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Abstract. We describe a new magnetic resonance (MR) image analysis
tool that produces cortical surface representations with spherical topol-
ogy from MR images of the human brain. The tool provides a sequence
of low-level operations in a single package that can produce accurate
brain segmentations in clinical time. The tools include skull and scalp
removal, image nonuniformity compensation, voxel-based tissue classifi-
cation, topological correction, rendering, and editing functions. The col-
lection of tools is designed to require minimal user interaction to pro-
duce cortical representations. In this paper we describe the theory of
each stage of the cortical surface identification process. We then present
validation results using real and phantom data.

1 Introduction

Surface representations of the human cerebral cortex are important for visu-
alization and analysis of neuroimaging data [1] and as constraints for localiz-
ing functional activation from magneto-encephalography (MEG) and electro-
encephalography (EEG) data [2,3]. MR imaging offers neuroanatomical detail,
but extraction of cortical surfaces from MR imagery faces several problems, in-
cluding measurement noise, partial volume effects, and image nonuniformity due
to magnetic field inhomogeneities. In this paper we describe a new tool that pro-
vides a comprehensive approach to extracting a representation of the cerebral
cortex from T1-weighted MR images.

The problems we address in our work have been addressed by many oth-
ers. Wells et al. presented an Expectation-Maximization (E-M) approach to
image nonuniformity and tissue classification [4]. Kapur et al. combined the
E-M approach with morphological and active contour methods to isolate and
segment the brain [5], and later incorporated Gibbs and geometric priors into
the E-M method to improve the classifier [6]. Sled et al. addressed the prob-
lem of nonuniformity using an E-M approach that estimates a gain field to
sharpen the histogram of the MR image; this field is kept smooth using a cu-
bic B-spline [7]. Software for this method is publicly available via the Internet
(http://www.bic.mni.mcgill.ca/software/N3/) under the name Non-parametric
Non-uniform intensity Normalization, or N3.
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The general problem of identifying the cortex in MR imagery has been ap-
proached from several directions. Atlas-based approaches to segmentation do not
typically perform well in the cortex due to intersubject variability. To overcome
this problem, Collins et al. combined their atlas-based method (ANIMAL) with a
low-level method (INSECT) [8]. Active contour methods often perform best after
initialization with a low-level segmentation, as described by Xu et al. and Pham
et al.[9,10]. They find the cerebral cortex using fuzzy C-means classification.
The fuzzy membership set is then repeatedly median-filtered until a topologi-
cally spherical isocontour is found; this contour represents the boundary between
white matter and grey matter. A gradient vector flow method is then used to
move this boundary to the medial layer of the cortex. Zeng et al. presented
an identification sequence that uses a level-set method to find coupled surfaces
representing the interior and exterior boundary of the cerebral cortex [11]. Dale
et al. described a complete method for cortical surface identification that first
smoothes image nonuniformities with a cubic spline that normalizes white mat-
ter peaks throughout the image, then strips skull and scalp using a deformable
template, and finally labels the white matter based on intensity and neighbor-
hood information [12]. Hand-editing is required to correct topological defects in
the segmentation prior to tessellation. The tessellated surface is then deformed
to refine the cortex.

The tool we describe in this paper is based on a sequence of low-level opera-
tions, resulting in a fast yet accurate method to identify the cortex. First, skull
and scalp are removed from the image using edge detection and morphological
processing [13,14]. The stripped brain is then processed to remove image nonuni-
formities using a parametric model that adjusts local intensities of the image to
match global properties [14]. Next, the intensity corrected brain is classified at
the voxel level into key tissue types: white matter, grey matter, cerebrospinal
fluid, and combinations of these [14]. The white matter corresponding to the
telencephalon is selected and further processed to ensure that key neuroanatom-
ical structures, such as the ventricles, are interior to the initial white matter
volume. This volume is then processed using a graph-based approach to remove
topological inconsistencies in the volume, which is the most novel aspect of our
approach [15]. The final volume may then be tessellated using the Marching
Cubes algorithm [16] to produce a cortical surface that is topologically equiva-
lent to a sphere.

