
Proxy and Threshold One-Time Signatures

Mohamed Al-Ibrahim1 and Anton Cerny2

1 Center for Advanced Computing
Computing Department
Macquarie University

Sydney , NSW 2109, Australia
ibrahim@ieee.org

2 Department of Mathematics and Computer Science
Kuwait University

P.O. Box 5969, Safat 13060, Kuwait
cerny@mcs.kuniv.edu.kw

Abstract. One-time signatures are an important and efficient au-
thentication utility. Various schemes already exist for the classical
one-way public-key cryptography. One-time signatures have not been
sufficiently explored in the literature in the branch of society-oriented
cryptography. Their particular properties make them suitable, as a
potential cryptographic primitive, for broadcast communication and
group-based applications. In this paper, we try to contribute to filling
this gap by introducing several group-based one-time signature schemes
of various versions: with proxy, with trusted party, and without trusted
party.

Keywords: One-time signature, proxy signature, group signatures, dig-
ital signatures, threshold cryptography, broadcast authentication

1 Introduction

One-time signatures are an important public-key cryptography primitive. They
derive their importance from their fast signature verification. This is in contrast
to the conventional digital signature schemes, which usually have high generation
or verification computation time. One-time signatures are an ideal option for
authenticating particular types of applications where receivers are of low power
capability, such as smart cards, or for online applications, such as video/audio
streaming, which require fast verification.

One-time signatures are efficient and secure. Typically, signature parameters
are initialized well ahead of the time when messages are to be signed and verified.
This allows the signer to pre-compute the signature parameters so they can be
fetched by potential verifiers. Once the message is known, the signer can sign
it quickly, and receivers can verify the signed message efficiently. A distinct
characteristic of one-time signatures is that they are used once only. To sign a
new message, the signer must initialize the signature parameters. This means
that the parameters of old signatures are not reused to sign another message;

J. Zhou, M. Yung, Y. Han (Eds.): ACNS 2003, LNCS 2846, pp. 123–136, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

124 M. Al-Ibrahim and A. Cerny

otherwise, the signature parameters would be exposed. The security of one-time
signatures is measured by the difficulty of forging a signature by an adversary
who normally has access to a single pair: a message and its signature.

On the other hand, groups play an important role in contemporary commu-
nication. Numerous examples of group applications include the stock exchange,
collaborative tasks, and many other multicast applications. Group communica-
tion has a (potentially) high communication overhead, and it is desirable that
group members can authenticate their communications efficiently. Cryptographic
transformations by a group of participants was the subject of investigation in
so called society-oriented cryptography ([6], [4]). Unlike classical cryptography,
society-oriented cryptography allows groups of cooperating participants to carry
out cryptographic transformations. That is, society-oriented cryptography re-
quires distribution of the power of performing a cryptographic transformation
among a group of participants such that only designated subsets of the group can
perform the required cryptographic operation, but unauthorized subsets cannot
do so.

With the recent interest in securing group and broadcast communication,
there has been a great demand for designing a new class of fast signature schemes
that can handle a vast number of signatures from broadcast or group-based ap-
plications efficiently, rather than using typical signature schemes. Hence, there
have been a number of attempts in society-oriented cryptography to design sig-
nature schemes for authenticating group-based scenarios.

Several schemes were proposed that use classical authentication schemes such
as digital signatures (RSA [24], ElGamal [7]) for group-based transformations.
However, these conventional methods typically have a high computational over-
head, and hence they may not fulfill the new requirements with regard to the
efficiency of the emerging applications. Besides, the nature of authenticating on-
line real-time applications usually requires a fast authentication. That is, the
extra embedded complexity which is involved in the typical digital signatures to
provide extra security adds more computational time. In contrast, one-time sig-
natures provide the required security services with less computational overhead.

As mentioned, one-time signatures are potentially far more (computation-
ally) efficient than classical authentication methods. This leads us to explore
new ways of improving the efficiency of authentication in group communication
using one-time signatures. That is, we attempt to apply one-time signatures for
situations where the right to execute signature operations is shared by a group
of signers. We propose a scheme for a threshold proxy signature. We achieve
this by introducing a few intermediate schemes. We put together the concepts
of one-time signature and threshold group signature by using the idea of proxy
signing. Proxy one-time signature was first used in [12] to authenticate mobile
agents in low-bandwidth communications. On the other hand, and to the best of
our knowledge, the problem of finding a group oriented one-time signature has
not been discussed elsewhere.

