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Abstract. In this paper, we consider a novel 3D visualization technique
based on conformal surface flattening for virtual colonoscopy. Such visu-
alization methods could be important in virtual colonoscopy since they
have the potential for non-invasively determining the presence of polyps
and other pathologies. Further, we demonstrate a method which presents
a surface scan of the entire colon as a cine, and affords a viewer the op-
portunity to examine each point on the surface without distortion. From
a triangulated surface representation of the colon, we indicate how the
flattening procedure may be implemented using a finite element tech-
nique. We give a simple example of how the flattening map can be com-
posed with other maps to enhance certain mapping properties. Finally,
we show how the use of curvature based colorization and shading maps
can be used to aid in the inspection process.

1 Introduction

Three dimensional visualization is becoming an increasingly important tech-
nique in surgical planning, non-invasive diagnosis and treatment, and image-
guided surgery. Surface warping and flattening, which allow the easy visualiza-
tion of highly undulated surfaces, are methods that are becoming increasingly
widespread. For example, flattened representations of the brain cortical surface
are essential in functional magnetic resonance imaging since one wants to show
neural activity deep within the folds or sulci of the brain. 3D visualization is
also of great importance in virtual colonoscopy in which one can non-invasively
determine the presence of pathologies.

Virtual colonoscopy is currently an active area of research by radiologists as a
minimally invasive screening method for the detection of small polyps (see [8] and
the references therein). In the colon, this has become possible because of imag-
ing devices which allow single breath hold acquisitions of the entire abdomen
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at acceptable resolutions. Most reports have focused on methods which use
computer graphics to simulate conventional colonoscopic procedures [8,13,14].
Virtual colonoscopy has some fundamental problems, which it shares with con-
ventional colonoscopy. The most important one is that the navigation using inner
views is very challenging and it happens frequently that sizable areas are not
inspected at all, leading to incomplete examinations. An alternative approach
for the inspection of the entire surface of the colon is to simulate the approach
favored by pathologists, which involves cutting open the tube represented by
the colon, and laying it out flat for a comprehensive inspection. In some recent
work [11], a visualization technique is proposed using cylindrical and planar map
projections. It is well-known that such projections can cause distortions in shape
as is discussed in [11] and the references therein.

In this paper, we take another approach. We present a method for mapping
the colon onto a flat surface in a conformal manner. A conformal mapping is a
one-to-one mapping between surfaces which preserves angles, and thus preserves
the local geometry as well. Our approach to flattening such a surface is based on a
certain mathematical technique from Riemann surface theory, which allows us to
map any highly undulating tubular surface without handles or self-intersections
onto a planar rectangle in a conformal manner. There is some related work in
the interesting paper [15] on the topological flattening of a tube onto the plane
and its application to virtual colonoscopy. In [15], an electro-magnetic field is
simulated by placing charges along a fly-through path. The resulting field lines
which emanate from a point on the path define a surface whose intersection with
the colon surface forms a loop which is flattened into the plane.

Our approach differs in that no flight path needs to be calculated, and the
conformal nature of our flattening map allows us to enhance mapping properties
and correct for distortion.

From a triangulated surface representation of the colon, we indicate how the
flattening function may be found by solving a second order elliptic partial dif-
ferential equation (PDE) using finite element techniques. Once the colon surface
has been flattened onto a rectangular region of the plane, we utilize a method by
which the entire colon is presented as a cine, and which allows the viewer to ex-
amine each surface point without distortion at some time in the image sequence.
Thus in this sense 100% view with 0% distortion can be achieved. Moreover, we
explicitly show how various structures of the colon may be studied using this ap-
proach. We demonstrate the use of shading maps and colorization as a function
of surface curvatures to enhance visualization and inspection.

2 Analytical Approach to Colon Flattening

We first consider a mathematical model for the colon surface. See [3,6] for the full
details. Let Σ ⊂ R3 represent a smooth embedded surface (no self-intersections)
which is topologically an open-ended cylinder. The boundary of Σ consists of
two topological circles, which we will call σ0 and σ1. We want to introduce a
cut C on Σ from end to end, and construct an angle preserving one-to-one



360 Steven Haker et al.

map f : Σ\C → R2, which sends Σ\C to a rectangle R such that σ0 and
σ1 are mapped to the left and right hand edges of R respectively, while the
cut C is mapped to the upper and lower edges of R. The construction of f
begins by finding, before the cut is made, a solution u to the Dirichlet problem
∆u = 0 on Σ\(σ0∪σ1), with boundary conditions u = 0 on σ0, and u = 1 on σ1.
Here ∆ is the Laplace-Beltrami operator [12] on the surface Σ.

