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Abstract. One problem in robotic soccer (and in robotics in general)
is to adapt skills and the overall behavior to a changing environment
and to hardware improvements. We applied hierarchical reinforcement
learning in an SMDP framework learning on all levels simultaneously.
As our experiments show, learning simultaneously on the skill level and
on the skill selection level is advantageous since it allows for a smooth
adaption to a changing environment. Furthermore, the skills we trained
turn also out to be quite competitive when run on the real robotic players
of the players of our CS Freiburg team.

1 Introduction

The RoboCup context provides us with problems similar to those encountered by
robots in real world tasks. The agents have to cope with a continuously changing
environment, noisy perception and a huge state space [6]. Mid size robots are
additionally confronted with a complex motion model and non-trivial ball han-
dling problems. Programming robots overcoming all these difficulties is a tedious
task. Furthermore, with changes in the environment or hardware improvements,
previous solutions may not work any longer and it is necessary to reprogram
the robots. Reinforcement Learning (RL) offers a rich set of adaptive solutions
which have also proven to be applicable to complex domains [4]. However, before
one can apply RL, it is necessary to reduce the state space. In particular, often
one uses generalization techniques on the input space. We reduce the size of the
state space by tile coding [1,2] which is a widely used method for linear function
approximation in RL.

In addition, it is advantageous to decompose the task into skills that are
selected on a higher level, instead of trying to learn a “universal” control strategy.
For example, dribbling, shooting, and taking the ball are three different skills that
can be learned individually. Once the robots have learned these skills, the robots
can learn when to apply them – similar to layered learning [12].

While decomposing a task might simplify the learning problem, it can lead
to problems when we want to adapt to new environmental conditions. Using a
� This work has been partially supported by Deutsche Forschungsgemeinschaft (DFG)

and by SICK AG.

G.A. Kaminka, P.U. Lima, and R. Rojas (Eds.): RoboCup 2002, LNAI 2752, pp. 126–134, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Towards a Life-Long Learning Soccer Agent 127

“layered” approach and assuming that a new kicking device is used or that the
carpet has changed, one would be forced to first adapt the basic skills to the
new situation and then to adapt the selection strategy. However, it is not clear
what the best setting would be to re-train the lower level skills in this case. As
a matter of fact, we would like to confront our robots with the new situation
and train both levels simultaneously. In other words, we want them to adapt
their low level skills to the new environments as well as learning to decide which
skill to apply in which situation [5]. The ultimate goal in this context is to build
robotic soccer agents that improve their skills during their whole life and doing
this as efficiently and quickly as possible.

In order to address these problems we decided to apply hierarchical RL based
on Semi Markov Decision Processes (SMDPs), as introduced by Bradtke and
Duff [3,7] and further developed by Sutton [13]. In contrast to Markov Decision
Processes (MDPs), which are defined for an action execution at discrete time
steps, SMDPs are providing a basis for learning to choose among temporally
abstract actions. Temporally abstract actions are considered in standard SMDPs
as black box skills, which execute a sequence of actions in a defined partition of
the state space for an arbritrary amount of time.

RL methods have already successfully been applied to the simulation league
in the Karlsruhe Brainstormers [8] and CMUnited [10] teams. This work is differ-
ent from ours since both teams are focusing mainly on the multi-agent problem of
robotic soccer and use different techniques for state space generalization. Stone
and Sutton [11] have shown how RL trained agents can beat even hand-coded
opponents in the keepaway scenario. Their skill selection has also been learned
by SMDP techniques. However, their skills are hand-coded.

One team applying RL in the mid size league are Osaka Trackies, which
use a method building self-organized hierarchical structures [14]. In contrast
to other approaches which favor the decomposition to “standard” soccer skills,
the resulting hierarchy consists of small, but very flexible skills. In contrast to
our work that is build upon a world model, their system can be considered as
behavior-based, because the state space is defined by uninterpreted images from
the vision system.

The rest of the paper is structured as follows. In the next section we specify
the SMDP learning model. In Section 3, we sketch how to apply our hierarchical
RL approach to robotic soccer. In Section 4, we describe our experimental results,
and in Section 5 we conclude.

