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Abstract. Specifications that describe typical scenarios of operations have be-
come common for software applications, using, for example, use-cases of UML.
For a system to conform with such a specification, every execution sequence must
be equivalent to one in which the specified scenarios occur sequentially, where
we consider computations to be equivalent if they only differ in that independent
operations may occur in a different order.

A general framework is presented to check the conformance of systems with such
specifications using model checking. Given a model and additional information
including a description of the scenarios and of the operations’ independence,
an augmented model using a transducer and temporal logic assertions for it are
automatically defined and model checked. In the augmentation, a small window
with part of the history of operations is added to the state variables. New transitions
are defined that exchange the order of independent operations, and that identify
and remove completed scenarios. If the model checker proves all the generated
assertions, every computation is equivalent to some sequence of the specified
scenarios. A new technique is presented that allows proving equivalence with a
small fixed-size window in the presence of unbounded out-of-order of operations
from unrelated scenarios. This key technique is based on the prediction of events,
and the use of anti-events to guarantee that predicted events will actually occur.
A prototype implementation based on Cadence SMYV is described.
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1 Introduction

It has become common to describe systems through a series of typical, canonic, scenarios
of behavior, either through use-cases of UML or other formalisms. System computations
in which such scenarios occur in sequence are called convenient. We consider two com-
putations that differ only in the order in which independent operations are executed, as
equivalent with respect to a scenario-based specification. A system conforms with such
a specification if every computation is equivalent to a convenient one. The specifications
of serializability of concurrency control algorithms for distributed databases and, in the
area of hardware design, the sequential consistency of shared memory protocols have a
similar structure.
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The equivalence notion used in this paper (=) is based on a conditional independence
relation among occurrences of operations: two operations may be independent in only
some of the system states. The problem s, therefore, given a description of a fair transition
system, a set of scenarios, and a conditional independence relation among operations,
to prove that every computation of the system is equivalent to some concatenation of
scenarios. We present a general framework for reducing this problem to one that can be
solved automatically by a model checker. Based on the problem’s inputs and additional
heuristic information, we define an augmentation of the system — a transducer — and a
set of LTL and CTL formulas that, if verified for the transducer, imply that the original
system conforms with the scenario-based specification. As usual, this is possible when
the system of interest is finite state, or can be abstracted to a finite state version in which
model checking tools can be applied.

Given a fair transition system M, we build a transducer M’ (See Fig.1) by composing
M with a bounded window (a history queue) H of fixed length L, and an w-automaton
C (which we also call the chopper) that reads its input from H and accepts only the
desired scenarios. In addition, M’ has an error flag, initially false. When a (non-idling)
transition from M is taken, if the history is not full and the error flag is false, the
current state-transition pair is enqueued in H. Otherwise, the error flag is set to true,
and never changed thereafter. When the error flag is true, there is no further interaction
between M and H. Additional transitions of M’ are swaps of consecutive elements of
H (according to the user-defined conditional independence) and chops of prefixes of the
window, that remove any desired scenario recognized by C'. A run of M is defined as
convenient if it belongs to the language of C), i.e., is composed of desired scenarios. Any
infinite sequence built by concatenation of the chopped state-transition pairs is therefore
aconvenientrun. We aim to prove that for every computation g of M there is a convenient
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Fig. 1. Example of a transducer M’ with two scenarios: 7172 and 7374. After swapping (s1,73)
with (s13, 72), scenario 7172 can be chopped from the window.

computation ¢ such that ¢ = g. The transducer augments M without interfering with its
operation. Therefore, for every computation g of M, there is some computation g’ of
M’ such that g is the projection of g’ to M’s variables and transitions. If there is such a
¢’ in which M’s transitions are interleaved with swaps in H and transitions of C' (that
dequeue elements from H), so that H is never full when M makes a transition, then the
error flag will never be raised in g'.
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A bounded transducer cannot deal directly with events that may be delayed without
bound, e.g., if they can be preceded by any number of independent events (“unbounded
out-of-order”). Such a situation may arise in many concurrent systems, where the fairness
constraints on the computations do not set any bound on how long a transition can
be delayed before it is taken. If the window were not bounded, the transducer could
wait until the needed event occurs, then swap it “back in time” until it reaches its
place in a convenient prefix. A bounded window will necessarily become full in some
computations, and the error flag will be raised before the needed event occurs.

