
Real-Time Decision Making under Uncertainty
of Self-localization Results

Takeshi Fukase, Yuichi Kobayashi, Ryuichi Ueda,
Takanobu Kawabe, and Tamio Arai

The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
{fukase,kobayasi,ueda,kawabe,arai}@prince.pe.u-tokyo.ac.jp

http://www.arai.pe.u-tokyo.ac.jp/

Abstract. In this paper, we present a real-time decision making method
for a quadruped robot whose sensor and locomotion have large errors.
We make a State-Action Map by off-line planning considering the uncer-
tainty of the robot’s location with Dynamic Programming (DP). Using
this map, the robot can immediately decide optimal action that mini-
mizes the time to reach a target state at any state. The number of obser-
vation is also minimized. We compress this map for implementation with
Vector Quantization (VQ). Using the differences of the values between
the optimal action and others as distortion measure of VQ minimizes the
total loss of optimality.

Keywords: Dynamic Programming, Vector Quantization, Planning un-
der Uncertainty, Real-time Decision Making

1 Introduction

In Sony Four-Legged Robot League, self-localization with insufficient sensor in-
formation and unreliable locomotion is an big problem. Moreover, to localize
itself, the robot must swing its head to look for landmarks because the robot’s
camera has a narrow visual field. It is required to keep the frequency of this “off-
ball” observation behavior as small as possible. As a result, the robot is required
to judge whether it should execute landmarks observation action or walking ac-
tion. The simplest criterion for the judgment is to adapt a fixed threshold of the
location’s uncertainty [2], however, there are many situations in which the robot
can decide its action without precise self-localization results.

Mitsunaga et al. proposed a decision making tree that gives consideration
to the observational strategy based on information criterion [3]. The tree is
made from the large experimental teaching data, which contains the information
of the motion planning and the probability distribution models of sensing and
locomotion. In order to apply larger problems, however, the decision making
architecture should once analyze these two kinds of information separately.

Our approach to the real-time decision making method deals with:
– modeling uncertainty in the robot’s locomotion and observations,
– adopting Dynamic Programming (DP) [4] to motion planning,

G.A. Kaminka, P.U. Lima, and R. Rojas (Eds.): RoboCup 2002, LNAI 2752, pp. 375–383, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

http://www.arai.pe.u-tokyo.ac.jp/


376 Takeshi Fukase et al.

– enlarging the state space of planning (configuration space) so as to include
the uncertainty parameters,

– compressing the off-line calculated information using Vector Quantization.
The robot’s locomotion models and observation models are taken into consider-
ation respectively in the process of DP, which guarantees the optimality. By the
expansion of the state space to include uncertainty parameters, the observational
cost can be computed in the framework of DP.

From another point of view, an effective design of reflective behavior has
been proposed by Hugel et al.[5]. But it needs highly sophisticated designer’s
empirical intuition. Our framework realizes the similar behavior as [2,3,5], but is
based on the automatic design. So the idea can be applied to the larger problems
more easily.

In section 2, the task in the Legged Robot League is specified. Section 3
outlines the proposed real-time motion decision method. In Section 4,5, and 6,
the implementation of the method to the task is described. In Section 7, the
proposed method is evaluated in the simulation and the experiment.

2 Task and Assumption

The robot’s task is to approach the ball from the proper direction so as not to
attack the own goal. The followings are the assumptions for the later discussion.

– there are eight discrete walking actions and one observation action,
– the walking actions yield large odometry errors,
– the six unique landmarks are placed around the field,
– the measurement of distance to the landmark contains large errors,
– the robot does not look away from the ball while walking towards it,
– the robot swings its head horizontally for self-localization at the observation

action.
The state of the robot and the ball are represented by the next five variables

(x, y, θ, r, φ), which are shown in Fig.5. (x, y, θ) is the robot’s pose on the field.
r and φ are the distance and orientation of the ball from the robot.

3 Real-Time Decision Making

From the above-mentioned discussion, real-time decision making methods are
required to meet following properties: 1) automatic design which can discuss
optimality, 2) low computational cost, and 3) ability to express the observational
cost and the uncertainty of localization.