In this paper, we begin by reviewing the relevant work in the area of one-
time signatures. To allow application of several one-time signature schemes in a

Proxy and Threshold One-Time Signatures 125

common way, we establish a construction model for the proposed protocols. To
reach our goal, we investigate the problem of one-time signature in two scenarios:
with a proxy signer and with a group of signers. We start with one-time signature
for the case when a signer wants to delegate his one-time signature to a proxy
who would sign on his behalf. Then in Section 5, we show how it is possible to
construct a threshold one-time signature using the Shamir secret sharing method.
This may happen with or without the aid of a trusted party. Finally, in Section
6, we design a scheme for threshold proxy signature.

2 Related Work

Lamport [13], Rabin [16], Merkle [17] and GMR [11] are well known examples
of one-time signature schemes. They share the same basic idea and are based
on committing to secret keys via one-way functions. Rabin uses an interactive
approach for verification of signatures with the signer. These schemes differ in
their approaches, but they share the same idea: only one message can be signed
using the same key. Once the signature is released, its private key is not used
again; otherwise, it is possible for an adversary to compute the secret key.

A new approach to designing such signatures is the BiBa one-time signature
[19]. The BiBa signature exploits the birthday paradox property. A large number
of secret keys is used to find collisions among the generated keys associated with
the message. This way of signing requires a long pre-computational time. Reyzin
and Reyzin [23] solve BiBa’s disadvantage of having a very long signing time.
Their idea is to calculate the number of required keys according to the size
of the message and pre-determined length of the signature. Based on this, key
generation would be very fast, and hence signing is faster.

One-time signatures have been used in group communication for authenticat-
ing streaming applications in multicast communication. Gennaro and Rohatchi
[9] used a chained method with one-time signature. Rohatchi used a k-times one-
time signature based on on-line/off-line approach. Perrig used it in Tesla [18].
Al-Ibrahim et al. in [1] introduced k-sibling one-time signature for authenticating
transit flows.

3 A Class of One-Time Signature Schemes

In this section, we establish a model for one-time signature schemes. The model
is not aimed at introducing a new kind of signature. We want to set a common
view of several well-established signature schemes in order to be able to apply
any one of them in our subsequent scenarios. Not every signature scheme in our
model is therefore secure and the properties of each such particular scheme are
to be investigated separately.

Our model consists of a signer S and a verifier V and is described as a
tuple O = (M, X, Y, h, v, π) where M is the set of messages, X, Y are finite sets,
h : X → Y is a one-way hash function, v ≥ 1 is an integer and π : M → 2{1,2,... ,v}

126 M. Al-Ibrahim and A. Cerny

is a function. All parts of O are public. If a signer S sends a message m ∈ M to
a verifier V , the signature creation and verification proceeds as follows:

Key generation

Signer S

1. chooses v random values s1, s2, . . . , sv ∈ X (the secret keys of the signer)
2. computes v values p1 = h(s1), p2 = h(s2), . . . , pv = h(sv) ∈ Y and makes

them public.

Signing

Signer S

1. finds (j1, j2, . . . , jr) = π(m)
2. sends m and the signature (sj1 , sj2 , . . . , sjr) to the verifier V.

Verification

Verifier V

1. finds (j1, j2, . . . , jr) = π(m)
2. computes h1 = h(sj1), h2 = h(sj2), . . . , hr = h(sjr)
3. accepts the signature if and only if h1 = pj1 , h2 = pj2 , . . . , hr = pjr .

The model includes schemes like Lamport [13] or Merkle [17] as special cases.
The schemes of Rabin [22], GMR [11], BiBa [19] are of a different type. The
“better than BiBa” scheme of Reyzin and Reyzin [23], Bos and Chaum [3], and
HORS++ of [21] belong to this model.

4 A Simple One-Time Proxy Signature Scheme

Delegation of rights is a common practice in the real world. A manager of an
institution may delegate to one of his deputies the capability to sign on behalf
of the institution while he is on holiday. For electronic transactions, a similar
approach is needed to delegate the manager digital signature to the deputy.

