
A Work-Efficient Distributed Algorithm for
Reachability Analysis

Orna Grumberg, Tamir Heyman, and Assaf Schuster

Computer Science Department, Technion, Haifa, Israel

Abstract. This work presents a novel distributed, symbolic algorithm for reacha-
bility analysis that can effectively exploit, “as needed”, a large number of machines
working in parallel. The novelty of the algorithm is in its dynamic allocation and
reallocation of processes to tasks and in its mechanism for recovery, from lo-
cal state explosion. As a result, the algorithm is work-efficient: it utilizes only
those resources that are actually needed. In addition, its high adaptability makes it
suitable for exploiting the resources of very large and heterogeneous distributed,
non-dedicated environments. Thus, it has the potential of verifying very large
systems.
We implemented our algorithm in a tool called Division. Our preliminary experi-
mental results show that the algorithm is indeed work-efficient. Although that the
goal of this research is to check larger models, the results also indicate the potential
to obtain high speedups, because communication overhead is very small.

1 Introduction

Reachability analysis is a central component of model checking. The verification of
most temporal safety properties can be reduced to reachability analysis [3]. It is also an
important preliminary stage for increasing the efficiency of symbolic model checking.

A significant amount of work is invested in increasing the capacity of model checking.
Current model checking tools can verify systems with hundreds of variables using BDD-
based methods [6,14] and falsify systems with thousands of variables using SAT-based
methods [4]. A recent comparison [1] shows that each of the BDD-based and the SAT-
based methods is superior to the other for certain types of problems. Nevertheless, it is
generally agreed that the capability of model checking tools should be extended.

Typically, BDD-based model checking tools suffer from high space requirements
while SAT-based tools suffer from high time requirements. The goal of this work is to
overcome the space problem of BDD-based model checkers. A promising approach is to
exploit the accumulative computation power and memory of a number of machines that
work in parallel. Many environments can provide a large number of machines whose
collective memory exceeds the memory size of any single machine.

Several solutions employing parallel computation have been suggested for dealing
with the large memory requirements. Several papers suggest replacing the BDD with a
parallelized data structure [19,15]. In [18], an explicit model checker that does not use
symbolic methods is parallelized. Other papers suggest reducing the space requirements
by partitioning the work to several tasks [8,17,16,7]. Although these methods might,
in principle, be parallelized, they have not been. Rather, they use a single computer

W.A. Hunt, Jr. and F. Somenzi (Eds.): CAV 2003, LNCS 2725, pp. 54–66, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

A Work-Efficient Distributed Algorithm for Reachability Analysis 55

to sequentially handle one task at a time, while the other tasks are kept in an external
memory.

The work that most resembles this one is distributed symbolic (BDD-based) reach-
ability analysis, suggested in [13]. It is based on an initial partitioning of the state space
among all processes in the network and on a continuous load balancing that keeps the
workload among the processes relatively balanced.

The success of this approach strongly depends on an effective slicing procedure.
Slicing is said to be effective if it avoids duplication and if it results in evenly split,
smaller BDDs. Duplication is the amount of sharing in a BDD structure that is lost due
to partitioning. The notion of duplication and its implications are discussed in detail
in [13] and will not be addressed in this paper. Finding such an effective slicing is a
nontrivial problem [8,17,16,13].

In [13], each process iteratively applies image computation to its set of new states
N , exchanging non-owned states with other processes, and collecting owned states in
its set of reachable states R. Load balance is available at the end of each iteration. It
balances the sizes of the sets of reachable states in the different processes.

This algorithm has several drawbacks. First, it immediately splits to as many slices as
the number of processes in the network and does not release them until it terminates. Thus,
it occupies all processes in the network all the time, regardless of actual need. Second,
slicing is often inefficient because it partitions a relatively small BDD into many small
slices. The more processes in the system, the less efficient the slicing is, which renders
the algorithm non-scalable. Third, it does not provide a means to overcome the memory
overflow that occurs during an image computation or an exchange operation. It is well
known that intermediate results of image computation may be orders of magnitude larger
than its initial and resulting BDDs. Similarly, during an exchange operation the memory
of a process may overflow as a result of the BDDs it receives. Unfortunately, even when
there are under-utilized processes, there is no way to recover from such overflows since
load balancing is available only at the end of iterations. Finally, balancing is applied only
to the sets R. However, the size of intermediate results in image computation depends on
N and is often much larger than R. Thus, load balancing does not handle the dominant
factors of memory overflow.