To meet the first characteristic, we adopt DP, which is widely used to solve
the optimal control problems. The low computational property means that the
robot ERS-2100 has 32MB RAM and its calculation speed is equivalent to the
200MHz PC. The volume of DP result is too large to implement on the robot.
In order to compress it, we apply Vector Quantization (VQ) [6].

The aspects of uncertainty and observational costs are important in this
paper. The uncertainty can be considered as variables of the state space [7].



Real-Time Decision Making under Uncertainty of Self-localization Results 377

3.1 Motion Planning with Dynamic Programming

Let x ∈ X ⊂ Rn denote the state vector and u ∈ U ⊂ Rm denote the control
input vector. The system dynamics in discrete time is expressed as:

xk+1 = f [xk,uk]. (1)

The deterministic control policy is given by uk = π(xk). The purpose of the
optimal control problem is to find the optimal policy π∗(x) that maximizes

S =
T∑

k=1

R[xk,uk], (2)

where R[xk,uk] is the immediate evaluation function of each state and control
input pair and T is the time step until the task ends.

We substitute discrete s and a for x and u, respectively. Here, S and A are
the set of discrete states and actions. Bellman equation in discrete time and
space (without the discount factor) can be formulated as follows:

V ∗(s) = max
a

∑

s′
Pa
ss′ [Ra

ss′ + V ∗(s′)], (3)

Q∗(s, a) = max
a

∑

s′
Pa
ss′ [Ra

ss′ + max
a′

Q∗(s′, a′)], (4)

where Pa
ss′ denotes the transition probability from state s to s′ by taking action

a, and Ra
ss′ denotes the immediate evaluation given to the state transition from

s to s′ by taking action a. The optimal state-value function V ∗(s) denotes the
expected evaluation which is given by taking actions at state s under the optimal
policy π∗. The optimal action-value function Q∗(s, a) denotes the expected eval-
uation after taking action a at state s, in the same way. We call π∗ State-Action
Map in this paper.

3.2 Planning Optimal Behavior under Uncertainty

When the motions are planned, the variance of pose estimation and the observa-
tional cost should be taken into consideration. Fig.1 shows an example where the
variance of the posture estimation enlarges when the robot executes a walking
action. Fig.2 shows an example where the variance decreases when the robot
takes observation. These factors can be formulated as:

(
xk+1,ψk+1

)
= f ′[

(
xk,ψk

)
,
(
uk,ωk

)
], (5)

where ψ denotes the state variance vector and ω denotes the observational con-
trol vector. Thus, the optimal control problem can be solved in the expanded
state space {x,ψ|x ∈ X ,ψ ∈ �}. Fig.3 shows the abstraction of the state tran-
sition in the expanded state space. The increase of the variance in the original
state space can be expressed as the transition along the ψ axis.



378 Takeshi Fukase et al.

Fig. 1. A state’s transition on the oc-
casion of the robot’s movement.

Fig. 2. A state’s transition on the oc-
casion of a landmark observation.

Fig. 3. The state transition in the expanded
state space.

Fig. 4. The differences between
the optimal action and another.

3.3 Compression of State-Action Map with Vector Quantization

The map should be compressed in order to implement on the limited amount of
robot’s memory. We apply Vector Quantization as a data compression method.
The map is distorted through compression, and the optimality of action data is
lost. We should pay attention not to maximize the decode rate but to minimize
the increase of the time to reach the target. Hence, we calculate the differences
between the optimal action and others based on the value function as Fig.4, and
utilize it as a distortion measure.

4 Implementation 1: Dynamic Programming

4.1 Symbols Definition

Firstly, we quantize (x, y, θ, φ) as 100[mm]×100[mm]×15[deg]×100[mm] (Fig.5).
We divide r into 12 intervals. Each have different width since the qantized inter-
val does not need to be shorted when the ball is far from the robot. The shortest
interval width is 100[mm] and the widest interval width is infinite. Moreover, we
add one more parameter ψ which denotes the shape of region in which the robot
exists with high probability. ψ is represented to a combination of some spixiyiθs,
which are cuboids in the xyθ-space (Fig.6). The area which the robot exists with
high probability is represented as srixiyiθiψ . We restrict the number of ψs to 811
in a lot of combinations of cuboids so as to save the amount of calculation. We
define iψ as the larger iψ becomes, the more the number of ψ’s cuboids increases.
Eventually, we let a state ∀s ∈ S have six indexes as sixiyiθiriφiψ . Hereafter, we
often describe sixiyiθiriφiψ , srixiyiθiψ and sbiriφ as si, sri and sbi, respectively.