Proxy signature is a signature scheme where an original signer delegates
his/her signing capability to a proxy signer, and then the proxy signer creates
a signature on behalf of the original signer. When a receiver verifies a proxy
signature, he verifies both the signature itself and the original signer’s delega-
tion. Mambo, Usuda and Okamoto (MUO) in [15] established models for proxy
signatures. They classified proxy signatures, based on delegation type, as full
delegation, partial delegation, and delegation by warrant. In full delegation, the
signer gives his secret key to the proxy. In partial delegation, the signer creates a
separate secret key for the proxy, but it is derived from his secret key. In signing
with warrant, the signer signs the public key. In addition, they provide various
constructions for proxy signature schemes with detailed security description and
analysis. Their proxy signatures provide various security services including:

Proxy and Threshold One-Time Signatures 127

– Unforgeability. Only the proxy signer (besides the original signer) can
create a valid signature for the original signer.

– Proxy signer’s deviation. Each valid proxy signer’s signature can be de-
tected as her signature.

– Verifiability. A positive verification of a proxy’s signature guarantees the
agreement of the original signer with this signature.

– Distinguishability. A valid proxy’s signature can be distinguished from
the original signer’s signature (in polynomial time).

– Identifiability. The original signer can determine the identity of a proxy
from his signature (if there are more proxy signers).

– Undeniabilty. A proxy signer cannot disavow his valid signature.

Detailed discussion may be found in [15].

Zhang in [27] noticed that the Mambo scheme does not provide

– Nonrepudiation. Neither the original nor the proxy signer can falsely deny
later that he generated a signature.

In [27] the scheme from [15] has been enhanced to provide nonrepudiation.

The scheme in [15] allows the proxy to sign an arbitrary number of messages.
Furthermore, using the warrant is not a systematic way to control the number
of signed messages in electronic communication. In some situations, the signer
may need to delegate his signature to the proxy for one-time/one-purpose only.
For example, an autocratic manager may want, for security or administrative
reasons, to restrict the proxy to signing on his behalf for one time only. Hence,
a new type of proxy signature that is more restricted than the Mambo approach
is needed. An efficient one-time signature can be used in this case. Kim et al.
in [12] designed a one-time proxy signature using fail-stop signature to provide
authentication to mobile agents applications. In our proposal, we use a class of
one-time signatures, as those described in section 3, to design a new one-time
proxy signature.

If we consider a “classical” type of scheme, where the original signer shares
his secret keys with the proxy or generates new secret keys for the proxy, dis-
tinguishability and non-repudiation are not guaranteed, since both the original
and the proxy signer know the secret keys. The character of a one-time signa-
ture allows us to adopt a principally new approach, where the secret keys are
generated and kept by the proxy only, and the original signer has no share in
the secret. The original signer only confirms the public keys and stores them
with a trusted party (registry). The security properties such as unforgeability,
proxy signer’s deviation, verifiability, and undeniability of the scheme are the
same as in the underlying one-time signature scheme O. Introducing the proxy
signer clearly does not cause any violation of these security properties, unless the
signature scheme is used more than once by an unreliable proxy. Signing several
messages using the same set of keys reveals too many secret keys, and an eaves-
dropper could easily sign a false message using them. Our suggested solution

128 M. Al-Ibrahim and A. Cerny

involves the trusted party. Let us assume that, besides the public keys approved
by the original signer, one more value will be stored by the proxy when signing a
message. However, this action will be guarded by the trusted party and will not
be allowed to be done more than once. When signing the message m, the proxy
will store there the value h(m). In an additional step, the verifier will compute
h(m) for the received message m and check it against the value from the registry.
Since this value can be stored to the registry just once, only one message can
be legally signed. The scheme involves a signer S, a proxy P , a verifier V , and a
trusted party TP . It uses the one-time signature scheme O = (M, X, Y, h, v, π)
where X is a sufficiently large set. In addition, we assume that h is extended to
h : X ∪ M → Y while still preserving its one-wayness.

Key generation

Signer S

1. asks P to start generating secret keys.

