Trust on Web Browser: Attack vs. Defense

Tie-Yan Li and Yongdong Wu

Infocomm Security Department
Institute for Infocomm Research (I°R)
21 Heng Mui Keng Terrace, Singapore 119613
{litieyan, wydong}@i2r.a-star.edu.sg

Abstract. This paper proposes a browser spoofing attack which can
break the weakest link from the server to user, i.e., man-computer-
interface, and hence defeat the whole security system of Internet transac-
tion. In this attack, when a client is misled to an attacker’s site, or an at-
tacker hijacks a connection, a set of malicious HTML files are downloaded
to the client’s machine. The files are used to create a spoofed browser
including a faked window with malicious event processing methods. The
bogus window, having the same appearance as the original one, shows
the “good” web content with “bad” activities behind such as disclosing
password stealthily. Once the attack is mounted, even a scrupulous user
will trust the browser that is fully controlled by the attacker. We further
propose several countermeasures against the attack.

1 Introduction

With the rapid development of Internet and web technologies, most of the online
applications are built on or assisted by WWW. As shown in Figure[T] a typical
web-based transaction consists of several components linked together for serving
requests. Being requested, the web server receives a piece of reply data from
application database. The web server then sends the data passing through the
firewall, routers towards the requesting machine. Finally, the data is shown on
the screen-user interface. We denote the secure link from the server to the user
as trust path. Along the long link, various malicious attacks can be launched. For
instance, the web site may suffer from database attack, web attack, and DDoS
attack; the network may be assaulted by attacks such as eavesdropping, session
hijacking, and routing disruption; virus may also disclose the information in the
user’s machine.

Because the important data may be eavesdropped, replayed or modified,
security is the most important concern as of online transaction. The web site
has a lot of security policies and means to guard the transaction system. Firewalls
protect the hosts from malicious outside attacks; Intrusion Detection Systems
monitor the networks and hosts all the time; Secure channels are built with
security protocols (e.g., SSL [3]); And the host is well protected from virus. After
all the defense are in place, are the shown data at the recipient side trustworthy?
Most of the users will say “Yes”. Why? The browsers produced by big players

J. Zhou, M. Yung, Y. Han (Eds.): ACNS 2003, LNCS 2846, pp. 241-53] 2003.
© Springer-Verlag Berlin Heidelberg 2003

242 T.-Y. Liand Y. Wu

[
Secure Channel

P i -
- Internet Browser
Wehserver Firewall f f Lser
Database f f

Eavesdrop, Yirus Browser
Attack ep DDoS Hijacking, Spoofing
Attack Attack Mlis-routing

Fig.1. Trust path

Microsoft or Navigator show the security sign on the screen. Regretfully, the
answer is “No” because the security signs used for man-machine-interface can be
easily reproduced with “Web spoofing” technique ([4] [5] [6] [7]). Therefore, the
whole trust path can be easily broken at this weakest point by web spoofing. This
topic is also mentioned in [2], which established several principles for designing
secure user interface.

In this paper, we propose a browser spoofing attack simply using applet and
frame to demonstrate that the popular commercial browsers (Microsoft Inter-
net Explorer and Netscape Navigator) are not trustworthy. Comparing to web
spoofing, browser spoofing can simulate dynamic event response as well as static
visual appearance. To this end, the attacker lures the client to accept a faked
HTML page at first. This HTML file is used to create a new window with a
method window.open(). The bogus window, having the same appearance as the
original browser window, shows the web content of the target server. By append-
ing Java applet methods, the bogus browser can respond to the client’s input
events without being suspected. This attack allows an adversary to observe and
modify all web pages sent to the client’s machine, and observes all information
input by the client. This attack is effective even though the web sever is SSL-
enabled. Further, a user is unable to detect the attack even if he checks the
security features, such as the security lock. In sum, the bogus browser, including
the bogus window and the methods, is almost the same as the genuine browser
from the viewpoint of the user. Meanwhile, the countermeasures against this
attack are also provided.