2 Learning in (S)MDPs

The framework of MDPs provides a formal description for time discrete interac-
tions between an agent and its environment. It is assumed that the agent chooses
at discrete time steps t an action at according to the state st previously received
from the world. An MDP is defined by the tuple (S,A,T,R), where S is the set
of world states, A is the set of actions, T : S × A × S′ ⇒ [0, 1] is the transition
model and R : S × A ⇒ � is the reward function. The transition model T is
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defined by p(st+1|at, st) which returns for every world state st and action at the
probability distribution over world states st+1. Furthermore, the reward func-
tion R(s, a) defines real valued rewards returned by the environment according
to the agent’s last state and action taken.

An MDP is solved when the agent has identified a policy π which maximizes
rewards received over time. By RL methods this can be achieved by identifying
the optimal value function V ∗(s), indicating the maximal future (discounted)
rewards to be expected from state s. Once the optimal value function is found,
the agent can behave optimally by selecting actions greedily according to V ∗(s).

There are well known methods to approximate the optimal value function by
successive steps through the state space. One widely used method is known as Q-
Learning [16] which allows learning without the transition model T . Rather than
learning a mapping from states to values, this method learns an approximation
for Q∗(s, a) which maps from state-action pairs to values. The update rule for
one-step Q-Learning is defined as

Qk+1 (st, at) := (1 − α) Qk (st, at)+α

[
R (st, at) + γ max

a∈A
Qk (st+1, at+1)

]
, (1)

where α denotes the learning rate, and γ a discount factor.
Convergence speed of Q-Learning and other RL methods can be improved

by considering eligibility traces [2]. The idea is, roughly speaking, to keep track
of previously visited states and update their value when visiting states in the
future. This yields the effect that a whole trace can be updated from the effect of
one step. The influence of states on the past can be controlled by the parameter
λ. Q-Learning with eligibility traces is denoted by Q(λ).

In Q-Learning the value Qπ(s, a) of a state s is the approximated utility for
selecting a in s and following the greedy policy afterwards. Therefore the traces
have to be cut off when selecting a non-greedy-action for execution (e.g. for
exploration). However, when replacing maxaQk(st+1, at+1) by Qk(st+1, at+1) in
equation 1 and selecting at+1 according to the policy selecting actions, we get
the update for an on-policy method, known as Sarsa [9] that allows updates of
the whole trace.

In SMDPs, actions are allowed to continue for more than one time step.
An SMDP is an extension to the definition for MDPs and defined by the tuple
(S,A,T,R,F). F is defined by p(t|s, a) and returns the probability of reaching
the next SMDP state at time t when the temporally abstract action a is taken in
state s. Q-Learning has been extended for learning in SMDPs [3]. The method is
guaranteed to converge [7] when similar conditions as for standard Q-Learning
are met.

The update rule for SMDP Q-Learning is defined as

Qk+1 (st, at) := (1 − α) Qk (st, at) + α

[
r + γt max

a∈A
Qk (st+1, at+1)

]
, (2)

where t denotes the sampled time of execution and r the accumulated discounted
reward received during the execution. Like the transition model T , the time
model F is sampled by experience and has not to be known in advance.
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In recent work, a unification of MDPs and SMDPs has been proposed [13]. It
also has been shown that there is a clear advantage of interrupting temporally
abstract actions during their execution and switch among them if the change is
profitable. Our work, however, is based on the standard framework for SMDPs.

3 Applying Hierarchical Reinforcement Learning
to Robotic Soccer

The learner’s state space is based on the world model of a CS Freiburg player
[17]. The world model is continuously updated in 100 msec intervals and consists
basically of positions and velocities of the ball and robots on the field. Each sensor
has a specific field of view which means that the world model can be incomplete.

The robot’s trajectory is controlled by a differential drive. Furthermore, the
robot is equipped with a custom manufactured kicking device for handling the
ball. This device consists of a kicker to shoot and two ”fingers” mounted on the
left and righthand side of the kicker to control the ball. We noticed that effects
of the kicking device and differential drive might vary on different robots of our
team. It is one of the goals of our work to cope with these differences.

Experimental results presented in this paper have firstly been achieved using
a simulation of our robots. The simulation is implemented as a client-server
architecture and executes asynchronously to world model updates. Since the
world models generated on the real robots and generated from the simulation
are the same, the learner can switch between them on the fly.