Proxy P

1. chooses v secret numbers : s1, s2, . . . , sv ∈ X
2. computes p1 = h(s1), p2 = h(s2), . . . , pv = h(sv)
3. passes (p1, p2, . . . , pv) to S.

Signer S

1. verifies that the p’s are from P (a one-time signature of P can be used for
signing the list of p’s)

2. makes (p1, p2, . . . , pv) public, registered to the name of S.

Signing

Proxy P

1. computes (j1, j2, . . . , jr) = π(m)
2. computes q = h(m) and registers this value with TP as a one-time writable

value
3. sends (m, sj1 , . . . , sjr) to V .

Verification

Verifier V

1. finds (j1, j2, . . . , jr) = π(m)
2. computes h1 = h(sj1), h2 = h(sj2), . . . , hr = h(sjr)
3. computes q′ = h(m)
4. fetches pj1 , pj2 , . . . , pjr

and q from TP
5. accepts the signature if and only if h1 = pj1 , h2 = pj2 , . . . , hr = pjr

and
q′ = q.

Proxy and Threshold One-Time Signatures 129

The proxy uses its private keys, and the public keys are stored with a trusted
party; hence, the proxy cannot deny signing or revealing the secret to a third
agent - a danger occurring in most of the established proxy signature schemes.
Since the signer and the proxy do not share the same key, non-repudiation is
achieved. Sending keys by the proxy to the signer in the key generation phase
does not compromise security since these keys will become public anyway. The
role of the original signer is to endorse the public-keys generated by the proxy
signer to the registry. This step is crucial; otherwise, any agent may claim itself
to be a proxy for the original signer.

5 A (t, n) Threshold One-Time Signature Scheme

A particularly interesting class of society-oriented cryptography which includes
threshold cryptographic transformation, consists of all subsets of t or more par-
ticipants from a group of n members. A digital signature is an integer issued by
a signer which depends on both the signer’s secret key and the message to be
signed. In conventional cryptosystems, the signer is a single user. However, the
process of signing may need to be shared by a group of participants. The first
attempts at designing a shared signature were made by Boyd. Threshold RSA
[5] and Threshold ElGamal [14] signatures are examples of threshold multisig-
nature schemes that require the presence of t participants of the group to sign a
message. Both schemes exploit the Threshold Shamir secret sharing method to
generate shares of signatures.

Here, we attempt to expand the idea of threshold signatures from the conven-
tional cryptosystems transformations into one-time signatures to benefit from its
efficiency properties in speeding-up the verification process. Our model consists
of a group of signers Si, i = 1, 2, . . . , n and a verifier V . A one-time signature
scheme O = (M, F, Y, h, v, π) is used, where F is a finite field and Y is a finite set,
and both are sufficiently large. A threshold value t ≤ n is specified in advance.
Not less than t signers are required to sign a message.

5.1 With a Trusted Party

In our first scenario, two more parties are involved: a trusted distributor D, and
a trusted combiner C.

The idea behind this scheme is to let the distributor D choose the secret keys
of the general one-time signature scheme of the group.

The shares of these secret keys for the particular signers are computed by D
using the Shamir secret sharing algorithm, and they are then distributed to the
participants. For each secret key sj , a distinct polynomial fj of degree t−1 with
fj(0) = sj is used to create secret shares. A public value xi is associated with
each signer Si; his secret share on the key sj is then si,j = fj(xi). The set of
polynomials comprising the system is illustrated (graphically) in Figure 1. Each
intersection of a polynomial with the y axis represents a secret key. Two or more
shares of the same signer may be identical, since several polynomials may have

130 M. Al-Ibrahim and A. Cerny

a common value in some of the points xi (the graphs may intersect on a vertical
line at xi). This clearly does not compromise the security of the system, since
this information is known only to D and the the signer. The secret keys sj are
chosen to be pairwise distinct; hence no two polynomial graphs intersect on the
y axis.

Fig. 1.