The cut C on Σ is then determined as the trace of the smooth curve obtained
by following the gradient of u from a point on σ0 to σ1. We next compute the
harmonic function v which is conjugate to u by specifying boundary conditions
on the cut surface and again solving a Dirichlet problem; see [6]. The mapping
f = (u, v) sends the surface Σ to a rectangle R, as desired. The mapping can
easily be extended across the cut and thus the cut need not hinder visualization.

3 Approximating the Flattening Function

In the previous section, we outlined the analytical procedure for finding the
flattening map f . Here we will discuss the finite element method for finding
an approximation to this mapping. See [9] for details about this method. In
[1], we described a related method for brain flattening. However, because of
the differences in topology between the brain and colon surface, the boundary
conditions for the flattening maps are quite different. We now assume that Σ is
a triangulated surface, and we look for a flattening map f which is continuous
on Σ and linear on each triangle. Here, we will concentrate on finding u, the
method for its conjugate v being similar.

It is a classical result [12] that the harmonic function u is the minimizer of
the Dirichlet functional

D(u) :=
1
2

∫ ∫
Σ

|∇u|2dS, u|σ0 = 0, u|σ1 = 1, (1)

where ∇u is the gradient with respect to the induced metric on Σ. Let PL(Σ)
denote the space of piecewise linear functions on Σ. For each vertex V ∈ Σ, let
φV be the continuous function, linear on each triangle, such that

φV (V ) = 1,
φV (W ) = 0, W �= V.

(2)

This set {φV } forms a basis for PL(Σ), and so any u ∈ PL(Σ) can be written
as

u =
∑
V ∈Σ

uV φV . (3)

To approximate the solution to the PDE, we minimize D(u) over all u ∈
PL(Σ) which satisfy the boundary conditions. To minimize D(u), we introduce
the matrix
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DV W =
∫ ∫

∇φV · ∇φW dS, (4)

for each pair of vertices V, W. Since DV W �= 0 if and only if V, W are con-
nected by some edge in the triangulation, D is sparse. Simple formulas exist
[1,6,9] for the calculation of the elements of D; these formulas involve only the
angles between adjacent surface edges. One can show that u =

∑
V uV φV mini-

mizes the Dirichlet functional over PL(Σ) with the boundary conditions, if for
each vertex V ∈ Σ\(σ0 ∪ σ1),

∑
W∈Σ\(σ0∪σ1)

DV W uW = −
∑

W∈σ1

DV W . (5)

This is simply a matrix equation. One can quickly solve for the unknown
{uW } using standard tools from linear algebra such as the conjugate gradient
method.

4 Inspection and Distortion Removal

In practice, once the colon surface has been flattened into a rectangular shape,
it will need to be visually inspected for various structures. In this section, we
present a simple technique by which the entire colon surface can be presented
to the viewer as a sequence of images or cine. In addition, this method allows
the viewer to examine each surface point without distortion at some time in the
cine. Here, we will say a mapping is without distortion at a point if it preserves
the intrinsic distance there. It is well known that a surface can not in general
be flattened onto the plane without some distortion somewhere [4]. However, it
may be possible to achieve a surface flattening which is free of distortion along
some curve. The Mercator projection of the earth does this along the equator.
See [11] for a nice discussion of the classical geographic projections and their
application to virtual colonoscopy. In our case, the distortion free curve will be
a level set of the harmonic function u described above (essentially a loop around
the tubular colon surface), and will correspond to the vertical line through the
center of a frame in the cine. Specifically, suppose we have conformally flattened
the colon surface onto a rectangle R = [0, umax] × [−π, π]. Let F be the inverse
of this mapping, and let φ2 = φ2(u, v) be the amount by which F scales a small
area near (u, v), i.e. let φ > 0 be the “conformal factor” for F . Fix w > 0, and
for each u0 ∈ [0, umax] define a subset R0 = ([u0 − w, u0 + w] × [−π, π]) ∩ R
which will correspond to the contents of a cine frame. We define a mapping

(û, v̂) = G(u, v) =
(∫ u

u0

φ(µ, v)dµ,

∫ v

0

φ(u0, ν)dν

)
(6)

from R0 to C which has differential

dG(u, v) =
(

ûu ûv

v̂u v̂v

)
=

(
φ(u, v)

∫ u

u0
φv(µ, v)dµ

0 φ(u0, v)

)
(7)
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and in particular dG(u0, v) = φ(u0, v) ×
(

1 0
0 1

)
. The conformality of the

flattening map, together with this value for dG(u0, v), implies that the compo-
sition of the flattening map with G sends the level set loop {u = u0} on the
colon surface to the vertical line {û = 0} in the û–v̂ plane without distortion.
In addition, it follows from the formula for dG that lengths measured in the
û direction accurately reflect the lengths of corresponding curves on the colon
surface.