The organization of the paper is as follows. Section 2 analyzes relevant works.
Section 3 introduces the generic attack scheme. Section 4 addresses our imple-
mentation. Section 5 proposes the countermeasures toward the attack. At last,
we conclude the paper and point out the future directions.

2 Related Works

Of all security techniques against Internet attacks, SSL3.0 [3] is the de facto
standard for end-to-end security and widely applied to do secure transactions

Trust on Web Browser: Attack vs. Defense 243

such as Internet banking. In the ISO/OSI network reference model, SSL is lo-
cated in the transport layer. Thus, SSL provides message confidentiality and
integrity in transport layer. The higher application layer uses SSL as the secure
transport channel. However, SSL only authenticate the transport connection,
it does not authenticate the content sent to the recipient. That is to say, SSL
guarantees that the received message is authentic and confidential in the trans-
mission, but it does not care about the message before or after transmission. In
all, SSL protects the connection rather than the applications. In a web appli-
cation, a security lock is normally shown at the bottom of a browser window if
SSL is completed successfully. Users trust this sign of security and further on,
conduct “secure transactions”. Therefore, if an attacker manages to produce a
security lock appearing in the right place of the user’s screen, he will convince
the user to trust a faked site.

Felten et al. [4] proposed a web-spoofing attack. In the scheme, an attacker
stays between the client and the target site such that all web pages destined to
the user’s machine are routed toward the attacker’s server. The attacker rewrites
the web pages in such a way that the appearances of these pages do not change
at all. On the client browser, the normal status and menu information bar are re-
placed by identical-looking components supplied by the attacker. The attack [4]
can prevent HTML source examination by using JavaScript to hide the browser’s
menu bar, replacing it with a menu bar that looks just like the original one. To
attack a SSL-enabled web server, the attacker sends the client a certificate of an
innocent person to avoid punishment. Although the method is quite straightfor-
ward, it is hard to launch because the attacker has to obtain the corresponding
private key of the innocent person. It is also easy to be detected since a cautious
user can also detect this attack by checking the security properties of the server.

Lefranc and Naccache [5] described malicious applets that use Java’s sophisti-
cated graphic features to rectify the browser’s padlock area and cover the address
bar with a false https domain name. Mounting this attack is much simpler than
[M] as it only demands the insertion of an applet in the attacker’s web page. The
attack was successfully tested on Netscape’s Navigator. But the attack is not
successful when it is tested on Microsoft’s Internet Explorer because a warning
message is added in the end of the popup window. To overcome this shortcom-
ing, the authors suggested to patch an artificial image. However, a weird image
may also alert the client that an attack is under way. Moreover, Horton et al [6]
and Paoli et al [7] adopted the patch method.

Ye et al [TT] [T2] proposed a trusted path solution to defend against web
spoofing. The authors set up the boundary of the browser window with different
colors according to certain rules. They defined an internal reference window
whose color is randomly changed. Any malicious web content will fail to control
a browser window due to uncontrollable inset/outset attributes. Therefore, if a
new pop-up window has a different color from that of the reference window, the
user concludes that a web-spoof attack is under way. For the device of small
screen (such as hand-held device), this countermeasure is impractical because it
is inconvenient to open two windows and switch between the windows. Moreover,

244 T.-Y. Liand Y. Wu

the attacker can create a bogus reference window to overlap the original reference
window so as to break the defense.

The countermeasures are not limited in these “inside, software based” refer-
ences. Some approaches [I3] [14] used “outside, hardware based” references as
the security evidences or trusted devices. Burnside et al [I3] deployed a trust-
worthy camera which takes authentic pictures used for comparison with those on
a large screen. Based on visual cryptography techniques, Tuyls et al [14] used an
additional “decryption display” as the reference for protect two-way communi-
cation across insecure devices. One former approach [8] indicated several design
issues of using mobile user devices in legally significant applications.