To overcome unbounded out-of-order, when part of a scenario has been identified a
prediction can be made that a currently enabled event will eventually occur. In our novel
prediction mechanism, the transducer then creates and inserts an event/anti-event pair
after the existing part of a scenario being built in the window. After the predicted event
is chopped together with the rest of the scenario, the anti-event remains in the window
to keep track of the prediction. The anti-event can be swapped with the following events
in the window, only if its corresponding event could have been swapped in the opposite
direction. When the anti-event later meets the actual occurrence of its predicted event,
they cancel out and disappear (see Fig.2). ! For this method to work, we need to make sure
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Fig. 2. Predicting 7 to prove pryrz =suw PTTYZ.

every event/anti-event pair is inserted after any previously predicted event and before
its corresponding anti-event. This method is analogous to the use of prophecy variables,
but is easier to implement and understand.

The generated LTL and CTL proof obligations over the extended model verify that
for every computation g of M there is a computation ¢ of M’ that “simulates” g, while
avoiding raising the error flag, fulfilling all the predictions, and in which no event
remains forever in the window. They also require that it is always possible to postpone
the initiation of new scenarios until the pending ones are completed. Together with a

' A nice analogy can be drawn between the behavior of our anti-events (and events) and that of
particles (resp., antiparticles) in modern physics, where a positron can be seen as an electron
travelling back in time.
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restriction on the independence relation, needed to preserve fairness, the correctness of all
these formulas for M’ guarantees that M conforms with the scenario-based specification
given by C.

To demonstrate the feasibility of our approach, we built a prototype tool (CNV)
that implements our method. A description of the problem in CNV’s language is used
to generate automatically the transducer and the related formulas, both in the language
of the model checker Cadence SMV [15], which is then used to verify them. In CNV,
additional facilities (beyond prediction) are provided to reduce the size of the window,
such as a means for defining a small abstraction of the state information that suffices to
support the transducer’s operation.

Related work: The Convenient Computations proof method [4,5, 11] is based on
showing that every computation of a system can be reduced or is equivalent to one in a
specified subset called the convenient computations. These computations are easier to
verify for properties that should hold for the entire system. In a proof, one must define
which computations are convenient, prove that they satisfy the property of interest, and
then extend this result by showing that a property-preserving reduction exists from every
computation to a convenient one. This general approach is useful both for (potentially
infinite state) systems with scenario-based specifications, as is done here, and for dividing
inductive property verification efforts into several subproblems. Manual proofs following
this approach appeared before in [9, 11]. In [4], a proof environment based on a general-
purpose theorem prover was presented. As usual in a deductive theorem-proving tool,
the proof environment is wide in its range of applicability but shallow in the degree
of automation it provides. However, it formalizes the proof method’s definitions, and
encapsulates key lemmas needed in a theorem proving setting.

The work presented here also differs from partial order reductions in model checking
[2,7,17, 18], that exploit similar notions of independence to reduce the size of the model
being checked. In those works there is no separate description of the desired convenient
computations. Moreover, only restricted forms of independence can be used, and many
computations that are not convenient are left in the reduced version, because the reduction
is conservative, and is done on-the-fly based on little context information. Thus those
works use some related ideas to solve a completely different problem.

Transduction methods have been used in a theoretical deductive setting for the ver-
ification of partial-order refinements, and in particular sequential consistency of lazy
caching, in [8]. There, the transducer holds a pomset of unbounded size, and the in-
dependence relation among operations is fixed. Finite-state serializers [3, 6] have been
used to verify Sequential Consistency for certain classes of shared memory protocols by
model checking. These can be seen as special cases of the transduction idea, optimized
and tailored to support verification of that specific property.

This paper is organized as follows: In Section 2 we provide basic definitions about
the reductions and equivalence relations we want to prove. In Section 3 we show how
to augment a given transition system to enable model checking equivalence of every
computation to a convenient one. In Section 4 we describe a prototype tool that imple-
ments the techniques described in the previous sections, and apply it to a simple yet
paradigmatic example. Section 5 concludes with a discussion.
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2 Theoretical Background

2.1 Computation Model, Conditional Independence

The following definition of Fair Transition Systems (FTS) is based on [13].
Definition: M = (V,0,7,7) is an FTS iff: (i) V is a finite set of system variables.
Let X denote the set of assignments to variables in V, also called states.

(ii) © is an assertion on variables from V' (characterizing the initial states).