5 Application

We tested our algorithms on 256×256×124 CT colon data sets provided to us by
the Surgical Planning Laboratory of Brigham and Women’s Hospital. Two slices
from one such data set are shown in Fig. 1. First, using the fast segmentation
methods of [10] we found the colon surface. Unfortunately, the segmentation
algorithm itself does not guarantee that the surface found will be a topological
cylinder. In fact, it may contain numerous minute handles which arise because
the boundary of the colon, as represented in the data set, may not be sharp. We
used a morphological based method [7] by which these handles can be effectively
removed and a surface which has the the topology of a closed-ended cylinder can
be extracted. This is done in such a way that the large-scale geometry of the
surface is not adversely affected.

Our segmentation method is a so called “level-set” method, in which the colon
surface to extract is defined implicitly as the zero level set {(x, y, z) | Ψ(x, y, z) ≡
0} of a function Ψ defined on the 3D volume. It is well known that the Gaussian
and mean curvatures of such an iso-surface can be calculated from the deriva-
tives of Ψ ; doing so allows us to avoid having to make these calculations on
the triangulated surface after extraction. In fact, we may use the function Ψ
to determine the entire second fundamental form for the iso-surface, using the
formula

II =
−1

||∇Ψ || T t HΨ T (8)

where HΨ is the 3 × 3 Hessian matrix of second derivatives of Ψ , and T is
a 3 × 2 matrix whose columns are arbitrary orthonormal vectors perpendicular
to the surface normal N = ∇Ψ

||∇Ψ || . The eigenvectors e1 and e2 of II yield the
principal directions (the directions in which the degree of surface bending is
extremal) as Te1 and Te2, while the eigenvalues k1, k2 are the corresponding
principal curvatures. See [5] for applications of principal direction vectors to
surface visualization. The Gaussian curvature can then be found by K = k1k2 =
Det(II), the mean curvature by H = 1

2 (k1 + k2) = 1
2Trace(II).

One would expect polyps to have relatively high Gaussian curvature as com-
pared to the flatter surrounding colon surface. Further, these areas should be
convex with respect to the colon interior, and thus have positive mean curvature
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with respect to the outward surface normal. This suggests that for visualiza-
tion, we color the flattened surface according to the Gaussian curvature of the
colon surface, but only where both the Gaussian and mean curvatures of the
colon surface are positive. The other areas may be colored with some neutral
color. This alone, however, is not satisfactory for visualization of the flattened
colon because the folds of the colon will not be represented. One solution to this
problem is to use shading maps, an idea from computer graphics. The idea is to
translate surface normals from the original surface to the corresponding point
on the flattened surface. When rendered under identical lighting conditions, the
original surface and the flattened surface with these “pseudo-normals” will have
similar appearances, due to similar shading. This allows us to color the surface
any way we wish, and still have the surface folds distinguishable in the flattened
representation.

In Fig. 2, two views of the extracted colon surface and the corresponding flat-
tened surface are shown using the coloring and shading scheme described above.
We broke the flattened surface into two pieces to fit the page. The flattened
surface is not exactly rectangular because we cut the colon surface along trian-
gle edges rather than following the gradient of u exactly as described in Section
2. Fig. 3 shows more detailed views. On the left is an exterior view of a piece
of the colon surface. In the center is a “fly-through” view of the same region,
and on the right is the corresponding flattened region, corrected for distortion
along the vertical center line as described in Section 4. In practice this image
would be a single frame of a cine. Notice that the entire section of the colon is
visible in the flattened version, while the coloring and shading scheme indicate
the convex areas and surface folds. We are currently investigating the usefulness
of this visualization scheme for the detection of polyps in a clinical setting.

The distortion correction method described in Section 4 is an example of
how the conformal flattening map may be composed with another map to obtain
desired mapping properties. Another simple example of this sort of enhancement
is shown in Fig. 4. Here, we have composed the flattening map with another
one-to-one conformal mapping from the plane to itself. This second conformal
mapping was chosen to minimize the overall distortion of area in a least squares
sense. However, it is not possible to correct for all distortion this way. Other
such enhancing compositions are a current area of research [2].
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Fig. 1. Two Slices from CT Colon Data Set
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Fig. 2. Two Views of Colon Surface and Flattened Representation

Fig. 3. Exterior, Fly-Through and Flattened Views
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Fig. 4. Improved Conformal Mapping with Detail
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