Secondly, we define some symbols on actions. The robot has nine fixed actions
as Table 1. Each action has the following attributes:



Real-Time Decision Making under Uncertainty of Self-localization Results 379

Fig. 5. The robot’s position is divided into
three-dimensional grids, and the ball’s posi-
tion is divided into two-dimensional grids.

Fig. 6. A quantized ψ consist of
three-dimensional cuboids in (x, y, θ)
space. When the robot’s position is
estimated precisely, the number of
cuboids in ψ is small.

Table 1. Actions and Parameters of them.

Action Mai
p [mm],[deg] Rai

ai (p = (0, 0, 0)) [msec]
1:forward (70 ± 30, 0 ± 15, 0 ± 6) -768
2:backword (-40 ± 40, 0 ± 15, 0 ± 6) -768
3:rightside (0 ± 20,-60 ± 30, 4 ± 4) -896
4:leftside (0 ± 20, 60 ± 30,-4 ± 4) -896
5:rightforward (10 ± 10, 37.5 ± 17.5,-14.5 ± 6.5) -832
6:leftforward (10 ± 10,-37.5 ± 17.5, 14.5 ± 6.5) -832
7:rollright (35 ± 15,-35 ± 15, 11.5 ± 6.5) -832
8:rollleft (35 ± 15, 35 ± 15,-11.5 ± 6.5) -832
9:observation (0 ± 0, 0 ± 0, 0 ± 0) -2800

– Time consumption : Rai(< 0). We regard a action’s time consumption as
negative reward. We assume that ∀Rai is independent of ∀s ∈ S.

– Capable region of the robot’s pose after an action ai which is caused at a
pose p : Mai

p . For brief calculation, we assume that the robot moves to a
random pose in Mai

p with the uniform probability, and that the shape of
Mai
p is a cuboid.

Finally we assume that the optimal policy π∗(s) is deterministic, i.e. π∗(s)
chooses one action when a state s is designated.

4.2 Calculation of Probability and Execution of DP Algorithm

We use the value iteration algorithm [4] to obtain the optimal policy π∗ with the
equation (3). We should refer to the calculation algorithm of Pak

sisj to execute
the value iteration algorithm. We calculate Pak

sisj with the next two algorithms.

Calculation of Pose’s Transition. We do not treat stochastically the renewal
of sri after an action ak (we represent it as sakri ) since sri and sakri are already
stochastic in themselves. We choose the most proper sakri with the following way;



380 Takeshi Fukase et al.

1. Choose a pose p randomly from the region sri.
2. Choose a pose q randomly from the region Mak

p .
3. Record the region sjxjyjθ which contains the pose q.
4. Iterate 1-3 sufficiently.
5. Bind all recorded regions and make a region ŝakri .
6. Choose the most proper sakri to approximate ŝakri .

Calculation of Ball Position’s Transition. We define Pak
sbisbj

as the proba-
bility which the ball’s position becomes sbj after an action ak from sbi. Pak

sbisbj
is calculated with the following way;

1. Assume that the robot’s pose is p.
2. Choose a pose q randomly from the region Mak

p .
3. Choose a ball posistion b randomly from the region sbi.
4. Calculate the new ball position b′ from p, q and b.
5. Record the region sbj which includes the position b′.
6. Iterate 1-5 sufficiently.
7. Calculate Pak

sbisbj
from the frequency that sbj is recorded.

If sakri = srj , the value of Pak
sisj is the same as that of Pak

sbisbj
, if not, Pak

sisj becomes
zero.