In this paper we suggest a new algorithm which overcomes the drawbacks of the
previous one. The algorithm uses two types of processes: coordinators and workers.
Each worker can be either active or free. The algorithm works iteratively. It is initialized
with one active worker that runs a symbolic reachability algorithm, starting from the
set of initial states. During its run, workers are allocated and freed, as needed. At any
iteration, each of the active workers applies image computation and then sends those
states it does not own to their owners. Therefore, we will refer to these as a worker’s
non-owned states.

Since memory overflow is likely to occur during the image computation and the
exchange operation, our algorithm is designed to overcome these problems. For image
computation we use a new BDD operation that resembles ordinary image computation,
except that it stops if the intermediate results create memory overflow. In this case, the
BDD representing the intermediate results is partitioned into k slices. One slice is left
with the overflowed worker and the others are distributed to k − 1 free colleagues. k is

56 Orna Grumberg, Tamir Heyman, and Assaf Schuster

called the splitting degree. It is a parameter of the new algorithm and is usually small
(often k = 2). Since the BDD is huge, the slicing is very effective. Once the BDD is split,
each worker resumes the computation of (its part of) the image from the point at which it
stopped. However, each worker now works on a smaller BDD. If state explosion occurs
during the exchange procedure, then R∪N is split for sharing with k−1 free colleagues.
Exchanging of non-owned states then proceeds according to the new ownership.

The new algorithm enables the slicing procedure to split according to R, N , or in-
termediate results, depending on what caused the memory overflow. Since the chosen
BDDs are large, slicing is always very effective. Furthermore, slicing affects the perfor-
mance of the new algorithm much less than it affects the one from [13] because, in the
case of a high work load at one of the co-workers, the new algorithm can simply split
again. These features provide the new algorithm with strength and flexibility, and allow
to reduce the slicing complexity.

It may also happen that the memory requirement of a worker decreased below a
certain threshold (the size of a BDD decrease even if it represents a larger set of states).
In that case, several workers with small memory requirements are combined and all but
one become free.

It is important to note that splitting occurs only “as needed”, when a worker actually
has a memory overflow. Thus the algorithm is work-efficient: it exploits to the maximum
the resources of the active workers before allocating additional ones. This efficiency
allows, for a given network, computing reachability of (i.e., verifying) larger systems.
Moreover, our algorithm can effectively exploit any network size. Thus, the larger the
available network, the larger the systems that can be verified.

We have implemented our algorithm in Division, a generic platform for the study
of distributed symbolic model checking [12]. Division requires a model checker as
an external module. We used NuSMV [10] for this purpose: a re-implementation of
McMillan’s SMV [14].

Unfortunately, using NuSMV implied that we could not directly compare the results
of [13] to the results of this work. The experiments in [13] were conducted using the high-
performance RuleBase [2] model checker that was not available to us in this work. The
two tools are not comparable as many of the RuleBase optimizations are not implemented
in NuSMV.

Our parallel testbed included 25 dual process PC machines. The nodes communicated
via a fast Ethernet connection. We conducted our experiments using four of the largest
circuits from the ISCAS89 and addendum’93 benchmarks.

With our distributed algorithm, we can compute larger models than we can com-
pute with a single machine using the same model checker. In all the examples the new
algorithm using the less sophisticated model checker (NuSMV) would be sufficient to
compute the same models and reach the same BFS step as in [13].

The rest of the paper is organized as follows. In Section 2 we detail the algorithm
that the workers follow. Section 3 describes the operation of the coordinator processes.
Section 4 explains the enhanced slicing employed when overflow occurs during image
computation. Preliminary experimental results are given in Section 5. We summarize
our conclusions and expectations in Section 6.

A Work-Efficient Distributed Algorithm for Reachability Analysis 57

2 The Worker Algorithm

Our distributed algorithm uses a set of window functions [8,17] to partition the state
space among all workers in the network. Each worker owns the states in one of the
window functions and computes the reachable states in this window.

Figure 1 presents a high-level view of the workers algorithm. Essentially, the algo-
rithm performs a reachability task. The algorithm starts with only one worker that owns
the entire state space, while the rest of the workers are free. If a worker runs out of
memory (memory overflow), it distributes parts of its work among a few free workers.