2 Methods

2.1 Removal of Extraneous Tissue

Removal of non-brain tissue from the MR volume facilitates later stages in the
algorithm as fewer voxels and fewer tissue types are involved. We refine the
brain extraction procedure initially described in [13] to remove skull, scalp, and
other tissue from the MR image. This portion of the algorithm has been publicly
released as the Brain Surface Extractor (http://neuroimage.usc.edu/bse/), and
is currently in use in several neuroanatomical studies. The process begins with an



52 David W. Shattuck and Richard M. Leahy

anisotropic diffusion filter [17], which smoothes contiguous tissue regions while
respecting the edge boundaries that occur between these regions. We then use
a three-dimensional Marr Hildreth edge detector [18], which produces a binary
image with edges that are closed boundaries. These edges separate the volume
into several distinct objects. We seek the object whose boundary represents the
space between the brain and the skull and dura; this object is assumed to be the
largest central connected component in the binary edge image.

The use of the anisotropic diffusion filter enhances this boundary, but some
connections between the brain and other tissues will still remain due to noise
and small anatomical structures such as the optic nerves. Simply finding the
largest central connected component in the edge volume will leave several other
structures attached to the brain. We use morphological erosion with a 3D rhom-
bus operator of radius one to break these attachments from the brain prior to
labeling the connected components. The desired component is then dilated to
restore it to approximately its original size. A morphological closing operation
with an octagonal element of size four is applied to fill surface pits that may be
present due to small errors in the edge detection operation. This operation will
also smooth some aspects of the surface detail. However, this will be recovered
in later operations when the voxels are classified according to tissue type.

2.2 Image Nonuniformity Compensation

Inhomogeneneity in the magnetic fields during image acquisition and magnetic
susceptibility variations in the scanned subjects cause intensity nonuniformities
in MR images that prevent characterization of voxel tissue content based solely
on image intensity. As a result, segmentation as well as quantitative studies of
MR images require compensation for these nonuniformities. We use a parametric
tissue measurement model to estimate the local variations in the gain field of
the image by comparing the intensity properties of the whole MR volume with
the properties of local neighborhoods within the image.

We extend the tissue measurement model of Santago and Gage [19], which
describes the probability of measuring a particular intensity given the relative
fractions of key tissue types including partial volume types. We incorporate a
spatially variant bias term, bk, which describes the nonuniformity effect at the
k-th voxel measurement, xk:

p(xk|bk) =
∑
γ∈Γ

p(γ)p(xk|γ, bk), (1)

where γ is the tissue class from the set Γ including white matter (WM), grey
matter (GM), cerebrospinal fluid (CSF), and partial volume combinations of
these (WM/GM, GM/CSF, and CSF/Other). The function p(x|γ, b) is deter-
mined by the tissue types present in the particular voxel. For voxels composed
of a single tissue type (pure voxels),

p(x|γ, b) = Gbµγ ,σ(x), (2)
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where Gµ,σ(x) is a Gaussian density function of mean µ and variance σ2. The
pure tissue voxels have nonstationary mean values that vary multiplicatively
from a global mean value, µγ , according to the bias bk. For mixed tissue types,

p(x|γ, b) =
∫ 1

0

Gαbµa+(1−α)bµb,σ(x)dα, (3)

where α is a mixture parameter assumed to be a uniformly distributed random
variable as per Santago and Gage, µa and µb are the global mean values of
the pure tissue types associated with the mixture class γ. For each particular
image, we compute a priori estimates of the global tissue mean values and noise
variance from automated analysis of the stripped brain’s intensity histogram.

We assume the bias in the image changes very slowly spatially. Within a
neighborhood centered about a particular voxel, we approximate the bias as
constant. The mixture model (1) then describes the measurements made within
the entire region, conditioned on knowing the fractional tissue content and bias
of the region.

We select a uniformly spaced lattice of points in the image at which we
estimate the bias field. The measurements taken in a neighborhood about each
point are described by the mixture model allowing us to fit our model to a
normalized histogram of the region. This provides estimates of both the tissue
fractions and the bias within the region. We next use a set of outlier rejection
steps on the bias estimates to eliminate poor fits between the model and the
histogram. Because the bias field is smooth and slowly varying it is sufficient
to estimate its values at a coarser sampling than the original image. We then
use a tri-cubic B-spline to smooth and interpolate the robust estimate points,
providing us with an estimated value for the bias field at each point in the image.
We finally remove the bias from the image by dividing the intensity value of each
voxel by its corresponding bias estimate.