3 Attack on Trust Path

Trust relationship can be established in many ways. Authentication is one of
the most popular means in reality. It checks what the claimant knows (e.g pass-
word), what the claimant has (e.g., security token), or what the claimant is (e.g.
fingerprint). In the application of Internet transaction based on SSL protocol,
the browser shows a security sign (e.g. security lock) if the server knows the
private key conforming to a certificate. The browser vendors (e.g., Microsoft)
declare that the server site is authentic if the lock sign is lit. However, the secu-
rity lock-like sign is not enough to be used to trust a server due to our attack
addressed in the following.

3.1 Attack Model

In this section, we design a model to attack SSL-enabled web application (be-
cause a non-secure web server is easy to be spoofed [4]). Refer to Figure 2 four
kinds of participants are involved in this model: user, client, server and attacker.
The normal transaction process is as follows. The user visits a web server via a
web browser (client) such as Netscape Navigator or Microsoft Internet Explorer
(IE). The SSL-enabled server owns a certificate issued by a certificate authority.
When a user requests a secure page, SSL protocol authenticates the server and
generates a session key for the secure communication between the client and the
server. Meanwhile, the security lock is lit in the client’s browser status line if
the server is authenticated. Additionally, if the user clicks the security lock, the
security information such as server certificate information will be shown on the
data area of the popup window.

To mount the browser spoofing attack, the attacker should lure the client to
accept malicious packets so as to sit in the middle between the target server and
client. To this end, the attacker starts the attack in three ways before forging a
SSL session.

1. The attacker controls a router or proxy in the communication path. The
request toward a secure web server will be re-routed to an attacker’s server.

Trust on Web Browser: Attack vs. Defense 245

aae D Qriginal web content
Parent % and certificate

window

Secure Channel

Ope\ﬁ\, Cf%'d ==~ Faked web content
window |} i& .

" Non-secure Channel ¢ 4

|Jser Attacker

Fig. 2. Attack model

2. The attacker can hijack the communication session between the client and
the server. When an initial SSL protocol request message is intercepted,
a faked web page is sent to the client via non-SSL channel instead of the
original one.

3. The client could be lured to browse the attacker’s site pretended to be a
trusted server. This method is often used since it can be done easily.

Thus, the attacker can insert, delete and tamper the communication data.
S/he may feed the browser with the faked web content and a manipulated cer-
tificate. In sum, a malicious server is set up to communicate with the client
“securely”.

3.2 Spoofing Method

After forcing the client to receive malicious packets, the attacker sends a HTML
file to the client so as to create a spoofed browser. This malicious HTML page
may

1. create a new window with the method window.open(attackerURL,
"BogusWindow", "menubar=0, scrollbars=0, directories=0,
resizable=0, toolbar=0, location=0, status=0"), the parameter “0”
indicates that the attacker disables the default browser window configura-
tion.

2. draw a bogus status line and other GUI components with a security lock.

. display the content of the target page and

4. create event response functions. For example, when the user checks the secu-
rity property, an artificial dialog should be popped up to convince the user
that all the security information is correct.

w

After creating the new window, there are two windows on the screen of the
user’s machine. One is original and the other is bogus. The spoofed one is in the
front and is enlarged to overlap the original one. Although the spoofed window
has the same interface as the genuine one, it is actually under the control of the
attacker.

246 T.-Y. Liand Y. Wu

4 Implementation

Currently, two popular browsers are Microsoft Internet Explorer and Netscape
Navigator. Our attack can be mounted on either of them. Because the imple-
mentations for both browsers are similar, we illustrate the attack to Internet
banking between a SSL-enabled target site (Internet bank) and a user using
Microsoft IE as a client. The target server has a certificate issued by some Cer-
tificate Authority (e.g., verisign.com) whose public key is embedded in Internet
Explorer.

4.1 Spoofing the Browser Window

Most of the Internet surfers are familiar with the browser interface of Microsoft
Internet Explorer, which looks like Figure[Bl The user interface is a main window.
In this window, its title bar includes a title and three system buttons. The
following bar includes the menu bar and some shortcut icons. The address bar
indicates the current web site, followed by the page content. In the last line,
the status information is shown. The status information comprises of the icon
of Internet Explorer logo, a security lock (a closed lock icon) representing that
the present communication is secure, and some others.

