102 (0.528) 0.0005

Table 11. #texts necessary for variations of Algorithm 4 on 4-round RC6P

#classifications
216 218 220

#texts (95%) 227.0 226.6 226.9

#texts (50%) 225.8 225.4 225.7

5 Cryptanalysis against RC6

In this section, we apply Algorithm 2, 3, or 4 to RC6 with a 24-byte key, which
is called Algorithm 5, 6, or 7, respectively. They recover a 68-bit subkey of
lsb2(S2r), lsb2(S2r+1), S2r+2, and S2r+3. We demonstrate Algorithm 5 to RC6-8
and discuss how to analyze the security to RC6 with a 24-byte key.

5.1 Attacks on RC6

Let us set (yb, yd) = (lsb3(Br+2), lsb3(Dr+2)), (sa, sc) = (lsb2(S2r), lsb2(S2r+1)),
s = sa||sc||S2r+2||S2r+3, (S3

2r, S
3
2r+1) = (0, 0), and (xc, xa) = (lsb5(F (Ar+2 −

S2r+2)), lsb5(F (Cr+2 −S2r+3))), where xa or xc is the r-round rotation amounts
on Ar or Cr, respectively.

Optimized χ2-Attack against RC6 27

Algorithm 5
1. Choose a plaintext (A0, B0, C0, D0) with (lsb5(B0), lsb5(D0)) = (0, 0)

and encrypt it.
2. For each subkey S2r+2 and S2r+3, decrypt yd||yb with a key
(S3

2r||sa, S3
2r+1||sc)

by 1 round. The decryptions of yd and yb are set to za and zc,

respectively, which are denoted as a 6-bit integer z = za||zc.
3. For each value s, xa, xc, and z, update each array by incrementing

count[s][xa][xc][z].
4. For each s, xa, and xc, compute χ2[s][xa][xc].
5. Compute the average ave[s] of {χ2[s][xa][xc]}xa,xc for each s, and output

s with the highest ave[s] as lsb2(S2r)||lsb2(S2r+1)||S2r+2||S2r+3.

F F

<< <<

Za Zc

yd-sa yb-sc

sa sc

Ar+2 Br+2 Cr+2 Dr+2yb yd

xa xc

xcxa

2 bits 2 bits

3 bits 3 bits

3 bits3 bits

Post-whitening

r-th round

s2r+2 s2r+3

w bits w bits

Fig. 1. Outline of Algorithm 5

Figure 1 shows the outline of Algorithm 5. Algorithm 5 differ with Algorithm 2
in a way of handling both S2r+2 and S2r+3: Algorithm 2 uses a correct key on
S2r+2 and S2r+3; but Algorithm 5 has to guess a correct key of S2r+2 and S2r+3.
Therefore, the results of Algorithm 5 against r-round RC6 is coincident with
those of Algorithm 2 against r-round RC6P whenever correct keys on S2r+2 and
S2r+3 are used. As a result, to discuss the security on RC6 against Algorithm 5,
we have only to investigate the behavior of χ2-value with using wrong-keys of
S2r+2 and S2r+3.

28 N. Isogai, T. Matsunaka, and A. Miyaji

5.2 Differences between Algorithms 2 and 5

To investigate the difference between two algorithms, let us observe how wrong-
keys of S2r+2 have an influence on a key recovery in Algorithm 5 when a correct
key is set to S2r+3. Table 12 shows the experimental results of Algorithm 2 on
RC6P-8 or Algorithm 5 on RC6-8, in which Algorithm 2 recovers 4-bit subkeys
of lsb2(S8) and lsb2(S9); and Algorithm 5 recovers 12-bit subkeys of lsb2(S8),
lsb2(S9), and S10. Table 12 indicates that: Algorithm 5 cannot work as effectively
as Algorithm 2 if a few plaintexts like 211 or 212 are used; but Algorithm 5 can
work as effectively as Algorithm 2 if enough many plaintexts like 214 or 215