(iii) 7 is a finite set of transitions. Each 7 € T is a function 7 : X — 2*. We say that
T is enabled on the state s if 7(s) # 0, which we denote en(s, 7). We require that 7
includes an idling transition ¢, such that for every state s, ¢(s) = {s}.

(iv) J C T \ {¢} is a set of transitions called just or weakly fair.

A run (or execution sequence) o of M is an infinite sequence of state-transition pairs:
o€ (XxT)ie,o0:(s0,70),(81,71),...,such that sy satisfies © (“initiality”), and
Vi € N : s;41 € 7i(s;) (“consecution”). A transition 7 is enabled ar position i in o
if it is enabled on s;, and it is faken at that position if 7 = 7;. A computation is a run
such that for each 7 € J it is not the case that 7 is continually enabled beyond some
position j in ¢ but not taken beyond j (“justice”). We say that a state s is quiescent iff
every transition 7 € 7 is disabled in s. A computation o is quiescent at position 7 iff s;
is quiescent, and 7; = ¢.

Given a set S C X and a transition 7, let 7(S) = [J,c 4 7(5).

Definition: Two transitions 7y, 75 are conditionally independent in state s — denoted by
CondIndep(s, T, 72) —iff 71 # 72 A T2(11(8)) = 71(72(8))

In the rest of this paper we assume that all transitions of the system being analyzed
are deterministic (i.e., their range has only empty or singleton sets), and if 7(s) = {s'}
we refer to s’ as 7(s). Under this assumption, our definition of conditional indepen-
dence coincides with the functional independence defined in [4], and with the restriction
imposed on acceptable collapses in [10], for pairs of transitions that actually occur in
consecution (which are candidates to be swapped).

2.2 Swap Equivalence

In the sequel we consider a user-defined conditional independence relation I C (X' x
T x T) that is a subset of the full conditional independence CondIndep 2, and such
that Vs € X Vr € T : I(s,7,0) A I(s,t,7). We define swap equivalence, follow-
ing [4]. Note that for runs that share a suffix, the justice requirements defined by J
hold equally. Let o = (89, 70), ($1,71), ... be a computation of M ,such that for some
i € N, I(8;,7;,7i+1) holds, and thus CondIndep(s;,7;, 7;+1). Then, the sequence
o' = (80,70)s - (Si,Tit1)s (Ti+1(8:), Ti)s (Sit2, Tit2), - - - is also a legal computation
of M, and we say that o and o’ are one-swap-equivalent (0 =14, o). The swap-
equivalence (=s,,) relation is the reflexive-transitive closure of one-swap-equivalence.
The definitions of =14, and =g, can also be applied to finite prefixes.

Swap-equivalence is the "conditional trace equivalence" (for finite traces) of [10].
If the independence relation 7 is fixed (i.e., Vs,t € X, V11,72 € T : I(s,71,72) =
I(t, 71, 72)), swap-equivalence coincides with trace equivalence [14].

% we refer to sets and their characteristic predicates interchangeably



Model Checking Conformance with Scenario-Based Specifications 333

2.3 Conditional Trace Equivalence

Leto ™ € (X x T)! denote o’s prefix of length I. For infinite runs g, c:
Definition: c C g iff Ym e N3Jh € (¥ x T)* : (c™ =h"™)Ah =5, g

The relation C also appeared in [11, 12], but exploiting only fixed independence
among transitions. If ¢ C g, there are finite execution paths from every state in c to one
in g (See Fig.3) but ¢ and g may not converge into a shared state.

NN

Fig. 3. c C g. (Converging paths represent swap-equivalent runs)

Definition: Two infinite runs g and c are conditional trace equivalent (g ~ c) iff c C g
and g C c.

3 Proving Equivalence by Model Checking

We define the transducer described in Section 1 as M’ = (V/, 0, 7', J'), where

(1) V' includes the variables in V, the error flag, a queue that can hold at most L state-
transition pairs (the window), the state variables V. of the chopper, and an index into H.
Let Y. denote the possible states of C. The set of anti-transitions is:
T={F:Y—2%|3r €7 -Vs1,s0 € X, 51 € T(s9) iff sy = 7(s1)}. The set of
transitions that can be recorded in the window is 7, = 7UT \ {1, 7}. Let AL = UL A,
The set of states of M’ (valuations of V') is X/ = X x {0, 1} x (¥ x 7p,)* L' x . x0..L
. M'isinstate s’ € X’ = (s,b, h, s¢, np) iff its M component is in the state s, the error
flag has the boolean value b, the window’s contents is h, the chopper is in the state s,
and the earliest point in the window where a prediction can be introduced is np. Let
the predicate ep(h, np) hold iff np points to the place in the window right after the last
predicted event.