The worker repeatedly computes images and sends its non-owned states to their
owners until termination is detected (namely, a fixed-point is reached). While iterating, if
the workload of the worker becomes too small, it participates in a collect small procedure.

There are two points at which a worker may run out of memory (memory overflow):
during the image computation and during the exchange of non-owned states. Upon
memory overflow, the worker splits the states it owns into two parts: one that will be
processed at the current worker and another to be processed at another worker. As a
result, the states belonging to the new worker become non-owned and are sent out to the
new worker.

function reach task()
1 Loop until termination()
2 Image() if overflow, split and use new workers
3 Exchange() if overflow, split and use new workers
4 Collect small()
5 return owned states

Fig. 1. High–level pseudo–code for a worker

Let us describe the algorithm for the workers in greater detail, as shown in Figure 2.
The reachability task includes a set of reachable states R and a set of reachable states
that are not yet developed, N . For brevity, we omit in this section the worker subscript
id from Rid and Nid, as well as the window function wid. The set R is included in a
window function w. The sets R and N , as well as the window function w, may change
during the algorithm’s execution.

In the Image procedure, the worker computes the set of states that can be reached
in one step from N and stores the result in a new N . However, if during image compu-
tation the memory overflows, the worker splits w and updates R and N accordingly, as
described below.

In the Exchange procedure the worker uses w to define the part of the state space
it “owns”. It sends out the non-owned states (N \ w) to their owners and receives its
owned states that were found by other workers.

Finally, if only a small amount of work remains, the worker joins the Collect small
procedure. The collect small procedure adds up the tasks of several workers, each of
which has only a small amount of work. This is done by joining together the parts of the
state space owned by those workers and assigning the unified ownership to one of them.
The others become “free” (w = ∅) and return to the pool of free workers.

58 Orna Grumberg, Tamir Heyman, and Assaf Schuster

function reach task(R, w, N, method) procedure Image(R, w, N)
if method = “exchange′′ N = boundedImage(N,Max, Failed)

goto Exchange loop(R, w, N) While(Failed)
Loop forever Split(R, w, N, “Image′′)

Image(R, w, N) N = boundedImage(N,Max, Failed)
Exchange(R, w, N)
if (termination()) return R procedure Exchange loop(R, w, N)
N=N \ R loop until < done > received from ex coor
R=R ∪ N <pclg, wclg>=receive from ex coor
Collect small(R, w, N) send <N ∩ wclg> to pclg

if(w = ∅) <N ′>=receive from pclg

send <to pool, id> to ex coor overflow = N ′ is too large
return to pool send <overflow> to pclg

send <<status>=receive from pclg> to ex coor

procedure Exchange(R, w, N) if (overflow) Split(R, w, N, “Exchange′′)
<{wi}>=receive from ex coor else
send <{pi}> to ex coor N=N ∪ N ′

Exchange loop(R, w, N) send <“done′′> to ex coor

procedure Collect Small(R, w, N) procedure Split(R, w, N, method)
While(| N | + | R |< Min) <{p2 . . . pk}>=receive from pool mgr

send <(| N |, | R |)> to small coor if(method = “exchange′′

<action>=receive from small coor {W ′
i}={Nw′

i}=Slice(R ∪ N, k)
if acction =< End > return else
if action =< Non owner, pclg > if(| R | big enough
send <R, w, N> to pclg {W ′

i}=Slice(R, k)
R=w=N=∅ else
<“release′′>=receive from ex coor {W ′

i}=∅, i ∈ 2 . . . k; W ′
1=w

return {Nw′
i}=Slice(N,k)

if action =< Owner, pclg > ∀i ∈ 2 . . . k:
<R′, w′, N ′>=receive from pclg send <R ∩ W ′

i , w ∩ W ′
i , N ∩ Nw′

i, method> to pi

R=R ∪ R′; w=w ∪ w′; N=N ∪ N ′ R=R ∩ W ′
1; w=w ∩ W ′

1,N=N ∩ Nw′
1

send <w, pid, pclg> to ex coor send <{i ∈ 1..k | w ∩ W ′
i}> to ex coor

Fig. 2. Pseudo–code for a worker in the distributed reachability computation

In the Image procedure, the image is computed using a new BDD operation. The Im-
age procedure is using a new BDD operation,boundedImage(N, Max, Failed). This
operation is different from traditional image computation in that it stops the local com-
putation in case of a memory overflow (i.e., the number of BDD nodes exceeds Max).
Upon overflow, the Image procedure calls the Split procedure, which repartitions
the ownership of the worker and updates R, w, N accordingly.

