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Abstract. Multi-scale watersheds have proven useful for interactive seg-
mentation of 3D medical images. For simpler segmentation tasks, the
speed up compared to manual segmentation is more than one order of
magnitude. Even where the image evidence does not very strongly sup-
port the task, the interactive watershed segmentation provides a speed
up of a factor two. In this paper we evaluate a broad class of non-linear
diffusion schemes for the purpose of interactively segmenting gray and
white matter of the brain in T1-weighted MR images. Through a new
scheme GAN, we show that diffusion similar to the nonlinear Perona-
Malik scheme is superior to the other evaluated diffusion schemes. This
provides a speed up factor of two compared to the linear diffusion scheme.

1 Introduction

In many medical segmentation tasks, the images do not sufficiently clearly outline
the relevant anatomical structures for making simple automated segmentations.
The counter-example is simple thresholding of bone structures in CT images
[21]. However, such techniques do not work for most anatomical structures such
as soft tissue in CT (due to varying and indistinguishable attenuation [10]), most
structures in MR (due to the image inhomogeneities [10]), and most structures
in PET/SPECT (due to noise [10]). Here, the alternatives are either performing
a tedious manual outline slice per slice, or creating specialised algorithms heavily
supported by prior information [6].

The interactive 3D multi-scale watershed segmentation tool, V Vision, may
successfully be applied in these situations [8]. The image scale-space is created
by Gaussian convolution [35,17]. The watersheds of the gradient magnitude are
computed independently at all scales. A linking procedure gives the simpler large
scale watersheds the small scale localisation [26,20,15]. The linked watershed
regions constitute a multi-scale partitioning of the images.

Ideally, a given anatomical structure may be outlined by a single region.
However in most situations, the linked watersheds do not directly compare to the
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anatomical structures. V Vision lets the user arbitrarily change scale and select
and deselect regions, and thereby sculpt the anatomical structure. All interaction
is geometrical and thereby very intuitive for the clinician. The speed up compared
to manual segmentation depends on the interactions required to outline the
anatomical structure. Outlining soft tissue in CT may be orders of magnitude
faster. Compared to computerised manual segmentation, a complicated task, the
masseter (chewing muscle) in MR, shows a speed up factor of two [8,11].

The Gaussian scale-space is the least committed scale-space. A non-linear
scale-space commits itself to certain intensity variations through the non-linear
function and to certain local edge shapes through the diffusion structure. This
is formalised through the connection between energy minimization methods [23]
and non-linear diffusion in the biased non-linear diffusion [25]. In this light, one
may argue that the use of the non-linear diffusion schemes is the first step in
commitment towards using prior shape and intensity knowledge like in the active
contour and core-based segmentation methods [6,30].

In this paper, we evaluate a large number of non-linear diffusion schemes
for the multi-scale watersheds in 2D: non-linear isotropic Perona-Malik [29],
non-linear anisotropic schemes [34], and a purely geometrical non-linear scheme
(Mean Curvature Motion) [12]. In section 3.4, we argue that these schemes in a
natural way span the space of diffusion schemes supporting segmentation.

The flavor of our paper is close to the comparison of diffusion schemes for
segmentation performed on the hyper-stack [33,18,24]. The major differences
are that the hyper-stack is based on isophote linking and that it constitutes an
automated segmentation algorithm. In this paper we specifically evaluate how
the deep structure of the various scale-spaces support the segmentation.

The multi-scale watershed segmentation method is introduced in section 2.
In section 3 the evaluated diffusion schemes are presented. The evaluation is
outlined in section 4 with results in section 5.

2 Multi-scale Watershed Segmentation

During rain the drops gather in pools. The topology of a landscape defines
the regions of support for each pool — the catchment basins. The boundaries
between the catchment basins are termed watersheds. On large scale, the water-
sheds of a landscape are the ridges and the catchment basins are the dales. The
geographical concept watershed was introduced to mathematicians in [22].

The watersheds allow a simple partitioning of an image. However, for seg-
mentation purposes the regions border should be defined as the watersheds of
a dissimilarity measure instead of the original image. A simple, general, and
non-committed dissimilarity measure is the gradient magnitude.