(i) ©" = {(so, false, €, 5¢,,0) | so = O A s¢, = O}, where O, characterizes the
initial states of the chopper.

(i)J" ={r"lre J}

(iv)7" has the following transitions:

— 7’: Simulating transitions of M. For every 7 € 7:
7/ ((s,b, h, sc,np)) =(f 7 = ¢ then {(s, b, h, sc,np) } else if (b = trueV|h| = L)
then {(7(s), true, h, s.,np)} else {(7(s), false,h- (s,T) , Sc,np)}).

— swap: Swapping consecutive events in the window.
Swap(($7 ba hla Scy ’Ilp)) = {(87 b7 ha, s¢, np/) ‘ ha =150 h1 A ep(h27 np/)}

— chop: Removing convenient prefixes from the window. chop((s, b, h1, s¢, ), np) =
{(5,b,ha, Sep,np) | Ip € (XX T1)0% L hy =p-hy Ase, 2 sy Aep(ha,np')}.

P .
3 50, 2 5., means that C' can move from s, to s., by reading p.
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— predict: Inserting an event/anti-event pair.
predict((s,b,h, se,np)) = {(s,b,p- (s1,7) - (7(51),7) - ¢, S, np’) | h =p - g/
(g=€e—s1=38) N (q#e— (siisthe first state of q)) N
pE(XXT)" A [p|=np A np'=|p|+1}

— swap-pred: Swapping an anti-transition with an unrelated following transition.
((‘97 b, h, sc, np)) = {<S> b,p-(T(S1), a)'(a<7(81 )),T)q; 8¢, np) | h = p'(7<51)v T)-
(s1,) g N I(s1,,7)}

— cancel: removing an anti-event/event pair from the window.
cancel((s,b,h, se,np)) = {(8,b,p" q, S¢,np) | h =p - ($1,T) - ($2,7) - ¢}

We now describe a set of properties to be checked on the transducer M’. Our implemen-
tation of this technique generates automatically CTL and LTL formulas that express
these properties. For clarity reasons, the properties are described verbally here, omitting
most of the actual formulas generated by the tool.

1. From every state in which the error flag is false, a state can be reached in which the
window is not full: AG(—error — EF(—error A |h| < L))

2. In every computation where the error flag remains false, every anti-transition in the
history can be swapped with any “normal” transition following it in the window (so
it can reach the end of the history queue).

3. (For every 7 that can be predicted): If T is at the end of the window then 7 is enabled
in the current state of M.

4. (For every 7 that can be predicted): If 7 is not followed by 7 somewhere behind it
in the window, then 7 will eventually be taken.

5. (For every 7): If the computation does not remain forever quiescent, then if 7 is in
the window, it will eventually be chopped or will be cancelled with 7.

6. From every quiescent state with the error flag false, it is possible to remain quiescent
(while reordering and chopping the window) until the window is emptied.

7. Along every path it is infinitely often possible to stop executing the system’s tran-
sitions (and perform history-related operations like predictions, swaps, chops), un-
til the history is emptied or contains only anti-transitions: AG AF(—error —
E(no-t-taken U no-t-in-h)).

8. In every state s € X, and for every 71,72 € 7 such that I(s, 71, 72), we have
(i) CondIndep(s,T1,72), and (ii) if a third transition 7; € J is enabled in s and
remains enabled after executing 71 and then 7o, then it is also enabled after executing
7o from s: en(s, 7;) A en(7i(s), ;) A en(1a(7i(s)), 75) — en(1a(s), 75).

If branching-time property 1 holds, then the transducer can “simulate” every com-
putation g of M, while the concatenation of the events chopped from the window forms
a convenient run c¢ such that ¢ C g. Linear-time properties 2,3 and 4 are needed to jus-
tify the predictions. For the chopped sequence of events to be equivalent to the original
computation of M, they must have the same events. Properties 5 and 6 are needed to
rule out cases when an event remains in the window forever. Branching-time property
6 deals with computations that become and remain quiescent. Branching-time property
7 is used to extend the reduction (¢ C g) into full equivalence (¢ =~ g). Property 8 is an
invariant that can also be checked on the original system M (without a transducer). It
checks the requirement that the user-defined independence relation implies conditional
independence, and a restriction needed for the equivalence to preserve justice.
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Theorem 1 When verified on the transducer M', properties 1-8 imply that every com-
putation of M is equivalent to some convenient one.