are used. They differ in the number of wrong keys: the number of wrong keys of
Algorithm 5 is 28 times as many as that of Algorithm 2. If a few (i.e. not enough)
plaintexts are used, then the χ2-value on even a correct key is rather low and
thus the χ2-value on wrong keys disturbs us to single out a correct key. As a
result, the difference in the number of wrong keys influences the probability that
can single out a correct key. On the other hand, if enough number of plaintexts
are used, then the χ2-value on a correct key becomes enough high, while that
on wrong keys does not become high, and, thus, the difference in the number
of wrong keys does not have a great influence on singling out a correct key. As
a result, Algorithm 5 can single out a correct key with almost the same high
probability like more than 90% as Algorithm 2 if enough number of plaintexts
are used. The remaining problem is how to define enough number of plaintexts.
We may note that the key recovery attacks compute the χ2-value on a part for
every key candidate and output a key with the highest χ2-value as a correct
key. This means that an algorithm can single out a correct key if and only if a
correct key outputs higher χ2-value than that on all wrong keys. In other words,
the lowest χ2-value on correct keys has only to be higher than the highest χ2-
value on wrong keys. Thus, enough number of plaintexts necessary to single out a
correct key is defined as the number of plaintexts that makes the lowest χ2-value
on correct keys higher than the highest χ2-value on wrong keys.

As the final step, we investigate a good sample on wrong keys of Sa, Sc, S2r+2
and S2r+3 that may output the the highest χ2-value. Let us set the almost-correct
wrong key that differs a correct key in only the most-significant-one bit of S2r+2:
the other bits, in other words, Sa, Sc, S2r+3 and lsb7(S2r+2), are the same as a
correct key. Apparently, this is the most similar to a correct key and is expected
to output the highest χ2-value of wrong keys. Thus, we define enough number
of plaintexts to single out a correct key as the number of plaintexts such that
the lowest χ2-value on correct keys becomes higher than the highest χ2-value on
almost-correct wrong keys. To find out enough number of plaintexts in the case
of Algorithm 5 on RC6-8, we conduct the following two experiments:

• Test 42: [Behavior of χ2 − value of correct keys]
Compute the highest and lowest χ2-value on correct keys.

• Test 5: [Behavior of χ2 − value of almost-correct wrong keys]
Compute the highest χ2-value on almost-correct wrong keys.

2 Test 4 is the same as the results of correct keys in Algorithm 2 to RC6P.

Optimized χ2-Attack against RC6 29

The results are shown in Table 13, where SUC means the success probability to
recover a correct key of Sa and Sb in Algorithm 2 to RC6P-8. From Table 13, we
see that enough number of plaintexts is defined as 214.5 plaintexts. Comparing
with Table 12, we convince that enough number is well difined and, thus, we
estimate that Algorithm 5 can recover a correct key with the success probability
of about 90% by using 214.5 plaintexts. Table 13 also indicates that the χ2-value
recovered by almost-correct wrong keys does not become high even if many
plaintexts are used. This reflects that: the f -function of RC6 is the nonlinear
conversion which depends on all 32-bit inputs; and thus the recovered value does
not output high χ2-value if only the input of f -function differs with a correct
input even in 1 bit.

Table 12. Success probability of Algorithm 2 (resp. 5) on 4-round RC6P-8 (resp.
RC6-8) (in 1000 trials)

#texts Algorithm 2 Algorithm 5
211 0.125 0.001
212 0.241 0.014
213 0.486 0.177
214 0.887 0.886
215 1.000 1.000

Table 13. Results of Tests 4 and 5 in Algorithm 5 on 4-round RC6-8 (in 1000 trials)

Test 4 Test 5
#texts SUC the highest χ2 the lowest χ2 the highest χ2

212.0 0.232 69.711 60.689 68.634
212.5 0.332 70.435 61.680 67.794
213.0 0.491 72.167 62.226 68.181
213.5 0.699 74.458 63.266 67.450
214.0 0.868 77.427 65.359 68.393
214.5 0.972 81.609 68.971 68.174
215.0 0.999 88.978 70.890 68.211