Key generation and share distribution Distributor D

1. chooses randomly v pairwise distinct elements sj ∈ F, j = 1, . . . , v (group
secret keys)

2. computes the v values pj = h(sj), j = 1, . . . , v and makes them public
(registered to the group name)

3. chooses randomly n pairwise distinct non-zero elements xi, i = 1, . . . , n from
F and makes them public

4. chooses randomly v polynomials fj(x) = fj,0 + fj,1x + · · · + fj,t−1x
t−1, j =

1, . . . , v, satisfying fj(0) = fj,0 = sj

5. computes si,j = fj(xi), i = 1, . . . , n, j = 1, . . . , v

6. sends (si,j)j=1,... ,v by a secure channel to the signer Si, i = 1, . . . , n (secret
share for the partial signer Si)

Proxy and Threshold One-Time Signatures 131

Signing

Signer Si, i ∈ {i1, i2, . . . , it}

1. finds (j1, j2, . . . , jr) = π(m)
2. sends the partial signature (si,j1 , si,j2 , . . . , si,jr

) to C.

Combiner C

1. waits to receive partial signatures from (at least) t signers Si1 , . . . , Sit

2. using Lagrange interpolation, recovers the polynomials fjk
(x), k = 1, . . . , r,

based on the conditions fjk
(xi1) = si1,jk

, . . . , fjk
(xit) = sit,jk

3. finds (sj1 , sj2 , . . . , sjr) = (fj1,0, fj2,0, . . . , fjr,0)
4. sends (m, sj1 , sj2 , . . . , sjr) to V.

Verification

Verifier V

1. finds (j1, j2, . . . , jr) = π(m)
2. fetches pjk

, k = 1, . . . , r from the registry
3. checks whether pjk

= h(sjk
), k = 1, . . . , r.

Since the usual Shamir secret sharing is used, at least t signers are necessary
to find any of the group secret keys. The fact that at most one message will be
signed using the same signature may be guaranteed by the trusted combiner, so
the multiple signature problem vanishes. In our scheme, the trusted distributor
D knows all the secret keys; therefore, his reliability must be without doubt. The
next version, without a trusted party, avoids such strict requirements. Observe
that the combiner C knows only those secret keys which are used for the signature
and which will be revealed to the verifier.

The computation of the shares involves nv times evaluation of a polynomial
of degree t−1 by D and r times Lagrange interpolation of a polynomial of degree
t−1 by C. In addition, D, V and each partial signer must compute π(m) and D
and V compute v and r values of the function h, respectively. The signers may
compute π in parallel. It is worth noting that the verification of the one-time
signature scheme is as efficient as without secret sharing.

5.2 Without a Trusted Party

The scenario without a trusted party works the same way as the one with the
trusted party; the steps of the distributor D and combiner C are performed by
the signers themselves. In particular, the set of n signers is used as a parallel
n-processor computer.

132 M. Al-Ibrahim and A. Cerny

Key generation and share distribution

Signer Si, i = 1, . . . , n

1. chooses randomly a non-zero element xi ∈ F and makes (i, xi) public
2. chooses randomly sj ∈ F (secret key) for each j = 1, . . . , v such that (j −

1) mod n + 1 = i
3. computes the value pj = h(sj) and makes the pair (j, pj) public (registered

to the group name)
4. chooses randomly a polynomial fj(x) = fj,0+fj,1x+· · ·+fj,t−1x

t−1 satisfying
fj(0) = fj,0 = sj

5. computes si′,j = fj(xi′), i′ = 1, . . . , n
6. sends si′,j by a secure channel to the signer Si′ , i′ = 1, . . . , n, i′ �= i (secret

share for the signer Si′)

Signing

Signer Si, i ∈ {i1, i2, . . . , it}
1. finds (j1, j2, . . . , jr) = π(m)
2. sends the partial signature (si,j1 , si,j2 , . . . , si,jr

): the triple (i, jk, si,jk
) is sent

to Siq where q = (jk − 1) mod t + 1, k = 1, 2, . . . , r
3. using Lagrange interpolation, based on the conditions fjk

(xi1) = si1,jk
,

fjk
(xi2) = si2,jk

, . . . , fjk
(xit) = sit,jk

,recovers the polynomial fjk
(x) for

each complete t-tuple ((i1, jk, si1,jk
), . . . , (it, jk, si1,jk

)) received
4. for each polynomial fj recovered, finds sj = fj,0
5. for each polynomial fj recovered, sends (m, j, sj) to V.