2.3 Partial Volume Classification

Compensation for the nonuniformity in the MR image greatly simplifies the
tissue classification problem. However, noise is still present in the system. For
the most part, the brain image can be described by regions of contiguous tissue
type. This allows us to use a Gibbs’ prior that incorporates a spatial model for
the brain tissues into our classification scheme. The model we have selected is
quite simple:

p(Λ) =
1
Z

exp

⎡
⎣−β

∑
k

∑
j∈Nk

δ(λk, λj)

⎤
⎦ , (4)

where Λ = {λ1, λ2, . . . λ|Λ|} is the set of labels describing the image, Z is a scaling
constant to ensure that we have a proper density function and β controls the
degree of influence of the prior on the voxel labels. Nk is the D18 neighborhood
(neighbors share an edge or face) about the k-th voxel. The δ terms govern the
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likelihood of different tissue labels being neighbors, hence we set δ(γk, γj) to −2
if labels k and j are identical, −1 if they have a common tissue type, and 1 if they
have no common tissues. These scores are scaled according to the inverse of the
distance of voxel k to voxel j. In this way, the model penalizes configurations
of voxels that are not likely to occur in the brain, e.g., white matter directly
adjacent to CSF, while encouraging more likely types, e.g., white matter next
to a partial volume mixture of white and grey matter.

We assume that our nonuniformity correction method has performed its task,
and remove the bias terms in our image measurement model. We then use Bayes’
formula to create a Maximum A Posteriori (MAP) classifier, which maximizes

p(Λ|X) =
p(X |Λ)p(Λ)

p(X)
, (5)

where p(X |Λ) =
∏

k p(xk|λk), with p(x|λ) as in equation (1), but with the bias
assumed uniform, i.e., p(x|γ) = p(x|γ, b = 1). Equation (5) is maximized using an
iterated conditional modes (ICM) algorithm after initialization with a maximum
likelihood classification.

2.4 Constraining the Topology of the Cortical Surface

The cerebral cortex is a single sheet of connected tissue that encloses the te-
lencephalon. This topology begins during the early development of the embryo,
and remains during normal development of the cerebrum. We assume the corti-
cal surface to be topologically equivalent to a sphere after closing the cortex at
the brainstem. Errors in the tissue classification stage and the limited resolution
of the MR image acquisition as compared to the details of the neuroanatomy
will result in cortical surface representations that do not have the appropriate
topology.

BrainSuite includes the Topological Constraint Algorithm (TCA) presented
in [15]. TCA is an iterative correction procedure that decomposes a volumetric
object into a graph representation from which topological equivalence to a sphere
may be determined. Slices along a particular axis of the volume are examined in
turn. First, the foreground connected components in each slice are labeled. Then,
connectivity between each of these components and the components in adjacent
slices are determined. These connections are used to form a graph, where each
connected component is a vertex in the graph and each connection between com-
ponents is represented as a weighted edge between the corresponding vertices.
The weight of each edge represents the strength of connection between two com-
ponents. The graph captures both topological and geometric information about
the object. The process is repeated for the background voxels, creating a second
graph. It is our conjecture that if these graphs are trees then the object being
analyzed is homeomorphic to a sphere.

TCA performs this graph analysis and then determines a pair of desired trees
using a maximal spanning tree algorithm. In this way, the algorithm determines
the edges corresponding to the minimal collection of voxels that need to be
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removed from the graphs to force them to be trees. These edges correspond
to regions in the object where small topological handles or holes exist. The
algorithm then edits these areas to remove the handles or holes. The process is
applied iteratively along each axis, making the smallest changes possible with
each iteration. This ensures that the smallest total change to the volume is
made. The result of this procedure is an object that, when tessellated with the
Marching Cubes algorithm, will be topologically equivalent to a sphere.

Fig. 1. The BrainSuite graphical user interface during (left) bias correction and
(right) surface visualization of a highly smoothed cortical surface.