5 Implementation 2: Compression of State-Action Map

We use Vector Quantization (VQ) [6] so as to compress the State-Action Map π∗,
since the data amount of π∗ is 588 MB and the robot does not have such a huge
amount of RAM. The maximum volume of data that can be transferred to the
robot is 16MB. We use Pairwise Nearest Neighbor (PNN) algorithm to choose
initial codebooks, and Generalized Lloyd Algorithm (GLA) to refine them [8].

5.1 Definition of Vector

We explain the way with which representative vectors are made. At first, we
divide the map since the State-Action Map is too large to be executed VQ all at
once. We divide the map S into Γj (j = 1, 2, . . . , NΓj ). Γj has all states whose
indexes of ψ are 2j− 1 or 2j. VQ is executed in each Γj independently. Further-
more, we divide each Γj into six dimensional cuboids Ωjk (k = 1, 2, . . . , NΩ).
Any two cuboids in the same Γ must be congruence. We arrange all states of
a Ωjk in a order, and we define vjk = (π∗(s(jk)1 ), π∗(s(jk)2 ), . . . , π∗(s(jk)Ne

)) as a
vector which is used in VQ.

Each edge’s width of each Ωjk should be decided that the same vectors are
produced in Γj as much as possible, since it is favorable for VQ. We decide them
to minimize the next entropy function:

H = −
NΩ∑

k=1

1
NΩ

log
Ns(vjk)
NΩ

, (6)

where Ns(vjk) means the number of the same vectors with vjk (it counts (vjk)).



Real-Time Decision Making under Uncertainty of Self-localization Results 381

5.2 Definition of Distorsion

Next, we must define distorsion of any two vectors for VQ. We define the dis-
torsion between two vectors, v and w as

D[v,w] =
Ne∑

�=1

D[v�, w�], (7)

where v�, w� ∈ A are the �th elements of v and w respectively. We must define
the distorsion D[am, an] about ∀m,n. D[am, an] is calculated from the optimal
action-value function (4) as

D[am, an] =

∑NΩ
k=1

∑Ne
�=1 δπ∗(s(jk)� ),am

{Q∗(s(jk)� , am) −Q∗(s(jk)� , an)}
∑NΩ
k=1

∑Ne
�=1 δπ∗(s(jk)� ),am

, (8)

where, δα,β is Kronecker delta.
To execute PNN and GLA based on this distortion, we can obtain the com-

pressed State-Action Map. For the calculation of DP and VQ, we spend three
days on a Pentium III 866 MHz PC.

6 Implementation 3: The On-Line Algorithm

The tasks of the on-line part are to recognize the current state of the robot and to
search an optimal action from the compressed map. We use Uniform Monte Carlo
Localization (Uniform MCL) [1] for self-localization, and for modeling of state
transitions which are caused by the landmark observation action. Simulations of
Section 7 use this state transition models. In experiments of Section 7, the robot
specifies the current state of the robot with Uniform MCL results.

7 Simulation and Experiment

7.1 Purpose and Conditions of Simulation

We inspect the efficiency of our method by simulation. We compare the results
of following two methods in order to verify the effectiveness to consider the
self-localization’s uncertainty.

1. Referring map method: utilizes the compressed map for all the decision mak-
ing including the judgment of observation.

2. Threshold method: uses the compressed map without variance for making
choice of walking actions. The robot observes landmarks when the width of
the probability distribution is over a fixed threshold, which is (xth, yth, θth) =
(600[mm], 500[mm], 60[deg]).

Other conditions are settled as follows.



382 Takeshi Fukase et al.

Table 2. The results of the simulations.

Condition Time[sec] # of obs. Success rate
Referring map method

1 31.4 2.6 10/10
2 37.6 3.6 10/10
3 35.9 2.8 10/10

Threshold method
1 34.4 4.0 10/10
2 41.5 4.6 8/10
3 38.6 3.6 9/10

Table 3. The results of the experiment.

Condition Time[sec] # of obs. Success rate
1 27.5 1.4 9/10
2 42.0 3.0 6/10
3 41.1 2.3 8/10

Table 4. Initial positions.