Verification

Verifier V

1. finds (j1, j2, . . . , jr) = π(m)
2. fetches pjk

, k = 1, . . . , r from the registry
3. waits until all triples (m, jk, sjk

), k = 1, . . . , r are received
4. checks whether pjk

= h(sjk
), k = 1, . . . , r.

Let r0 be the minimum length of a signature and v the total number of secret
keys. In our scheme, each of the n signers generates �v/n� secret keys. We claim
that if �v/n� (t − 1) < r0, then at least t out of the n signers are necessary
to create a valid signature. Indeed, (t − 1) signers know at most �v/n� (t − 1)
secret keys. If the condition holds, this is not enough to create a signature of
length r0. On the other hand, the multiple signatures problem arises here again.
Several messages may be signed even without malicious intention, since two
independent subgroups of size t may sign two different messages. This problem
may again be resolved by the “trusted registry” as in Section 4. Another solution
may be an explicit synchronization of all signers before signing by one subgroup.
That is, on time slot σ, all the n participants would be involved in signing the
message m though there are only t actual signers. We leave open the problem of

Proxy and Threshold One-Time Signatures 133

designing a better scheme for one-time signatures that would prevent subgroups
in a threshold scheme from signing more than one message at a time.

The complexity considerations from Part 5.1 are valid, except that, instead of
the time necessary for computating nv polynomial values, the time for computing
max(n, n �v/n� ≈ v) values is required, since the signers may compute in parallel.
In a similar way, only the time for �r/t� Lagrange interpolations is necessary.

How realistic is the condition �v/n� (t − 1) < r0? If the scheme of Lamport
([13]) is used to sign a message of length µ, then v = 2µ are generated and the
signature consists of µ keys. Our condition is satisfied if t < n/2 + 1.

6 A (t, n) Threshold Proxy One-Time Signature Scheme

In this section, we combine the ideas from the two previous sections and propose
the following model. A group of n signers Si, i = 1, 2, . . . , n wants to allow any
subgroup of at least t signers to sign a message using a one-time signature. In our
solution, the group will play the role of the original signer, who delegates his right
to use a one-time signature to any subgroup of t ≤ n (proxy). The signature is to
be verified by a verifier V . A one-time signature scheme O = (M, F, Y, h, v, π) is
used, where F is a finite field and Y is a finite set, both sufficiently large. Again,
we assume that h is a one-way hash function, h : M ∪F → Y . The trusted party
TP is required only to keep the public keys and to prevent repeated signing. The
start of the keys generation should be initiated in a suitable coordinated way.

Key generation and share distribution

Signer Si, i = 1, . . . , n

1. chooses randomly a non-zero element xi ∈ F and makes (i, xi) public
2. chooses randomly sj ∈ F (secret key) for each j = 1, . . . , v such that (j −

1) mod n + 1 = i
3. computes the value pj = h(sj) and sends (j, pj) to TP
4. chooses randomly a polynomial fj(x) = fj,0+fj,1x+· · ·+fj,t−1x

t−1 satisfying
fj(0) = fj,0 = sj

5. computes si′,j = fj(xi′), i′ = 1, . . . , n
6. sends si′,j by a secure channel to the signer Si′ , i′ = 1, . . . , n, i′ �= i (secret

share for the signer Si′)

Trusted Party TP

1. verifies that each pj is from a proper Si (a one-time signature of Si can be
used for signing the pair (j, pj))

2. makes (p1, p2, . . . , pv) public, registered to the name of the group.

134 M. Al-Ibrahim and A. Cerny

Signing

Signer Si, i ∈ {i1, i2, . . . , it}
1. finds (j1, j2, . . . , jr) = π(m)
2. computes q = h(m) and registers this value with TP ; if q is different from a

value already registered with TP , Si stops signing
3. sends the partial signature (si,j1 , si,j2 , . . . , si,jr

): the triple (i, jk, si,jk
) is sent

to Siq
where q = (jk − 1) mod t + 1, k = 1, 2, . . . , r

4. using Lagrange interpolation, based on the conditions fjk
(xi1) = si1,jk

,
fjk

(xi2) = si2,jk
, . . . , fjk

(xit) = sit,jk
, recovers the polynomial fjk

(x) for
each complete t-tuple ((i1, jk, si1,jk

), . . . , (it, jk, si1,jk
)) received.