The structures that are outlined by this partioning are defined with respect
to the scale at which the gradient is calculated. Different scales are therefore
needed to locate objects of different sizes. The theory of scale-space suggests
looking at the deep structure [17,35,32] — how the catchment basins develop
over scale.
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Each catchment basin corresponds to a local minimum for the gradient mag-
nitude. In [26,27], the generic events for the gradient magnitude minima are
derived. The conclusion is that fold annihilation, fold creation, cusp annihila-
tion, and cusp creation catastrophes are stable and therefore to be expected for
typical images. For the catchment basins, this corresponds to the annihilation,
creation, merge, and split events [26,7].

Linking of the catchment basins across scale combines the simplification at
the detection scale with the fine scale precision at the localisation scale (see
figure 1). The segmentation method presented in [26] uses these localised basins
as building blocks for the segmentation. The user can shift the detection scale
and thereby select building blocks appropriate for sculpting the desired objects.

Original example Watersheds at Watersheds at Detection linked to
image localisation scale detection scale localisation scale

Fig. 1. Linking of catchment basins across scale. The catchment basins at de-
tection scale is linked down to the localisation scale and thereby get fine scale
precision.

Similar approaches to the multi-scale watershed segmentation of [26] are pre-
sented in [20], [14], and [13]. However, an important contribution of [26] is that
an intuitive interface is presented that allows the user to interact directly with
the three-dimensional building blocks. This forms the basis for an implementa-
tion (the program V Vision by Generic Vision) that has been tested by clinical
researchers with promising results [16,8]. An important addition in this imple-
mentation is an extra “artificial” level of voxel-sized building blocks which allows
arbitrary detail in the segmentation.

3 Diffusion Schemes for Multi-scale Watershed
Segmentation

The original multi-scale watershed segmentation method relies on the linear
Gaussian scale-space to simplify the image. This simplification determines how
the catchment basins group into gradually larger building blocks corresponding
to image structures at a given scale.

The linear scale-space for an image I(x) is described by the PDE aLgf;t) =
AL(x;t) = Li;(x;t) with the initial condition: L(x;0) = I(x). The Gaussian
convolution kernel with standard deviation o = /2t is the Green’s function for
the PDE.
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The Linear Gaussian diffusion scheme (here denoted LG) has extremely nice
theoretical properties. In particular, the causality property, the average gray
level invariance property, and the fact that the image gets uniform intensity for
scale tending to infinity ensures that the linear scale-space is applicable for the
multi-scale watershed segmentation method. However, these properties do not
ensure that it is an optimal diffusion scheme for the method.

In [26,27] the generic events for the gradient magnitude minima are derived.
When the diffusion scheme is replaced by nonlinear schemes, the analysis of the
generic events for the watershed regions is no longer applicable. Some of these
nonlinear schemes have been analysed [9]. However, from a practical viewpoint,
the linking of the discrete scale levels can handle nearly any diffusion scheme
with suitable simplification properties due to robust matching of regions [7].

3.1 Regularised Perona-Malik

The classical Perona-Malik diffusion scheme is designed to preserve edges during
the diffusion [29]. The regularisation due to [3] is denoted RPM:

OL(z;t)
ot

1

= din(p(VLo?) VL) where p(VE) = g,
>\2

(1)
The parameter A is a threshold for the gradient magnitude required to make the
scheme preserve an area (an edge). The o determines the regularisation scale.

3.2 Anisotropic Nonlinear Diffusion

Weickert [34] defines the anisotropic nonlinear diffusion equation for a two-
dimensional image I by the PDE:

OL(x;t)
ot

The diffusion tensor D € C°(R?**? R**?) is assumed to be symmetric and
uniform positive definite. The structure tensor J, is evaluated at integration
scale p (set to zero in the following), and the gradient VL, at sampling scale o.

The diffusion equation possesses simplification properties [34] that ensures
that the diffusion schemes are applicable for the segmentation method.

For the following diffusion schemes, the diffusion tensor is defined in terms
of the eigenvectors ¥y || VLy, 72 L VL, and the corresponding eigenvalues A\
and Ao. Furthermore, Weickert presents a diffusivity function w,, designed to
preserve edges more aggressively than the Perona-Malik diffusivity function p.