In the Exchange procedure, the worker first requests and receives from the ex coor
process the up-to-date list of window functions owned by the other workers. The worker
then sends the ex coor the list of workers to whom it wishes to send non-owned states.
Then, in the Exchange loop procedure, the ex coor schedules the worker for state
exchange with other workers.

In the Exchange loop procedure the worker is scheduled by the ex coor to ex-
change non-owned states with colleagues that either found states owned by the worker
or own states that were found by the worker. The worker continues to receive exchange
commands from the ex coor until it gets a < done > command when there are no
more pending exchanges. If the worker’s memory overflows during the exchange pro-
cedure and the worker fails to receive more owned states, it notifies the ex coor and
calls the Split procedure to reduce its ownership.

A Work-Efficient Distributed Algorithm for Reachability Analysis 59

If the worker in the Collect Small procedure has enough work, it exits immediately.
Otherwise, the worker notifies the small coor about the sizes of its N and R sets. In
reply, it receives one of three commands and proceeds accordingly: < End > commands
it to exit the Collect Small; < Non owner, pclg > commands it to deliver its ownership
and owned states to a colleague worker pclg, waits for the ex coor to acknowledge
the update of its window functions (performed by pclg), and then return to the pool;
< Owner, pclg > commands it to take over the ownership and states of another worker
pclg and report the new ownership to the ex coor.

The Split procedure starts by requesting from the pool mgr k − 1 new workers
(which, together with the overflowed worker, makes it a k-way split). If Split is called
from Exchange, then the window function w of the overflowed worker is split into k
new window functions {W ′

i}, such that {W ′
i ∩ R} have approximately the same sizes.

If Split is called from Image, then two sets of k new window functions are computed, as
follows. If R is big enough, then, as in the previous case, a set of window functions {W ′

i}
is computed such that the sizes of {W ′

i ∩R} are approximately the same. Otherwise, if
R is too small, one of the workers gets all of w while the others remain empty. In any
case, the ith new window function W ′

i determines, for the ith worker, its new window
wi. In addition, w is split again into another set of window functions {Nw′

i}, this time
making {Nw′

i ∩ N} equal in size. After the new window functions are computed, the
overflowed worker sends the corresponding states to its new colleagues.

The reason for computing two different partitions when Image overflows is that
{Nw′

i} attempts to balance the current image computation, while {W ′
i} attempts to

balance the memory requirement in the full reachability process. In section 4 we further
discuss the optimization of the partitioning process.

In the case that R is ”too small” or even empty, the new colleagues are simply helping
the overflowed worker with a single image computation. Once the image is computed,
all states produced by the helpers are non-owned and will be sent to other workers that
own them. From our experience, this case is not uncommon; it occurs when the peak
memory requirement during image computation is much larger than R.

As mentioned in the introduction, an important advantage of our algorithm over
previous works is that it calls the Slice function only when the memory overflows, and
with k much smaller than the total number of workers. This makes slicing much more
effective in producing even splits of the input sets of states.

We remark that the Slice procedure itself is no different from the slicing mechanisms
described in [13]. Thus, in this paper, we use it as a black box and focus on the distributed
algorithm itself.

3 The Coordinators

The ex coor coordinator holds the current set of window functions and coordinates
the exchange of non-owned states between workers. In order to hold a consistent view of
the current set of window functions, the ex coor is notified immediately on every split
or merge of windows. It takes the following actions on incoming event notifications:

60 Orna Grumberg, Tamir Heyman, and Assaf Schuster

– When a worker requests an exchange it first registers at theex coor. Theex coor
replies with the up-to-date set of window functions and receives in return the set of
colleagues the worker wants to communicate with.

– When a worker splits, the ex coor updates the set of window functions. If the
splitting worker is already registered for exchange states, the ex coor notifies all
the workers that have asked to send it states that they should send the states to the
new set of workers, according to the new set of window functions.