5. for each polynomial fj recovered, finds sj = fj,0
6. for each polynomial fj recovered, sends (m, j, sj) to V.

Verification

Verifier V

1. after receiving the first triple (m, jk, sjk
) finds (j1, j2, . . . , jr) = π(m)

2. computes q′ = h(m)
3. fetches pjk

, k = 1, . . . , r and q from TP
4. waits until all triples (m, jk, sjk

), k = 1, . . . , r are received
5. checks whether pjk

= h(sjk
), k = 1, . . . , r and q′ = q.

As in Part 5.2, each of the signers knows at most �v/n� secret keys of the
group. Therefore, (t − 1) signers will not be enough to sign a message only if
�v/n� (t−1) < r0, where r0 is the minimum signature length for messages under
consideration.

The computation of the shares involves the time for max(n, n �v/n� ≈ v)
evaluations of a polynomial of degree t− 1 and the same number of applications
of h, since the signers may compute in parallel. Similarly, only the time for �r/t�
Lagrange interpolations of a polynomial of degree t − 1 is required. In addition,
V and each partial signer must compute π(m) and V must compute r values of
the function h.

6.1 Special Case: t = 1

A particular case of interest in this scheme is when t = 1, which depicts the
anycast model. The anycast authentication problem was discussed in [2] and
a solution was proposed based on a conventional digital signature. Briefly, the
anycast model represents the situation where any of a group of n servers (signers)
may provide the same (equivalent) service to a client (verifier). The method of
nominating the actual signer is an optimization problem, and it is done by the
network infrastructure based on a number of criteria such as less communication
overhead, more available memory, and others. In the solution, an additional party
- a group coordinator - may behave as the original signer in our (1, n)-threshold
scheme while the servers behave as the proxies. The original signer delegates his

Proxy and Threshold One-Time Signatures 135

power to n proxy signers and the verifier verifies a message from “one” of the
proxy signers. Although the above (1, n)- threshold scheme of one-time signature
is theoretically correct, it is not of practical concern since the signer needs to
generate different secret keys for each proxy correspondence.

7 Conclusion and Future Work

In this paper, we have proposed several schemes related to authentication with
one-time signature. The first case deals with the implementation of a one-time
signature in proxy delegation; the second shows how to use a (t, n) threshold
one-time signature in a group of signers, and the third scheme combines the
above two ideas into a (t, n) threshold proxy one-time signature. An extension
to this work, left as an open problem, is to design a one-time signature scheme
to prevent multiple message signing using the same set of one-time signature
keys.

References

1. M. Al-Ibrahim and J. Pieprzyk, “Authentication of transit flows and K -siblings
one-time signature,” in Advanced Communications and Multimedia Security, B.
Jerman-Blazic and T. Klobucar, ed., pp. 41–55, Kluwer Academic Publisher,
CMS’02, Portoroz – Slovenia, September 2002.

2. M. Al-Ibrahim and A. Cerny, “Authentication of anycast communication,” in the
proc. of Second MMM-ACNS’03, St-Petersburg, Russia, LNCS 2776, pp. 425–429,
Springer-Verlag, 2003.

3. J.N.E. Bos, D.Chaum, “Provably unforgeable signatures,”Advances in Cryptology
– CRYPTO ’92, Ernest F. Brickell ed., LNCS 740, pp.1–14, Springer-Verlag, 1992.

4. C. Boyd, “Digital Multisignatures,” in Cryptography and coding (H. Beker and
F. Piper, eds.), pp. 241–246, Clarendon Press, 1989.

5. Y. Desmet and Y. Frankel. “Threshold cryptosystems,” in G. Brassard, editor,
Advances in Cryptology – Crypto’89, LNCS 435, pp. 307–315, Springer-Verlag,
1990.

6. Y. Desmedt, “Society and group oriented cryptography: a new concept,” in Ad-
vances in Cryptology – Proceedings of CRYPTO ’87, C. Pomerance, ed., LNCS
293, pp. 120–127, Springer-Verlag, 1988.