3 Results and Discussion

3.1 Implementation

We have implemented the sequence of operations into a single, stand-alone in-
teractive tool using Microsoft Visual C++ (see Fig. 1) for use on the Microsoft
Windows NT/2000 platforms. The program can be used on common desktop
computer hardware to produce cortical volumes within minutes. BrainSuite
guides the user through each stage of cortical surface identification and includes
hand-editing and connected component tools to allow the user to perform seg-
mentation correction if necessary. Each stage of processing may be performed
independently, providing increased flexibility. In addition to the functionality de-
scribed in this paper, BrainSuite also includes tools for visualization, smoothing,
and inflation of cortical surfaces. BrainSuite has been developed to work with
BrainStorm, the MEG/EEG Matlab toolbox produced by Baillet et al.[2], and
provides the ability to visualize brain activation information on cortical surfaces.
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3.2 Validation

The Brain Surface Extractor (BSE) has been used extensively by numerous
groups so we do not focus on its accuracy in this paper [20]. BSE was used
as the first step for each of the volumes examined in this section. Thus, its
performance will directly affect the results of each subsequent stage. In this
section we present results for the nonuniformity correction, tissue classification,
and topological constraint stages of the algorithm. Validation was performed on
phantom and real data.

Nonuniformity Correction Assessing the performance of image nonunifor-
mity correction in real data is problematic due to the lack of a ground truth.
For this reason, we test our bias correction algorithm on the BrainWeb Phantom
produced by the McConnell Brain Imaging Centre at the Montreal Neurological
Institute [21]. The phantom provides a ground truth phantom image and sim-
ulated images of the phantom corrupted by noise and RF nonuniformity, avail-
able for download via the Internet (http://www.bic.mni.mcgill.ca/brainweb/).
We tested our algorithm on the normal brain database with each available set
of artifacts.

Ignoring quantization effects, intensity-threshold based classification methods
are unaffected by changes of scale and translations of the image intensity. For this
reason we compute a Procrustean metric that is the minimum root mean square
difference between the two images being compared accounting for all possible
translations and scalings of the corrected image intensity,

e(y, x̃) = min
a,b

√
1
|Ω|

∑
k∈Ω

(yk − (ax̂k + b))2, (6)

where x̂k is the corrected image intensity of the k-th voxel, Ω is the region of
interest, and yk is the intensity of the k-th voxel of the phantom. This metric
provides a fair comparison of performance between different bias methods.

RF Field: 0% 20% 40%
Bias Correction: None N3 BFC None N3 BFC None N3 BFC

3% Noise 2.98 3.02 3.13 4.13 3.83 2.97 6.23 4.30 3.51
5% Noise 4.88 4.93 4.98 5.50 5.77 4.81 7.05 5.88 4.87
7% Noise 6.65 6.81 6.75 6.96 7.24 6.55 8.05 7.33 6.58
9% Noise 8.30 8.60 8.39 8.41 8.82 8.16 9.15 8.92 8.09

Table 1. Normalized root mean square difference computed between ground
truth phantom image and scaled noisy biased phantoms, before and after correc-
tion by BFC and N3. Values shown are as a percentage of the ground truth WM
intensity. RF field values describe the strength of the simulated nonuniformity
field.
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To examine the bias correction results specifically, a single mask generated
by BSE was used for each image. The stripped brains were then processed by
BFC using a single set of parameters for all volumes, and by N3 using the default
parameters. We then compared the corrected images to the ground truth using
(6) divided by the intensity of WM in the ground truth image. These results
are tabulated in Table 1. In the cases where noise was applied with no bias,
the normalized RMS difference metric shows that N3 and BFC both left the
phantom volumes relatively unchanged. N3 performed slightly better on the 3%
and 5% noise phantoms, while BFC performed slightly better on the 7% and
9% cases. In every case with simulated bias fields, the BFC-corrected image was
closer to the original than the corresponding N3-corrected image. In most cases
the RMS difference was very near to that of the unbiased image with the same
level of noise, signifying that we have removed most of the variation attributable
to inhomogeneity effects.
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Fig. 2. (left) Similarity comparison computed for several methods using the
IBSR dataset. (right) Average fraction of total changes made during each iter-
ation of topological correction. Iteration number represents the largest number
of voxels allowed to change to fix a topological problem.

Tissue Classification We tested our tissue segmentation method on data from
the Internet Brain Segmentation Repository. The 20 normal MR brain data sets
and their manual segmentations were provided by the Center for Morphome-
tric Analysis (CMA) at Massachusetts General Hospital and are available at
http://neuro-www.mgh.harvard.edu/cma/ibsr. The data provided by CMA were
selected because they have been used in published studies and have various levels
of difficulty. A few of these volumes have low contrast and relatively large inten-
sity gradients, and the performance of the tested algorithms is poor on these.
The volumes have slice dimensions of 256×256, with resolution of 1 mm×1 mm.
Interslice distance is 3 mm, with the number of slices for each volume between
60 and 65.
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BrainSuite was used to segment each of the brains in a minimally interactive
fashion. We performed skull stripping using one of three parameter settings.
Bias correction was performed using the same settings for all twenty brains.
The selection of the tissue prior weighting for tissue classification was performed
manually, using one of three settings. Settings were only varied when the results
were clearly unacceptable. No manual editing of the brain volume or labels was
performed. It is possible that more tuning of the parameters to the individual
data would produce improved results.