– When workers perform Collect Small and join their ownerships, the ex coor up-
dates the set of window functions. If there are workers registered for exchanging
states with the joining workers, theex coor redirects them to the new owner. When
the ex coor complete to update the set of window functions it sends < release >
command to the worker that become non-owner.

– When a worker completes the exchange of non-owned states with another worker,
the coordinator marks it as available for another round of exchange states.

– When a worker asks to re-launch an exchange because the colleague overflowed and
had to split while they were interacting, the ex coor adds this request to the list
of exchange requests.

The small coor coordinator collaborates with ex coor to prevent deadlocks
and to collect as many under-utilized workers as possible. The small coor receives
registration requests from workers that completed the exchange phase and are left with
a very low load (very small R ∪ N). The first registrant is blocked until more of them
arrive. When there are several registrants the small coor instructs them to merge.

The pool mgr coordinator keeps track of free workers. During initialization, the
pool mgrmarks all but one worker as free. When a worker invokes the Split procedure,
it sends a request to the pool mgr for k − 1 free workers (where k is the splitting
degree). The pool mgr replies with a list of k − 1 worker ids and removes them from
the free list. Throughout the algorithm, when a worker becomes free, i.e., when its
ownership becomes empty, it returns to the pool mgr and is added to the free list for
later assignments.

If at the time free workers are requested from the pool mgr, the free list happens
to be empty or is shorter than k− 1, the pool mgr announces a “worker overflow” and
stops the execution globally.

4 Optimizing the Splitting in Image Computation Overflow

Our algorithm is based on the assumption that in case of a memory overflow during
image computation, splitting the window of the overflowing worker enables the com-
pletion of the computation using more workers. The current splitting method strives to
effectively slice the set N on which the image is computed (see [13]). However, since
the computation is symbolic, reducing the size of the subsets does not guarantee a cor-
responding reduction in the image size. Furthermore, it guarantees even less for the size
of the intermediate results that commonly dictate the peak memory requirement during
the image computation. Our experience shows that even when the size of the parts is the
same, the size of the peaks may differ greatly. Thus, while one of the slices may have
no problem in completing the image computation, another may overflow again.

A Work-Efficient Distributed Algorithm for Reachability Analysis 61

Another problem with the current splitting method is the time penalty for memory
overflow. When the image computation overflows and the set N is split, the work that was
invested in the current image step is lost, and the work is repeated all over again. In fact, in
the case of several subsequent memory overflows, the work is repeated again and again.
Notice that the ratio between the peak memory requirement in the image computation
and the set N is commonly two or three orders of magnitude. Thus, memory overflow
commonly occurs when a big part of the image computation has already been done
locally, and all this work must be repeated. Since the image computation takes most
of the time in our distributed algorithm, the repeated work slows down the algorithm
substantially.

The solution to the above two problems is simply to split the intermediate results
and not the set N . After the splitting, the parts of the intermediate results are distributed
among the new workers, so computing the image for each of them continues from the
point of the overflow. In this way there is no time penalty for overflow except for the
splitting computation (which is of somewhat higher complexity than before). Of course,
communicating the intermediate results requires a much higher bandwidth. However,
network bandwidth and communication delay turn out to be minor factors as compared
with the time spent in the image computation, even with our standard fast Ethernet.

In terms of memory requirements this solution has two advantages. First, splitting
is applied on a much larger set, which makes it a lot easier to split effectively. Second,
splitting is applied much closer to the peak, which makes it more efficient in reducing
the peak memory requirements of the resulting parts.

The optimized algorithm uses a partitioned transition relation. The full transition
relation is a conjunction of all partitions:

T (V, V ′) = T1(V, V ′) ∧ T2(V, V ′) ∧ . . . ∧ Tn(V, V ′),

and an image computation thus becomes

S′(V ′) = ∃V [S(V) ∧ T1(V, V ′) ∧ T2(V, V ′) ∧ . . . ∧ Tn(V, V ′)].

The technique for image computation suggested by Burch et al. [5] is to iteratively
conjunct-in the partitions, and to quantify-out variables as soon as further steps do not
depend on them. The order in which Ti(V, V ′) are conjuncted is very important to the
efficiency of this technique [11]. For the sake of simplicity, let us assume the order is
given such that T1 is the first to conjunct, then T2, until Tn. Let Di be the set of variables
on which Ti(V, V ′) depend. Let Ei = Di −

⋃n
m=i+1 Dm. A symbolic step is carried

out iteratively as follows:

S1(V, V ′) = ∃E1[T1(V, V ′) ∧ S(V)]
S2(V, V ′) = ∃E2[T2(V, V ′) ∧ S1(V, V ′)]

...