/) target site - Microsoft Internet Explorer ()|
| File Edit View Favorites Tools Help

| ek - = - @D [E] | Qseach [GiFavortes Eveda (B |- B = - D

JAddr&ssl attacker.himl j &G

L

Telephone PIN
“Stock Quotes dalayed by 30 minutes
Register as a GUEST to personalise stock
quotes that vou'd |ike to moniter

Access Code: Search for Quote Details
PIN: Quote:
Get [
[Symbol Segich]

GUEST REGISTER HERE What's New!

Reaister as a GUEST at mybank@ com, Just like our . ekur brand ne L
chox. catalogue

= With Prestige Credit at 5.06%

Internet Banking Customers, you will enjoy
parsonalised news and stock quotes too,

Forgotten Your PIN? Click here poa, anything's possible. Just
Forgotten Your Preferred Access Code? Click here ask Apply here

= Pay Bills Online and Relax
Offline. “iew the list of billing

organisations now!
secure

@)une | [[Igl_ﬁlnwmet

Fig. 3. Spoofed browser

Figure Bl is a logon page of an Internet banking system. It requires the bank
customer to input a pair of account and password for identity verification. Here,

Trust on Web Browser: Attack vs. Defense 247

SSL protocol is executed and a security lock is shown on the status line. All the
personal customer information are attempted to be encrypted with a session key
and uploaded to the bank server. Unfortunately, the above interface is bogus and
the personal information is sent to the attacker! The faked interface is created
with our browser spoofing attack.

Technically, this bogus interface is generated after the client accepts a mali-
cious HTML file (see Table [[) which creates a new window without status line.
The new window is split into two frames. One is named as upperFrame. The
upperFrame showing the web page attacker.html of the target site, is provided
by the attacker. But from the view of the client, the content is not abnormal
because the content is correct. The other frame is forged to be the status line
of the genuine browser, and is split further into 5 sub-frames. Those sub-frames
display IE icon with the HTML file ielogo.html, an earth icon with the HTML
file earth.html and a security lock (closed) icon with the file lock.html.

Table 1. Frame settings

<FRAMESET ROWS=“*¥18" frameborder=“YES” border=*1"
framespacing=“0" >
<FRAME NAME=*“upperFrame” SRC=*“attacker.html” >
<FRAMESET cols=“*24,24,24,150” frameborder=“YES” border=1”
framespacing="“0" >
<frame name="“ielogo” scrolling=“NO” MARGINHEIGHT=¢0"
noresize src=*“ielogo.html” >
<frame name="*“status” scrolling=*“NO” MARGINHEIGHT=%“0"
noresize src=“clearbg.html” >
<frame name=“progress” scrolling=“NO” MARGINHEIGHT=“0"
noresize src="“clearbg.html” >
<frame name="“lock” scrolling=*“NO” MARGINHEIGHT=¢0"
noresize src="“lock.html” >
<frame name="“earth” scrolling=“NO” MARGINHEIGHT=*0"
noresize src=“earth.html” >
</FRAMESET>
</FRAMESET>

To cheat the careful users, lock.html provides the security lock icon as well
as its actions. Table Blis the code of lock.html where showLayer () processes
the click event. When the user clicks on the security lock icon, the response
action will display the certificate information of the bank server as the genuine
browser does.

4.2 Spoofing the Browser Methods

To enable the user to read the source of a web page, Microsoft IE provides “View-
ing the Document Source” menu-item in the menu. In the web-spoofing attack
proposed by Felten et al. [4], if the user chooses from the spoofed menu bar,

248 T.-Y. Liand Y. Wu

Table 2. Display security lock

<html>
<head>
<title>Untitled Document lock< /title>
<meta http-equiv="“Content-Type” content=*“text/html;
charset=iso-8859-1" >
< /head>
<body bgcolor=“#c8d0d4” >