5.3 The Security of RC6 against Algorithms 5

The previous section have defined enough number of plaintexts and seen that
Algorithm 5 can recover a correct key with the success probability of 90% by
using enough many plaintexts. We conduct Tests 4 and 5 to Algorithm 5 on
4-round RC6 to find out enough number of plaintexts. The results are shown in
Table 14, where SUC means the success probability to recover a correct key of
Sa and Sb in Algorithm 2 to RC6P. Table 14 indicates that enough number of
plaintexts is set to 222 plaintexts; and it is roughly equal to that which outputs

30 N. Isogai, T. Matsunaka, and A. Miyaji

the success probability of more than 95% in Algorithm 2 on RC6P. Then, we
estimate that Algorithm 5 can recover a correct key with the success probability
of more than 90% by using 222 plaintexts.

Let us discuss the security in higher-round RC6. We increase the number of
plaintexts by up to a factor of 22 to analyze the security strictly and use the
same slope in Test 2 since Algorithm 5 is based on the χ2-test of Test 2. Then,
the number of plaintexts required for recovering a key in r-round RC6 with the
success probability of 90%, log2(#texts), is estimated to

log2(#texts) = 8.02r − 8.08.

By substituting the number of available plaintexts 2118, Algorithm 5 can break
15-round RC6 by using 2112.22 plaintexts with a probability of about 90%.

5.4 Applying Algorithms 3 to RC6

Algorithm 3 can be applied to RC6 in the same way as Algorithm 2, which is
called Algorithms 6. We omit the repetitious detail of the algorithm. To find
out enough number of plaintexts, we conduct the same experiments of Tests 4
and 5 to Algorithm 6 on 4-round RC6, whose results are shown in Table 14.
Table 14 indicates that enough number of plaintexts to Algorithm 6 on RC6 is
224.6 plaintexts.

We increase the number of plaintexts by up to a factor of 22 to analyze the
security strictly and use the slope of Test 2 in Section 3. Then, the number
of plaintexts required for a key recovering in r-round RC6 with the success
probability of 90%, log2(#texts), is estimated to

log2(#texts) = 8.02r − 5.48.

By substituting the number of available plaintexts 2123, Algorithms 6 can break
16-round RC6 with 192-bit key by using 2122.84 plaintexts with a probability of
90%.

Let us compare Algorithms 5 and 6 from the point of view of the number
of plaintexts and the amount of work, where one unit of work is set to one
encryption. Both algorithms encrypt each plaintext, and decrypt a ciphertext
by 1 round with each key candidate, where the number of key candidates is 268.
Thus, the amount of work is computed by #texts × (1 + 268/r). These results
are shown in Table 15. In the final paper, the optimization of each algorithm
including the results of Algorithm 7 will be discussed.

6 Conclusion

In this paper, we have discussed the optimization of the number of classifica-
tion by presenting three key recovery attacks against RC6P, Algorithms 2, 3,
and 4. As a result of optimization, Algorithm 2 can break 16-round RC6P by

Optimized χ2-Attack against RC6 31

Table 14. Results of Tests 4 and 5 in Algorithms 5 and 6 on 4-round RC6 (in 1000
trials)

Algorithm 5 Algorithm 6
Test 4 Test 5

#texts SUC the highest the lowest Test 5 #texts SUC the highest the lowest Test 5
220.0 0.344 63.534 62.644 62.994 222.5 0.385 63.288 62.916 63.197
220.5 0.539 63.769 62.743 62.979 223.0 0.519 63.338 62.905 63.211
221.0 0.744 64.096 62.865 62.976 223.5 0.752 63.395 62.963 63.199
221.5 0.946 64.540 62.904 62.991 224.0 0.934 63.501 63.013 63.218
222.0 0.995 65.187 63.038 62.978 224.6 1.000 63.648 63.223 63.201

Table 15. #Texts and Work for Algorithms 5 and 6 on r-round RC6 (Estimated)

Algorithm initial Key rounds #texts work linear equation (SUC�90%)
5 192-bit 15 2112.22 2176.32 8.02r − 8.08
6 192-bit 16 2122.84 2186.84 8.02r − 5.48

using 2117.84 plaintexts with the success probability of 95%. We have also inves-
tigated how to estimate the security of RC6 to these key recovery algorithms by
introducing the idea of enough number of plaintexts and almost-correct wrong
key. We have shown that Algorithm 6 is estimated to break 16-round RC6 with
24-byte keys by using 2122.84 plaintexts with the success probability of 90%.