S′(V ′) = ∃En[Tn(V, V ′) ∧ Sn−1(V, V ′)].

If overflow occurs during step 0 < j < n, we look for a set of window functions
w1 . . . wk such that

∨k
i=1 wi = 1. The ith worker will get Sj(V, V ′) ∧ wi. We can now

62 Orna Grumberg, Tamir Heyman, and Assaf Schuster

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 w

or
ki

ng
 p

ro
ce

ss
es

BFS steps

Number of Processes in each BFS step

k = 2
k = 3
k = 4
k = 8

(a) with no optimization

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 w

or
ki

ng
 p

ro
ce

ss
es

BFS steps

Number of Processes in each BFS step

k = 2
k = 3
k = 4
k = 8

(b) optimized

Fig. 3. Number of workers required in each BFS step of s1269. Overflow is declared for worker
memory utilization exceeding 6M BDD nodes.

rewrite the j + 1 step as follows:

Sj+1(V, V ′) = ∃Ej+1[
k∨

i=1

Tj+1(V, V ′) ∧ Sj(V, V ′) ∧ wi].

Since the existential quantification is distributive over disjunction, the above expres-
sion is equal to:

Sj+1(V, V ′) =
k∨

i=1

∃Ej+1[Tj+1(V, V ′) ∧ Sj(V, V ′) ∧ wi].

Therefore, the disjunction of the j + 1th steps assigned to each worker is equal to the
step done without splitting.

The algorithm uses a new BDD operation:BoundInc(S(V, V ′),{Ti(V,V ′)}, Max),
where S(V, V ′) is the function from which the image computation continues,{Ti(V,V ′)}
is the set of partitions that were not yet used, and Max is the threshold for overflow
during image computation. In the beginning of the algorithm, S(V, V ′) is the set of
states whose image is to be computed in this step, and {Ti(V, V ′)} are all the partitions.
If the algorithm overflows, BoundInc returns in S(V, V ′) the last intermediate result
computed prior to the overflow, and in {Ti(V, V ′)} the rest of the partitions that have
not been used. If the algorithm completes the image computation, S(V, V ′) equals the
next set of states, and an empty list of partitions is returned.

Figure 3 illustrates the benefit of using the optimized algorithm for the circuit s1269.
Figure 3(a) provides the number of workers required in each step for various splitting
degrees. For instance, for splitting degree k = 2, six workers are needed in order to
complete Step 3. Figure 3(b) shows that this step requires only four workers when using
the optimization described in this section. In all other steps and splitting degrees the
number of workers required by the optimized algorithm was always less than or equal
to the non-optimized version.

A Work-Efficient Distributed Algorithm for Reachability Analysis 63

5 Experimental Results

Our parallel testbed included 25 PC machines, each consisting of dual 1.7GHz Pentium
4 processors with 1GB memory. The communication between the nodes consisted of a
fast Ethernet. We conducted our experiments using four of the largest circuits from the
ISCAS89 benchmarks. The characteristics of the circuits are given in Figure 4.

Circuit #vars peak fixed point
size step time steps

prolog 117 2.6M 5 2,431 9
s1269 55 16M 5 5,053 10
s3330 172 16M > Ov(3) - Ov(3)
s1423 88 16M > Ov(13) - Ov(13)

Fig. 4. Benchmark suite characteristics. The peak is the maximal memory requirement at any
point during an image step. Fixed point is the number of image steps and the time (seconds) it
takes to get to the fixed point. Ov(m) denotes memory overflow at step m.

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 w

or
ki

ng
 p

ro
ce

ss
es

BFS steps

k = 2
k = 4
k = 8

k = 16
k = 32

(a) prolog Max = 1M nodes allo-
cated

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 w

or
ki

ng
 p

ro
ce

ss
es

BFS steps

W-overflow
k = 2

k = 32

(b) S3330 Max = 7M nodes allo-
cated

Fig. 5. Number of workers in each BFS step. Overflow is declared for worker memory utilization
exceeding Max BDD nodes. W-overflow halts the computation when more than 60 workers are
required.