To analyze our performance we use the Jaccard similarity metric, which
measures the similarity of two sets as the ratio of the size of their intersection
divided by the size of their union. CMA provides reference results for several
methods that have been tested using these data; the methods are described in
[22]. The results of each method are averaged over the twenty volumes. These
averages, our own results, and the grey matter measure provided in [11] are
shown in Fig. 2 (white matter metrics are not provided in [11]). Also shown
are reference metrics for interoperator variability, 0.876 for GM and 0.832 for
WM, proposed by CMA based on an interoperator variability comparison of
two experts segmenting four brains. The best average performance of the six
reference methods is 0.564 for GM and 0.571 for WM. Our method produced
average similarity measures of 0.595 for GM and 0.664 for WM. This is significant
since our method seeks the GM/WM boundary. The GM similarity measure for
the coupled surface result on the whole brain is 0.657, which outperforms our
method [11].

It should also be noted that some of the volumes had artifacts that were
beyond the capability of our program to generate useful cortical surfaces. Two
of the volumes produced results poor enough to prevent further identification
of the cortex. Our methods should achieve better performance on more recently
acquired data, with voxel dimensions that are less anisotropic.

Topological Constraint Algorithm We processed 18 of the 20 IBSR brain
volumes using the BrainSuite tools to produce inner-cerebral masks. The brain-
stem and cerebellum were removed manually. Some subcortical structures such
as the ventricles and subcortical grey matter are not always well-segmented and
were filled using a user-guided flood-filling. This process required approximately
three to five minutes per brain. These white matter masks were then processed
using the topological constraint algorithm. In each case, TCA successfully pro-
duced an object with spherical surface topology, as verified by computing the
Euler characteristic on a Marching Cubes tessellation of the object.

The actual changes made to each volume were very minimal, with at most a
0.7% change in membership to the white matter set. This level of change is well
within the variability one would expect to see among segmentations by experts.
Figure 2 shows the average percentage of changes made with each iteration. The
iteration number corresponds to the largest number of voxels changed to fix a
specific topological problem. Figure 2 emphasizes that most changes are made
in the very early stages of the algorithm and typically correspond to changes
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Fig. 3. Axial and sagittal views of a cortical surface with spherical topology,
generated using BrainSuite. The surface represents the boundary between white
matter and cortical grey matter.

of only a few voxels at a specific location. On newer, higher resolution data our
method achieved much better results, and 75% of the topological corrections were
achieved in the first iteration [15]. Figure 3 shows renderings of a topologically
spherical cortical surface obtained from a high-resolution T1-weighted MR vol-
ume using BrainSuite. In this case, less than 0.1% of the initial set membership
was changed by the topological constraint algorithm.

Processing Time Table 2 shows the CPU time of each stage of the algorithm
applied to the IBSR data. Processing was performed on a 933 MHz Intel Pentium
III Xeon with 256K cache and 256MB of RAM. The topological constraint algo-
rithm is the newest component in the toolset, and may be optimized in future
work to reduce the total time required for segmentation. High resolution data
requires more processing time; the cortical volume in Figure 3 was generated
in approximately fifteen minutes. Presently, cortical volumes may be identified
from MR images in less than 30 minutes of total operator time using BrainSuite.

BSE BFC PVC TCA Total

average 5.1 51.8 3.4 4:01 5:01
best case 3.8 38.7 0.3 2:18 3:06
worst case 8.0 1:11.8 7.8 5:40 6:33

Table 2. CPU times (in minutes:seconds) for each stage of the algorithm applied
to the 20 normal MR brain data sets from the IBSR.
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3.3 Discussion

We have presented a self-contained toolset that produces topologically spherical
cortical surface representations from T1-weighted MR images using an integrated
sequence of low-level processing. The processing requires minimal user interac-
tion, and our method was shown to work in very reasonable time on modern
desktop computer hardware. The results of our cortical identification technique
were validated on both phantom and real data, and were shown to outperform
several existing methods.
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