Condition r[mm] φ[deg] x[mm] y[mm] θ[deg]
1 2100 30 -1000 -600 0
2 1800 0 1000 0 180
3 2100 60 1000 -600 90

– Table 4 shows initial conditions. The robot knows the initial positions.
– The robot’s real pose is updated with random errors. The robot updates its

estimating state according to the transition probability.
– The robot acquires the relative position to landmarks with random errors.
– In referring the map case, the task is terminated when the robot’s estimating

state belongs to the terminative states. In using threshold case, it is termi-
nated when the robot’s estimating pose belongs to the terminative states.

– Success cases are that the robot actually reaches a target position.

7.2 Results and Discussion of Simulation

We simulated 10 times on each case and initial conditions. The results are shown
in Table 2. In the referring the map case, the robot succeeded to reach the target
position at all trials. This indicates that the calculation of DP converged and
the distortion of the compressed map was small. In the using the thresholds
case, there were some failures. In the referring the map case, both the average
number of observation and the time to reach the target were smaller than using
thresholds case. These results indicate that the robot observed more effectively
as a result of the off-line planning.



Real-Time Decision Making under Uncertainty of Self-localization Results 383

Fig. 7. An example of experiments.

7.3 Experiment

We implemented the described method and evaluated it with experiments. The
initial conditions are settled exactly the same as the simulation. We judged
a trial to be success if the robot touched the ball at first time from proper
direction. The results of the experiments are shown in Table 3. The total success
rate was about 75%. The failure cases were that the robot touched the ball
unintentionally. These were due to the measurement error of the ball, which was
not assumed in our model.

8 Conclusion

We took the uncertainty of the robot’s pose into account by expanding the state
space and designed a State-Action Map with DP by off-line calculation. The map
was compressed with VQ in order to implement on the limited amount of robot’s
memory. We also defined the distortion between any two actions based on the
action-value function. The total distortion of the map through compression was
minimized as a result. By the simulations and experiments, it was verified that
the robot observes the landmarks more efficiently than the fixed threshold case.

References
1. R. Ueda, T. Fukase, Y. Kobayashi, T. Arai, H. Yuasa and J. Ota: “Uniform Monte

Carlo Localization – Fast and Robust Self-localization Method for Mobile Robots,”
Proc. of ICRA-2002, to appear.

2. E. Winner and M. Veloso: “Multi-Fidelity Robotic Behaviors: Acting With Variable
State Information,” Proc. of the Seventeenth National Conference on Artificial
Intelligence, Austin, August 2000.

3. N. Mitsunaga and M. Asada: “Observation strategy for decision making based on
information criterion,” Proc. of IROS-2000, pp.1211-1216, 2000.

4. R. S. Sutton and A. G. Barto: “Reinforcement Learning: An Introduction,” The
MIT Press, 1998.

5. V. Hugel, P. Bonnin and P. Blazevic: “Reactive and Adaptive Control Architecture
Designed for the Sony Legged Robots League in RoboCup 1999,” Proc. of IROS-
2000, pp.1032-1037, 2000.

6. A. Gersho and R. M. Gray: “Vector Quantization and Signal Compression,” Kluwer
Academic Publishers, 1992.

7. S. M. LaValle: “Roboto Motion Planning: A Game–Theoretic Foundation,” Algo-
rithmica, Vol. 26, pp.430-465, 2000.

8. W. H. Equitz: “A new vector quantization picture coding,” IEEE Trans. Acoust.
Speech Signal Process., pp. 1568-1575, October 1989.


	1 Introduction
	2 Task and Assumption
	3 Real-Time Decision Making
	3.1 Motion Planning with Dynamic Programming
	3.2 Planning Optimal Behavior under Uncertainty
	3.3 Compression of State-Action Map with Vector Quantization

	4 Implementation 1: Dynamic Programming
	4.1 Symbols Definition
	4.2 Calculation of Probability and Execution of DP Algorithm

	5 Implementation 2: Compression of State-Action Map
	5.1 Definition of Vector
	5.2 Definition of Distorsion

	6 Implementation 3: The On-Line Algorithm
	7 Simulation and Experiment
	7.1 Purpose and Conditions of Simulation
	7.2 Results and Discussion of Simulation
	7.3 Experiment

	8 Conclusion
	References