5.1 Number of Workers for Reachability Analysis

Since the memory required by each worker is bounded by a given threshold, we only
care about the number of active workers at each iteration. Figures 5(a), 5(b), 6 and 3
give the number of workers required at any step of the analysis, and the threshold that
was used. The figures prove that using a lower splitting degree is more work efficient,
namely, the computation can be carried using fewer resources with a lower splitting

64 Orna Grumberg, Tamir Heyman, and Assaf Schuster

degree. This is explained by the fact that when the splitting degree is high, new workers
may join in even when the computation can do without them: the computation proceeds
with workers that may be under-utilized (but not sufficiently so to be collected by the
Collect Small process).

In steps 1, 2, 3 in Figure 5(a) only one worker is needed. In step 4, this worker needs
help in order to complete the image computation. Dividing the work into two is sufficient,
but when the splitting degree is higher we occupy more workers without actually needing
them. In steps 8 and 9 the image computation requires less memory and the size of the
sets R and N requires less workers. Indeed the number of workers decreases as a result
of the Collect Small procedure.

Figure 5(b) shows that the distributed system can complete the reachability analysis,
whereas a single machine overflows.

 0

 10

 20

 30

 40

 50

 60

 2 4 6 8 10 12 14 16

Nu
mb

er
of

wo
rki

ng
 pr

oc
es

se
s

BFS steps

W-overflow

W-overflow

W-overflow

W-overflow
W-overflow

k = 2
k = 4
k = 8

k = 16
k = 32

Fig. 6. Number of workers in each BFS step of s1423. Overflow is declared for worker memory
utilization exceeding 6M BDD nodes. W-overflow is where more than 60 workers required.

5.2 Timing and Communication

We have performed some initial studies regarding the timing and breakdown of running
our distributed system. The results show several very clear findings and trends that we
now briefly discuss.

First, communication overhead is minor. Our experiments show that the time to reach
local overflow is much higher than the time required to dump the contents of memory into
the network. Although this finding should be re-evaluated when our system is further
optimized (see below), it seems strong enough to sustain. If the system scales up to
include more workers, the communication time might grow as a result of more non-
owned states that are found. Nevertheless, we expect the computation time to remain
dominant because the communication volume for every worker at any split or exchange
operation is bounded by the size of the RAM of that worker. We remark that technology
trends predict much faster commodity networks (even when compared to the larger
expected RAMs) very soon.

A Work-Efficient Distributed Algorithm for Reachability Analysis 65

Second, splitting is a major element in the computation. It can count up to dozens
of percentage points of the computation time, and these numbers grow rapidly when
the system scales up. Others have previously addressed the splitting complexity [9]; we
intend to speed up the splitting module in our future work.

Third, the fact that the reachability computation is synchronized in a step-by-step
fashion has a major impact on the computation time. The problem is that at the end
of a step all computing workers wait for the slowest one, who may be slicing and re-
slicing several times during the step (remember that slicing is slow!). However, despite
its synchronized operation, the new algorithm is very flexible. We believe that it can
become the basis for a truly non-synchronized variant.

One interesting phenomena that was not masked by the inefficiencies above is a
tradeoff between being work efficient and obtaining speedups. While the best hardware
utilization is achieved with splitting degree of 2, the fastest computation times are ob-
tained using somewhat higher splitting degrees (e.g., k = 8 for Prolog). Thus, a splitting
degree higher that 2 may become instrumental in cases that the speedup is more important
than RAM utilization.

6 Conclusions and Expectations

This paper presents a new distributed algorithm for symbolic reachability analysis that
improves significantly on previous works. Its adaptability to any network size and its
high utilization of network resources make it suitable for solving very large verification
problems.

The experimental environment that is used to evaluate our new algorithm currently
consists of NuSMV and the newly introduced Division system. Division is a new platform
for distributed symbolic model checking research, featuring a high-level generic interface
to “external” model checkers. Eventually, we intend to release Division source code
through the Division web-site [12].

At the point that the final version of this paper is due, Division is in the final stages
of interfacing with Intel’s high-performance model checker – Forest. We thus expect
our results to improve substantially and to become more accurate in the near future. We
refer the interested reader to the Division web-site for up-to-date result reports and for
the full and final version of this paper.