</body>
</html>

the attacker would display the original HTML source instead of the faked code.
The attacker can also discourage the user from choosing the browser’s “view
document information” menu-item. Those attackers skilled in web development
can further substitute the URL address field with a text field easily to forge the
target server address. Thus, we do not implement the bogus menu-items, URL
and the related methods. We focus on the security lock icon and the related
mouse events. In a genuine browser, if a user clicks on the security lock so as to
confirm the server further, the server information will be displayed on a mov-
able popup window which is able to accept the user mouse input. To simulate
the above functionalities for cheating the cautious user, the attacker creates the
HTML tag <LAYER> other than the popup window to display the certificate
information to avoid a warning message, while the response methods on mouse
events are implemented in an applet.

Spoofing the Certificate Window. As mentioned in [9] [10], a HTML tag
<LAYER>> is a frame that can be absolutely positioned. It can occupy the same
2D spaces as another frame. A layer looks like a frame with a document property
that is in turn an object, with all the properties of the top-level document object.
It captures events in the same way as the top-level window or document. The
basic properties are the same as the other HTML elements. The layer-specific
attributes are “top”, “visibility” and “id” properties: “top” property speci-
fies its position so as to move the layer; “visibility” controls whether the layer
is displayed;“id” identifies the layer. Table Bl sets up the layer to forge the cer-
tificate window. Table Blis the code to generate the layer whose id is “Layeri”,
default visibility attribute is “hidden”, and size is 400 x 500 pixels. Its top-left
coordinate is (80, 40). The document loaded in this layer is the applet encapsu-
lated in a jar file “Spoof. jar”. This applet is enabled to communicate with the
HTML JavaScript functions by setting the attribute “MAYSCRIPT=true”. The
code in Table[lis appended to the server web, as well as the jar file “Spoof . jar”.

As the normal browser, the applet shows the initial page of the certificate. As
shown in Figure[], the page includes 3 tabs: General, Detail and Certificate Path.
The different tab page can be switched freely when the intended tab is clicked.
Because the contents of these tabs are well known in advance, the attacker

Trust on Web Browser: Attack vs. Defense 249

Table 3. Embedding the spoof applet

<div id="“Layerl” style=“position:absolute; visibility:hidden; width:400px;
height:500px; z-index:1;left: 80px; top: 40px” >
<applet code=SpoofApplet archive="Spoof.jar” width=410 height=477
MAYSCRIPT=true>
</applet>
</div>

encapsulates them in a jar file in advance so that the client can not detect the
attack by checking the certificate, the expiry and any other information.

centificate R B

General | Detail | Certificats Path |

Certificate Information

This certificate is intended to:
*Ensures the identity of a remote computer

* pefer to the certification authority’s statement: for details.

Issued to: target.com

Issued by: www, verision.comfCPS Incorp.by Ref. LIABILITY
LTD.{c)97 Yeriwgn

¥alid from 2001-10-% bo 2002-10-20

Install Certificate. .. Issuer Statement |

Ok |

Fig. 4. Certificate window

Spoofing the Event Methods. The above step creates a static bogus certifi-
cate window which can cheat average users. To cheat careful users, the malicious
applet should response to the user input dynamically. To this end, the bogus
browser processes 5 kinds of events.

1. Click on the closed lock icon: The code in lock.html (see Table) indicates
that the function showLayer () will make the layer visible when the onClick
event occurs. The code in module showLayer () in TableHlfinds the document
at first, then finds the layer based on layer id value “Layerl” attribute

250 T.-Y. Liand Y. Wu

which is defined in Table[3 The event response module changes the visibility
attribute of the layer to be “wvisible” from “hidden”. That is to say, the
certificate window will be shown when the user clicks on the lock icon. In
order to save time for next display of certificate information, the layer is
hidden other than destroyed when closing certificate window.

Table 4. Change visibility of a layer

<Javascript>
Function showLayer()
{var doc=window.top.frames[0].document;
var layerstyle=doc.all[“Layer1”][“style”];
if(layerstyle.visibility==*“hidden”) layerstyle.visibility=“visible”;
else layerstyle.visibility =“hidden”; }
< /Javascript>

2. Click on the tab button: the corresponding tab page will be exposed. Class
JTabbedPane provides an easy way to switch between the tabs.