References

1. J. Borst, B. Preneel, and J. Vandewalle, “Linear Cryptanalysis of RC5 and RC6,”
Proc. Fast Software Encryption, LNCS 1636, pp.16–30, 1999.

2. S. Contini, R. Rivest, M. Robshaw, and Y. Yin, “The Security of the RC6 Block
Cipher. v 1.0,” August 20, 1998. Available at
http://www.rsasecurity.com/rsalabs/rc6/.

3. S. Contini, R. Rivest, M. Robshaw, and Y. Yin, “Improved analysis of some sim-
plified variants of RC6,” Proc. Fast Software Encryption, LNCS 1636, pp.1–15,
1999.

4. R.J. Freund and W.J, Wilson, Statistical Method, Academic Press, San Diego, 1993.
5. H. Gilbert, H. Handschuh, A. Joux, and S. Vaudenay, “A Statistical Attack on

RC6,” Proc. Fast Software Encryption, LNCS 1978, pp.64–74, 2000.
6. H. Handschuh and H. Gilbert, “χ2 Cryptanalysis of the SEAL Encryption Algo-

rithm,” Proc. Fast Software Encryption, LNCS 1267, pp.1–12, 1997.
7. L. Knudsen and W. Meier, “Correlations in RC6 with a reduced number of rounds,”

Proc. Fast Software Encryption, LNCS 1978, pp.94–108, 2001.
8. A. Menezes, P.C. van Oorschot, and S. Vanstone, Handbook of applied cryptogra-

phy, CRC Press, Inc., Boca Raton, 1996.
9. A. Miyaji and M. Nonaka, “Cryptanalysis of the Reduced-Round RC6,” Proc.

ICICS 2002, LNCS 2513 pp.480–494, 2002.
10. R. Rivest, “The RC5 Encryption Algorithm,” Proc. Fast Software Encryption,

LNCS 1008, pp.86–96, 1995.

32 N. Isogai, T. Matsunaka, and A. Miyaji

11. R. Rivest, M. Robshaw, R. Sidney, and Y. Yin, “The RC6 Block Cipher. v1.1,”
August 20, 1998. Available at http://www.rsasecurity.com/rsalabs/rc6/.

12. T. Shimoyama, M. Takenaka, and T. Koshiba, “Multiple linear cryptanalysis of a
reduced round RC6,” Proc. Fast Software Encryption, LNCS 2365, pp.76–88. 2002.

13. T. Shimoyama, K. Takeuchi, and J. Hayakawa, “Correlation Attack to the Block
Cipher RC5 and the Simplified Variants of RC6,” 3rd AES Candidate Conference,
April 2000.

14. S. Vaudenay, “An Experiment on DES Statistical Cryptanalysis,” Proc. 3rd ACM
Conference on Computer and Communications Security, ACM Press, pp.139–147,
1996.

	Introduction
	Preliminary
	Notation
	Block Cipher RC6
	$chi ^2$-Test

	$chi ^2$-Statistic of RC6
	Overview of Experiments
	Test 1 and Test 2
	Test 2 and Test 3
	Slope

	Cryptanalysis against RC6 without Post-whitening
	Key Recovery Algorithms Based on Test 2
	Key Recovery Algorithm Based on Test 3
	Comparison of Algorithms T @ref {alg:alg1-RC6p}, T @ref {alg:alg2-RC6p}, and T @ref {alg:alg3-RC6p}

	Cryptanalysis against RC6
	Attacks on RC6
	Differences between Algorithms T @ref {alg:alg1-RC6p} and T @ref {alg:alg1-RC6}
	The Security of RC6 against Algorithms T @ref {alg:alg1-RC6}
	Applying Algorithms T @ref {alg:alg2-RC6p} to RC6

	Conclusion