References

1. N. Amla, R. Kurshan, K. McMillan, and Medel R. K. Experimental Analysis of Different
Techniques for Bounded Model Checking. In Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’03), LNCS, Warsaw, Poland, 2003.

2. I. Beer, S. Ben-David, C. Eisner, and A. Landver. Rulebase: An Industry-Oriented Formal
Verification Tool. In 33rd Design Automation Conf., pages 655–660, 1996.

3. I. Beer, S. Ben-David, and A. Landver. On-the-Fly Model Checking of RCTL Formulas. In
Proc. of the 10th Int. Conf. on Computer Aided Verification, LNCS 818, 1998.

4. A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic Model Checking Without BDDs.
In Tools and Algorithms for the Construction and Analysis of Systems, 5th Int. Conference,
TACAS’99, LNCS 1579, 1999.

66 Orna Grumberg, Tamir Heyman, and Assaf Schuster

5. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with partitioned
transition relations. In A. Halaas and P. B. Denyer, editors, Proc. of the 1991 Int. Conference
on Very Large Scale Integration, August 1991.

6. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model check-
ing: 1020 states and beyond. Information and Computation, 98(2):142–171, June 1992.

7. G. Cabodi. Meta-BDDs: A Decomposed Representation for Layered Symbolic Manipulation
of Boolean Functions. In Proc. of the 13th Int. Conf. on Computer Aided Verification, 2001.

8. G. Cabodi, P. Camurati, and S. Quer. Improved Reachability Analysis of Large FSM. In Proc.
of the IEEE Int. Conf. on Computer Aided Design, pages 354–360. IEEE Computer Society
Press, June 1996.

9. G. Cabodi, P. Camurati, and S. Quer. Improving the Efficient of BDD-Bsaed Operators by
Means of Partitioning. IEEE Transactions on Computer-Aided Design, May 1999.

10. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new Symbolic Model
Verifier. In N. Halbwachs and D. Peled, editors, Proc. of the 7th Int. Conf. on Computer-Aided
Verification (CAV’99), LNCS 1633, pages 495–499, Trento, Italy, 1999.

11. D. Geist and I. Beer. Efficient Model Checking by Automated Ordering of Transition Relation
Partitions. In Proc. of the Sixth Int. Conf. on Computer Aided Verification, LNCS 818, pages
299–310, 1994.

12. O. Grumberg, A. Heyman, T. Heyman, and A. Schuster. Division System: A General Platform
for Distributed Symbolic Model Checking Research, 2003.
http://www.cs.technion.ac.il/Labs/dsl/projects/division web/division.htm.

13. T. Heyman, D. Geist, O. Grumberg, and A. Schuster. Achieving Scalability in Parallel Reach-
ability Analysis of Very Large Circuits. Formal Methods in System Design, 21(2):317–338,
November 2002.

14. K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem.
Kluwer Academic Publishers, 1993.

15. K. Milvang-Jensen and A. J. Hu. BDDNOW: A Parallel BDD Package. In Second Int.
Conference on Formal methods in Computer-Aided Design (FMCAD ’98), LNCS, Palo Alto,
California, USA, November 1998.

16. A. Narayan, A. Isles, J. Jain, R. Brayton, and A. L. Sangiovanni-Vincentelli. Reachability
Analysis Using Partitioned-ROBDDs. In Proc. of the IEEE Int. Conf. on Computer Aided
Design, pages 388–393. IEEE Computer Society Press, June 1997.

17. A. Narayan, J. Jain, M. Fujita, and A. L. Sangiovanni-Vincentelli. Partitioned-ROBDDs. In
Proc. of the IEEE Int. Conf. on Computer Aided Design, pages 547–554. IEEE Computer
Society Press, June 1996.

18. Ulrich Stern and David L. Dill. Parallelizing the Murphy Verifier. In Proc. of the 9th Int.
Conf. on Computer Aided Verification, LNCS 1254, pages 256–267, 1997.

19. T. Stornetta and F. Brewer. Implementation of an Efficient Parallel BDD Package. In 33rd
Design Automation Conf. IEEE Computer Society Press, 1996.

	Introduction
	The Worker Algorithm
	The Coordinators
	Optimizing the Splitting in Image Computation Overflow
	Experimental Results
	Number of Workers for Reachability Analysis
	Timing and Communication

	Conclusions and Expectations