3. Moving the certificate window: when the position of mouse is obtained, the
new position of the layer can be set. However, the layer can move in the area
of the bogus window only. This weakness may help a cautious user to detect
the attack. Unfortunately, few users check the security by moving a window.

4. Click on the internal buttons: When a user clicks the buttons whose actions
are restrained to the applet itself, the action procedures are easy to be re-
alized. The exemplary button is the “Install Certificate ...” in the General
tab page.

5. Click on external buttons: The buttons including the “OK” button and
the “close” button in the top-right corner can close the certificate win-
dow. Because the button click event is received by the applet, the applet
should pass it to the HTML/JavaScript page. By searching the JSObject
tree, the method actionListener of Okbutton calls the Javascript function
showLayer () in the HTML page. Table H illustrates this code.

Table 5. Response to click on lock

OkButton.addActionListener(new ActionListener() {
Public void actionPerformed(ActionEvent e) {
JSObject win=JSODbject.getWindow (theApplet);
// theApplet is the name of the malicious applet.
Object[] args=new Object[0];
win.call(“showLayer” ,args); }

Trust on Web Browser: Attack vs. Defense 251

6. When the user clicks on the system close button on the top-right corner of
the browser window to close the window, the attribute of layer visibility is
set to be “hidden”.

5 Countermeasures toward Browser Spoofing

Our spoofing attack is very concise and effective. Any script kiddie can launch
it easily. However, it is quite difficult to defend it. The reasons are

— Most users are not security expert. Their using behaviors are hard to be
changed. If the users are used to trust a security lock, they will not be
alerted by other anomaly events, e.g. changes on status bar.

— Even the expert themselves may be cheated by the faked lock and the faked
certificates. Worst, if the terminal holding the browser is totally controlled by
malicious environment, all tries of tracing a packet, redirect the connection
to prove the original site would receive manipulated replies.

Actually, the failure mainly results from no clear visual sign to help the
users’ making a correct decision (i.e. a security lock is apparently not enough
for application level security). To counter this attack, we have to rely on more
visible and clear sign indicating certain trustworthy event. Two countermeasures
are described in the following.

5.1 Disabling Configuration of Status Bar

In the browser spoofing attack, a new window is created with faked status line
which indicates a bogus site to be authentic. To thwart this attack, the browser
should disable status bar configuration when a new window is created. This
modification is easy to implement without affecting the functionality of browsers.
Thus, a security lock in status bar always shows the trustworthy site if and only
if the server certificate is authentic. However, this countermeasure requires the
user to pay attention to the status of the small security lock.

5.2 Synchronizing Colors

It is easier for a user to trust the web content if the colors are synchronized
within a window. For example, dynamically controlling the color of a designated
part of a window based on certain security rules. It is very hard for an attacker
to synchronize the color without passing the security rules. Refer to Figure[H, the
main menu bar, whose color is randomly set up by internal functions, is labelled
as a standard reference. The boundary of the new generated windows will also
show the same colors after accepting a certificate. If the colors are not identical,
the new window can not be trusted.

Compared with [I2], this solution requires no additional reference window. Tt
could be ideal since it satisfies the necessary requirements in [I2]: inclusiveness,

252 T.-Y. Liand Y. Wu

1 & Color of menu bar is
controlled randamly
by internal functions.

| http: wewewe fake. com

] |
A fake windowl Boundary color shall

be synchronized with
menu bar colar,

Status bar can nat be
closed, security lock
can be shown after

Tonneching 1o 1 wverifying the certificate

Fig.5. Color synchronization

Effectiveness, no user work, no intrusiveness. It is also easy to distinguish the bad
behavior windows. We believe that the browser spoofing attack is not incurable
as long as the browser software providers patch the security hole as the above
countermeasures.