The full proof can be found in [1]. Here we present only a detailed outline of the proof.
First, we define the main concept used to link the definition of the transducer with the
equivalence we need to prove.

Definition: Given an infinite computation g, and an infinite sequence R = {r;}32, of
infinite computations, we say that R is a reduction sequence from g iff g = roy and
Vi > 0: Ti =sw Ti+1-

We say that a computation ¢’ of M’ follows a computation g of M if g is the projection
of ¢’ to the transitions and variables of M, and the error flag remains false along ¢’. Let
us consider a computation ¢’ that follows g. At any given time ¢ along the execution of ¢,
a computation r; can be built as the concatenation of the portion already chopped, with
the contents of the window, followed by the part of ¢ that did not execute yet (e.g., as
depicted in Figure 2). If we do not consider predictions, it is easy to see that the sequence
{ri}22, is a reduction sequence: ry = g, and the only change from some 7; to r; 1 can
be a swap of consecutive independent events. In general, if a reduction sequence from g
converges, and its limit is ¢, then it can be proved that ¢ C g.

Property 1 implies that for every computation g there is a ¢’ that follows it, so for
every g there is a convenient run c¢ such that ¢ C g, which is one half of what we need to
prove. The predictions, as we saw, are just another way to prove swap equivalence, by
moving anti-events forward in time instead of real events backwards. The net effect of
a predict-swap-cancel sequence is a simple swap equivalence, so a reduction sequence
from g can still be built from a computation g’ that follows g. Of course, this requires
properties 2, 3, and 4 to make sure the predictions are correct.

To prove full equivalence (c = ¢g), we need to prove g C ¢, which means thatinfinitely
often along g, there is a continuation that is swap-equivalent to c. We now explain why
this is precisely what Property 7 implies. Consider point gy in Figure 4. By Property 7,

Fig. 4. Proving full equivalence.

there is a later point g; from which the transducer can stop executing transitions until (i)
the window is empty, or (ii) it contains only anti-transitions. If the window is empty, then
g and c have actually converged. If it contains only anti-transitions, this means that all the
pending scenarios have been completed by predictions, and chopped out of the window.
In the figure, the transitions in the segment marked with s are the ones starting new
scenarios, those in the segment marked with f are the ones finishing pending scenarios.
The contents of the window are the anti-transitions of those in the f segment. The actual
occurrences of the events from f along g will appear after g;, and cancel with their
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respective predictions. Thus, a segment like f (connecting g to c) exists, for every point
go arbitrarily chosen along g, and this is what we need to prove the full equivalence.

The limit of a reduction sequence may not be a fair run. If we proved that the
limit is an equivalent run, then the set of transitions that are taken infinitely often is
the same in ¢ as in g. The limit will be non-fair if some just transition which is never
taken becomes enabled forever. This is avoided by the additional constraints on the
user-defined independence relation introduced by Property 8. It is then easy to show by
induction on the chain of swaps, that if 7; is enabled from some point onwards, then the
same happens in any swap equivalent run. This can be used in turn to show that if 7; is
enabled in ¢ from some point onwards, then it must also be so in g. The proof is based on
the fact that infinitely many paths connect ¢ and ¢ (in both directions), and converging
paths are swap-equivalent.

4 Prototype Implementation - CNV

CNYV (for CoNVenient), a prototype implementation of the described techniques, is based
on a simple language for the description of fair transition systems, their convenient com-
putations, the independence relation 7, and additional configuration information such
as the window size L, and predictions. The program cnv2smv translates a . cnv file
into a description of the transducer and its proof obligations in the language of Cadence
SMYV, in which the verification and analysis of counterexamples is done. CNV includes
optimizations meant to make the window smaller and use it efficiently:

(i) If the definition of the scenarios and of I depends only on an abstraction of the state
information (e.g., on part of the state variables), and it is possible to update that abstract
state with the effect of every transition, then it suffices to keep only the abstract state
information in the window. An example is a queue, where the independence of sends and
receives is affected only by the length of the queue, and not by its contents. A common
example is a system where I(s, 71, 72) does not depend on s. It is then possible to have
only transitions in the window, without any state information. CNV’s input language
supports the manual definition of an abstract state to be stored in the window.