7. T. ElGamal, “A Public key cryptosystem and a signature scheme based on discrete
Logarithms, ” IEEE Trans. on Inform. Theory, vol. IT-31, pp. 469–472, July 1985.

8. S. Even, O Goldreich, S. Micali. “On-line/Off-line digital signatures,” Journal of
Cryptology, volume 9, number 1, pp. 35–67, 1996.

9. R. Gennaro and P. Rohatchi, “How to sign digital streams,” Advances in Cryptology
– CRYPTO’97, LNCS 1249, pp. 180–197, Springer-Verlag, 1997.

10. O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random functions,”
Journal of the ACM, 33(4):pp. 792–807, October 1986.

11. S. Goldwasser, S. Micali, and C. Rackoff, “A Digital signature scheme secure
against adaptive chosen-message attacks,” SIAM Journal on Computing, 17, pp.
281–308, 1988.

136 M. Al-Ibrahim and A. Cerny

12. H. Kim, J. Baek, B. Lee, and K. Kim, “Secret computation with secrets for mobile
agent using one-time proxy Signature,” Proc. of SCIS’2001, pp. 845–850, IEEE
press, 2001.

13. L. Lamport, “Constructing digital signatures from a one-way function,” Technical
report CSL-98, SRI International, Palo Alto, 1979.

14. C.M. Li, T. Hwang, and N.Y. Lee, “Threshold-multisignature schemes where sus-
pected forgery implies traceability of adversarial shareholders,” in A. De Santis, edi-
tor, Advances in Cryptology – EUROCRYPT’94, LNCS 950, pp. 194–204, Springer-
Verlag, 1995.

15. M. Mambo, K. Usuda, E. Okamoto, “Proxy signatures for delegating signing op-
eration,” IEICE Trans. Fundamentals, vol. E79-A, no.9, pp.1338–1354, 1996.

16. A. Menezes, P. Van Oorschot, and S. Vanstone. “Handbook of Applied Cryptog-
raphy,” CRC Press, Boca Raton, 1997.

17. R. Merkle. “A Certified digital signature,” Advances in Cryptology – CRYPTO’89,
LNCS 435, pp. 218–238, Springer-Verlag, 1989.

18. A. Perrig, R. Canetti, J.D. Tygar, D. Song, “Efficient Authentication and signing of
multicast streams over lossy channels,” IEEE Symposium on Security and Privacy,
pp. 56–73, 2000.

19. A. Perrig. “The BiBa one-time signature and broadcast authentication protocol,”
ACM, CCS’01, pp. 28–37, 2001.

20. J. Pieprzyk, T. Hordajano, and J. Seberry. “Fundamentals of computer security,”
Springer-Verlag, 2003.

21. J. Pieprzyk, H. Wang, C. Xing. “Multiple-time signature schemes secure against
adaptive chosen message attack,” SAC’03 (10th workshop on Selected Areas of
Cryptography), LNCS, Springer-Verlag, 2003, to appear.

22. M.O. Rabin, “Digitalized signatures,” R. DeMillo, D. Dobkin, A. Jones, and R.
Lipton, editors, Foundations of Secure Computation, pp. 155–168, Academic Press,
1978.

23. L. Reyzin and Natan Reyzin, “Better than BiBa: short one-time signatures with
fast signing and verifying,” ACISP’02, LNCS 2384, pp. 144–152, Springer-Verlag,
2002.

24. R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, vol. 21, pp. 120–126,
Feb. 1978.

25. P. Rohatchi. “A Compact and fast hybrid signature scheme for multicast packet
authentication,” in Proc. of 6th ACM Conference on Computer and Communica-
tions Security, pp. 93–100, 1999.

26. A. Shamir. “How to share a secret,” Communications of the ACM, 22:612–613,
1979.

27. K. Zhang, “Threshold proxy signature scheme,” In proc. of ISW’97, LNCS 1396,
pp. 282–290, Springer-Verlag, 1997.

	Introduction
	Related Work
	A Class of One-Time Signature Schemes
	A Simple One-Time Proxy Signature Scheme
	A (t,n) Threshold One-Time Signature Scheme
	With a Trusted Party
	Without a Trusted Party

	A (t,n) Threshold Proxy One-Time Signature Scheme
	Special Case: $t=1$

	Conclusion and Future Work