6 Conclusions and Future Directions

In this paper, we demonstrated an effective attack - “browser spoofing” that
make the browser un-trustable. We introduced a generic attacking scheme and
elaborated its implementation. While using browser spoofing is not novel, the
visual effect of this experiment can really cheat quite a lot of users. It shows that
the trust path from user to web browser is weak, although security protocols like
SSL are secure enough for end-to-end security. But the client side “end” security
ends merely at transport layer. The gap still exists between the user and its
browser, in which languages (i.e. Java, JavaScript) and dynamic properties (i.e.
form functions, frames) provide rich effects, yet dangerous.

Although the attack is quite effective, it can be avoided by disabling the
“status bar” and carefully detecting any anomaly happened there. In fact, to
trust on the web browser, systematical defense technologies will be integrated
together. The more complicated the strategies, the more user involvement. The
less possible the attackers’ following up, the more trustable the content. Hence,
the challenge is how to balance the tradeoff between trust and ease of use.

Further on, we will study several secure schemes against the attacks for pro-
tecting web browser. We believe that the proposed attack is not incurable with
effective trust scheme by a non-cautious user.

Trust on Web Browser: Attack vs. Defense 253

References
1. http://www.mymontage.com/.
2. Ka Ping Yee, User Interface Design for Secure System. ICICS, LNCS 2513,
(2002)278-290
3. A. Freier, P. Kariton, P. Kocher, The SSL Protocol: Version 3.0.Netscape commu-

11.

12.

13.

14.

nications, Inc., (1996)

Edward W. Felten, Dirk Balfanz, Drew Dean, and Dan S. Wallach. Web spoof-
ing: An Internet Con Game. 20th National Information Systems Security Confer-
ence,(1997) http://www.cs.princeton.edu/sip/pub/spoofing.html

Serge Lefranc and David Naccache, “Cut-&-Paste Attacks with Java”. 5th Inter-
national Conference on Information Security and Cryptology (ICISC 2002), LNCS
2587, pp.1-15, 2003.

Jeffrey Horton and Jennifer Seberry, Covert Distributed Computing Using
Java Through Web Spoofing. ACISP (1998)48-57, http://www.uow.edu.au/ jen-
nie/ WEB/JavaDist Comp.ps.

F. De Paoli, A.L. DosSantos and R.A. Kemmerer, Vulnerability of “Secure” Web
Browsers. Proceedings of the National Information Systems Security Conference
(1997)

Andreas Pftizmann, Birgit Pfitzmann, Matthias Schunter and Michael Waidner,
Trusting Mobile User Devices and Security Modules, IEEE Computer, 30/2, Feb,
1997, p. 61-68.

Rick Darnell et al, Dynamic HTML. ISBN 0-57521-353-2(1998)

. Gabriel Torok, Jeffrey Payne and Matt Weifeld, Javascript Primer Plus. ISBN

1-57169-041-7(1996)

Yougu Yuan, Eileen Zishuang Ye. Sean Smith, Web Spoofing. (2001)
http://www.cs.dartmouth.edu/reports/abstracts/ TR2001-409/

Eileen Zishuang Ye, Sean Smith, Trusted Paths for Browsers. 11th USENIX Secu-
rity Symposium, (2002)

M. Burnside, Blaise Gassend, Thomas Kotwal, Matt Burnside, Marten van Dijk,
Srinivas Devadas, and Ronald Rivest The untrusted computer problem and camera-
based authentication. 1st International Conference on Pervasive Computing, LNCS
2414,(2002) 114-124.

Pim Tuyls, Tom Kevenaar, Geert-Jan Schrijen, Toine Staring, Marten van Dijk,
Visual Crypto Displays enabling Secure Communications, Proceeding of First In-
ternational Conference on Security in Pervasive Computing(2003)12-14

	Introduction
	Related Works
	Attack on Trust Path
	Attack Model
	Spoofing Method

	Implementation
	Spoofing the Browser Window
	Spoofing the Browser Methods

	Countermeasures toward Browser Spoofing
	Disabling Configuration of Status Bar
	Synchronizing Colors

	Conclusions and Future Directions