(i) When a predicted transition completes a scenario so it can be chopped, instead of
inserting the prediction and then chopping the whole scenario, the partial scenario is
automatically replaced by the corresponding anti-transition. Similarly, if a transition
is taken when its anti-transition appears at the end of the window, then instead of en-
queueing the transition and then cancelling it with the anti-transition, CNV immediately
removes the anti-transition from the window.

(iii) To keep the window as small as possible, the transitions of the transducer generated
by CNV are prioritized. Enabled transitions are executed in the following descending
order of priority: chops, cancelling of predictions, swapping anti-transitions towards the
end of the history, making new predictions, and finally (with the same priority) making
swaps and executing transitions from M.

Apart from proving that every computation is equivalent to a convenient one (by
answering “true”’), CNV can in some cases provide a detailed reduction sequence from
a specific computation g. If it is possible to describe a single computation g by an LTL
formula, then CNV can be asked to check that there is no reduction from gto a convenient
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computation. If this is not the case, the counterexample generated shows the reduction
steps in detail.

The language of CNV allows the definition of scalar variables and a finite set of
transitions, where each transition may be marked as just. For every transition, an enabling
predicate and an assignment to every affected variable are defined. It is possible to define
abstract state variables to be kept in the history, and to specify how they depend on
the system state variables. The choppers currently supported by CNV are defined by
giving a prioritized list of “convenient prefixes”(finite sequences of transition names)
representing scenarios. The predictions are also given in a prioritized list. Each entry
actually describes a sequence of predictions. For example: PRED Y Z AFTER W X
will trigger the prediction of Y when the history has a prefix W X, and will then predict
Z after the prefix W X Y, chopping the whole scenario immediately. The result of these
two predictionson W X Qis Z Y Q.

Application Example: We use a schematic example to describe various parts of a
methodology for which our technique can be useful. We consider a setting as the one
shown in Fig.5, where two producers create complex values (maybe from an unbounded
domain) and send them through a FIFO buffer, to a single consumer. The insertion of
the value into the queue is not atomic, therefore the producers run Peterson’s mutual
exclusion protocol [16] to avoid enqueuing at the same time. The convenient sequences
are naturally defined as those in which every produced value is immediately enqueued,
dequeued and consumed. The relation I we will define does not depend on the actual
values being produced and transmitted. Therefore, equivalence based on it can be model
checked by CNV, by ignoring those values altogether.

buffer

L] [ [=]
R E

Fig. 5. Two mutually exclusive producers and one consumer with a FIFO buffer in between.

A valuable feature of CNV is its capability to verify Property 8 by generating and
model checking an invariant of the original system (without any transducer). To prove
commutativity, we cannot completely ignore the fact that different processes may over-
write each other’s values in the buffer. However, when proving the equivalence itself with
the transducer, the actual values produced and sent through the buffer are not relevant.
Therefore, we can remove the produced data bits from the transducer we use to check
the equivalence itself (Properties 1-7).

The convenient computations of the system in Figure 6, as described before, should
be those in which transition /5 is immediately followed by I3, l4, c1, co (and similarly
for my). Proving the reduction in a single step means that the history queue we may
need for the proof could be quite long, since there must be enough room in the history
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Initially: head=blen=yl=y2=0, s=1

Producer 1: | |Producer 2: | | Consumer:
loop forever do | |loop forever do | |loop forever do
11:<PRODUCE v1l;yl:=1;s:=1> || ml:<PRODUCE v2;y2:=1;s:=2> || cl:await blen>0
12: await (y2=0\/s!=1) /\ || m2: await (y1=0\/s!=2) /\ || c2:<CONSUME
b [head] ;
(blen<N) | (blen<N) || head:=(head+1) mod
N;
13: STORE(vl,b[head+blen]) || m3: STORE(v2,blhead+blen]) || blen:=blen-1>
14: <blen:=blen+l;yl:=0> || m4: <blen:=blen+1l;y2:=0> | |end loop
end loop | |end loop |

Fig. 6. Pseudo code of the system

for the convenient prefixes and for any anti-transitions that may be generated before a
convenient prefix is created. The computational complexity of the verification depends
heavily on the length of the history, so we prefer to perform the reduction in stages.