Given a constant cycle time, the interface can be used for learning in MDPs.
Within cycle ct the learner receives the current world state st, and consequently
returns the selected action at which causes st+1 to be emitted in the successive
cycle ct+1. Since the world model provides reliable “high-level” features of the
robot’s perception, simulated and real perception can be considered as almost
equivalent.

The application of RL to our players has been carried out in a straight-
forward manner, similar to the way humans would train soccer. Firstly, basic
skills, namely shootGoal, shootAway, dribbleBall, searchBall, turnBall, approach-
Ball and freeFromStall [18,17] have been trained in simple, static scenarios.
Secondly, the appropriate selection of these skills and their embedding into the
task has been trained in a realistic scenario which was a game against a CS
Freiburg player from 2001. Finally, the simulation-trained soccer player has been
executed on one of our real robots.

Early experiments have shown that Sarsa(λ) performs better than Q(λ) when
learning the skills above. We assume that this is mainly caused by the necessary
cuts of eligibility traces after non-greedy actions when applying the off-policy
method. Therefore, skills have been trained by Sarsa(λ). We set γ = 1.0 (due to
the presence of an absorbing state), α = 0.1 (small, due to the non-determinism
of the environment), ε = 0.05 (small, since high exploration could lead to failures)
and λ = 0.8 (a common value when learning with n-step updates).

The state space of each skill consists of features extracted from the world
model, e.g. distance and angle to the ball or to the opponent. These features
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were chosen according to their relevance for the behavior to be learned. The
automation of this selection will be subject of future work. The action space
of each skill is given by two discretized scalar values for the translational and
rotational velocity and one binary value for kicking. For each skill, terminal states
have been defined depending on the skill’s natural goal. The skill approachBall,
for example, terminates when either the ball has been approached successfully
or could not be seen by the robot anymore. We defined a reward of 100 when
the goal state was reached, a reward of −100 when the robot failed its task and
a reward of −1 for each action taken.

For the learning of the skill-selection SMDP we decided to allow a high degree
of exploration to guarantee the recurrent selection of all skills. Exploration on
the skill selection level supports the selection of skills with low expectation of
future rewards. This leads to more training of those skills and therefore to their
improvement which might lead to higher expectations. Hence, we applied Q(λ),
since it is an off-policy method that learns the optimal policy, regardless of
performing explorative actions1. During learning, goals made by the learner were
rewarded with 100, goals made by the opponent with −100 and steps taken in
a skill with −1. The state space of the SMDP was defined by the scalars angle
and distance to ball, angle and distance to opponent, angle and distance to goal,
and the binary values ball is visible and opponent is visible.

4 Experimental Results

The results presented in this section are selected from a series of experiments
and are representative. Each experiment has been carried out with a learner
that was equipped with previously trained skills that had been learned in simple
scenarios. All graphs shown in this section are smoothed by averaging over 100
episodes.

In the first series of experiments the task of the learner was to learn the
selection of skills when playing against a static goalkeeper. We intentionally chose
a simple scenario in order to give a first impression of the learner’s performance.
During each episode the goalkeeper was placed on an arbritrary position in
front of the goal, whereas learner and ball were placed anywhere on the field.
We compared two learners, one and that was focusing on the learning of skill
selection, and a second that was additionally allowed to improve its skills further.
Figure 1 shows the progress of the two learners.

The baseline indicates the average of the accumulated rewards a CS Freiburg
Player achieves during one episode. In both settings a good action selection
strategy was learned after 500 episodes. Learning within skills, however, leads
to a noticeably better performance. Although the scenario in the experiment
was similar to the one used to pre-learn the skills, the learning within the skills
enables the learner to adapt more flexibly to the game-playing situation.

1 Note, due to the much smaller number of steps during an SMDP episode, the negative
effect of Q-Learning on eligibility traces is of minor importance.
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Fig. 1. Learner versus static goalkeeper with and without learning within skills

Fig. 2. Learner versus a CS Freiburg player with a normal and with a strong kicker.
The initial skills were trained with a strong kicker. Both players reach an adequate
level of play after some time of training

The results presented in Figure 2 demonstrate how the system reacts on a
significant change of the environment. We compared learners with a normal and
a strong kicker. The strong kicker was able to accelerate the ball much faster, but
less precise. The task now was to compete against a CS Freiburg player that was
slowed down to a third of its normal velocity. At the beginning of each episode
the learner and ball were placed randomly into one half, facing the opponent.

Again, the baseline indicates the average of the accumulated rewards a CS
Freiburg Player with normal velocity achieves during one episode. Due to the
fact that skills were pre-trained with a strong kicker the learner using the normal
kicker reaches less reward during the first 1000 episodes. After 6000 episodes,
however, playing with a normal kicker turns out to be more successful than
playing with the strong one. The learner with the normal kicker develops a
different way of playing: He is dribbling more often to the front of the goal and
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Table 1. Selected skills if learner was ball owner (in %)

DribbleBall ShootGoal ShootAway TurnBall
Normal Kicker 48.9 37.0 4.8 9.3
Strong Kicker 30.3 57.6 4.5 7.7

performs a rather precise shoot from small distance. Table 1 shows the frequency
of selecting particular offensive skills.

The learner with the normal kicker tends to select dribbleBall more often,
whereas the player with the strong kicker continues to shoot from further dis-
tances. Finally, both learners reach a similar level of performance that is winning
against their opponent.

The previous experiments evaluated the learner’s overall performance. It is
also important, however, how the skills themselves improve over time. Figure 3
documents the learning progress of the skill shootGoal.

Fig. 3. Learning of the skill shootGoal while playing against a CS Freiburg player

The result shows that the simultanous learning of skills and their selection
leads to higher rewards. The learner improving skills and skill selection reached
an accumulated reward of nearly 50, whereas the other learners could not reach
more than −25. Without learning the skill selection, skills are executed randomly,
and thus also in inadequate situations. For example, ShootGoal could be chosen
when facing the own goal. Certainly, it is possible that ShootGoal learns to handle
such situations as well, but this could take a very long time of learning. In fact,
the slowly improving curve for learning without skill selection indicates this
learning process. On the other hand, without learning inside the skills, skills are
executed as they were trained for static scenarios. Figure 3 shows that adaption
of skills to the task at hand benefits the overall result.

Finally, we started a first experiment with our best learned skills and skill-
selection on a real robot. The task was, as also evaluated in the simulation, a
static scenario with a goalkeeper in front of the goal. The learner started an
episode from the center of the field, whereas the ball was placed randomly. As
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we expected, the learner started to chose reasonable skills, such as searchBall to
locate the ball on the field, approachBall to get close to it and turnBall to get
the right direction. To our surprise, most skills executed impressively well. The
learner was robustly playing the ball without losing quality in skill selection or
execution.

While playing for one hour the learner was able to score 0.75 goals per minute.
In contrast, the hand-coded CS Freiburg player scores 0.94 goals per minute
when limited to one third of its maximal velocity and 1.37 goals per minute
when playing with maximal velocity. Although the performance of the player is
superior, the result is remarkable, since the learner was completely trained in
the simulation. Note that the learners result was achieved by far less time for
design and parametrization.

In order to evaluate how the total performance improves over time, more than
one hour of playing will be necessary. A long-term evaluation will be presented
in future work.

5 Conclusion and Discussion

We studied the applicability of hierarchical reinforcement learning to robots in
the mid size league. For our particular setting, RL methods perform remarkably
well. Our learner was able to compete with one of our hand-coded players, even
when environmental conditions were changed. Additionally, the low amount of
learning time indicates that there is still potential for learning in hierarchies with
more than two levels.

The experiments show that learning inside skills improves the overall perfor-
mance significantly. Thus, the results lead to two important conclusions: Firstly,
the whole system achieves higher adaptivity to changes in the environment while
acting stable without tending to aimless behavior. Secondly, based on the fact
that skills adapt themselves to the global task, it seems to be possible to reuse
these skills for a different task, such as ball passing or general team cooperation.

Our final experiment on a real soccer robot has shown that knowledge learned
in our simulation can be reused for a real-world task. It can be assumed that
the hierarchical structure supports the stable behavior of the robots.

In future work we will investigate how the process of adaption can be accel-
erated further by using more flexible hierarchies. Furthermore it will be inter-
esting, whether our implementation can be scaled-up to the game of more than
one robot, particularly, in which way single players are able to adapt their skill
selection when they are exposed to the multi-agent problem.
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