In a first stage, we prove that every computation is equivalent to one in which the
sequences (lo2, 3, 14), (M2, M3, my), and (c1, c2) are executed atomically. This basically
proves that there is mutual exclusion between the two producers in their access to the
buffer. Our independence relation I depends on the state (e.g., [ and ¢, are independent
if the buffer is not full). According to I, we chose to store in every history element
the variables y1, y2, s and blen (the buffer’s current length). The chopper recognizes the
following prefixes as convenient: (I1),(l2, I3, l4),(m1),(m2, m3, my4),(c1, c2). The predic-
tions we used are: "PRED [3 [, AFTER (5", "PRED m3 m4 AFTER m>", and "PRED
co AFTER ¢;". A window of length 4 was sufficient to prove the reduction, for a buffer
length N=2. Verifying the equivalence (Properties 1-7) on the data-less version of the
transducer took 105 minutes and 303MB of memory* on a 1.2GHz machine, and verify-
ing the independence relation (Property 8) on the original system (i.e., with the buffer’s
data bits but without the transducer) took less than 10 seconds.

In the second stage, we model these sequences as atomic transitions (and we adjust
I accordingly), and prove that every computation is equivalent to one in which every
occurrence of /s (which now includes /3 and [4) is immediately followed by ¢; (which
now includes cs), and similarly for ms. This time, a window of length 3 was sufficient to
prove the reduction, for the same buffer length. Verifying the equivalence on the data-less
version took 2 minutes and 14MB of memory, and verifying the independence relation
on the full version of the original system without the transducer took less than 5 seconds.

To further test this approach, we split the first stage into two sub-stages: In the first
one we prove equivalence to computations in which the transition pairs (I3, l4), (ms, m4)
and (c1, ¢2) occur atomically. The second sub-stage proves equivalence to computations
in which (I3, 3,14) and (ma2, m3, m4) occur atomically, as in the first big stage above.
The first sub-stage took 36 minutes and used 89MB and the second one took 6 minutes
and used 37MB, so together they took 42 minutes instead of the 105 minutes required
previously, and used less than one third of the memory space.

This example’s sources, the cnv2smv tool and a skeleton input file appear in [1].

* This is attributed to the asynchronous nature of the system, which is not particularly suited to the
SMYV model checker. An additional “running” variable is created by SMV for every transition
of the transducer, and the resulting BDDs are not as compact as for hardware verification.



Model Checking Conformance with Scenario-Based Specifications 339

5 Discussion and Future Work

This paper has presented, for the first time, a general framework and tool for model
checking conformance of a model to scenario-based or transaction-based specifications.
The automatically generated transducer, including the window into the history and the
added transitions for chopping and swapping events in the window, of course adds to
the size of the state-space and transition relation. This should be viewed as the price for
making the strong claim of computation equivalence in such specifications, analogous
to the cross-product of the model with an automaton seen in automata-based model
checking of linear-time temporal properties.

Although in theory the number of state variables is increased by L x (|V'|+1log|7),
the effective increase can be greatly reduced by exploiting optimizations, just as in
other model checking tasks. Even in the prototype implementation described here, the
transducer’s transitions are prioritized in order to minimize the length of the needed
window, and facilities are provided for abstracting away unneeded state variables from
the history, reducing the amount of information kept there to the minimum needed to
support the history-related operations. Usually, this means that each window element
has only a few state bits in addition to the log |7 | needed to represent a transition. The
possibility of using predictions to chop a scenario before it has completed, and using an
anti-event to ensure that predicted events eventually occur, is also crucial in reducing
the size of the window.

Moreover, it should be noted that not all of the transducer states exploit the full size
of the window, and many transitions simply cannot occur from some states. A careful
tuning of the variable ordering could use this fact to facilitate the construction of more
compact BDDs. An explicit-state model checker, in principle, could also exploit this
fact by using a dynamically sized representation of the states reached during the explicit
search.

In future work, the influence on complexity of modelling decisions, such as how to
abstract the state, and which predictions to make, needs to be better understood. Further
compressing the contents of the window is crucial. Splitting the description of a long
scenario into shorter sub-scenarios, and proving the equivalence in several steps, as seen
in the example, also offers significant benefits. Other research directions include further
development of notations for expressing scenarios, including connections to existing
modelling techniques like UML.
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