1 VL, =0
_ 3
1exp<(|VL§|Z‘)m> VL, >0 (3)

=div( D(J,(VLy)) VL) where L(x;0)=I(x) (2)

wm(|VLU|2) =

Here m determines the aggressiveness of the diffusivity function, and C,, is
derived [34,7] from m such that the flux magnitude function |VL| wy,(|VL,|?)
is increasing for |[VL|? < A and decreasing for [VL|? > .
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Isotropic Nonlinear Diffusion

Weickert [34] designs an isotropic nonlinear diffusion scheme (here denoted
IND) by the following eigenvalues A\; = Ay = wy,(]V Ly |?). Intuitively, this is an
increasingly aggressive version of the Perona-Malik scheme for m > 0.75.

Edge Enhancing Diffusion

The anisotropic version is termed edge enhanced diffusion and defined by the
eigenvalues \; = w,,(|VL,|?) and Ay = 1. The choice m = 4 (which implies
Cm = 3.31488) is used in [34] with visually appealing results. Here, we also
exploit m = 2 (C, = 2.33666) and m = 3 (C,, = 2.9183) for the edge enhancing
diffusion scheme.

The isotropic nonlinear scheme enhances edges so aggressively that noise is
preserved around edges for a long scale interval. The anisotropic schemes (here
denoted EE2, EE3, and EE4 depending on the choice of m) remedy this by
smoothing along the edges.

3.3 Mean Curvature Motion

A number of morphological processes possess properties similar to diffusion
schemes [2]. Mean curvature motion (here denoted MCM) is a special case of the
anisotropic nonlinear diffusion scheme [7,34] where A\; = 0 and Ay = 1. MCM is
defined by the following PDE (where (L) is the mean curvature of the isophote
landscape):

oL
o = (L) VL] (4)

3.4 Generalised Anisotropic Nonlinear Diffusion

The diffusion schemes previously presented are defined by the diffusivity func-
tions in the gradient direction and the isophote direction. Figure 2 illustrates
this “space of diffusion schemes”. This inspires the new Generalised Anisotropic
Nonlinear diffusion scheme (denoted GAN) defined by the following diffusivity
functions \; and Aa:

)\1 = w(m7 )‘7 |VL0'|2)
Ao =0+ (1-0) N (5)

The Weickert diffusivity function (equation 3) is written w(m, ), s?) instead of
wm (A, %) since m is to be perceived as a regular parameter of the diffusivity
function. The parameter 6 determines the degree of anisotropy.

The GAN scheme is named Generalised Anisotropic Nonlinear diffusion since
it offers a straigthforward generalisation of the previously presented diffusion
schemes. The choice of the parameters, in particular the aggressiveness param-
eter m and the anisotropy parameter 6, allows the scheme to cover the white
area in figure 2. The existing schemes are realised by the following:
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Fig. 2. Space of diffusion schemes.

The gradient direction and isophote ycm EE4 EE3 EE2 G
direction diffusivity functions de- 03 () i)t €3
termine the positions on the hor-
izontal and vertical axes, respec- RPM
tively. The diffusion schemes with Py
aggressive diffusivity functions are
mapped closest to the lower, left E?Ff’ui?v%?;“;?iﬁi
corner. The gray area is popu- isophote direction.
lated by diffusion schemes that
are not suited for segmentation-
like purposes — they diffuse more
across edges than along them.
Thereby the catchment basins
merge across possible object bor- vore sggresive diffsiviy
ders before merging inside the re- in the gradient direction
gions likely to correspond to the de-

sired objects.

IND
(g, W),

(0,0) (1,0

LG Linear Gaussian diffusion is defined by A — oo.

IND Isotropic Nonlinear Diffusion is achived for 6 = 0.

RPM Regularised Perona-Malik scheme is approximated by 8 = 0
and m = 0.75.

EEx The Edge Enhancing schemes EE2, EE3, and EE4 are de-
fined by 8 = 1 and the corresponding m.
MCM Mean Curvature Motion is achieved for § = 1 and A — 0.

4 Evaluation

An obvious evaluation is to let clinicians test the segmentation method on real
segmentation tasks with the different diffusion schemes. However, this is not
objective and requires extensive work by the clinicians. The alternative is to
measure the quality of the segmentations with respect to a “correct segmenta-
tion” — the ground truth. The quality measure should be general, objective, and
quantitative. For specific segmentation tasks, the quality measure could be de-
fined in terms of specific features of the desired segmentations (shape, topology,
etc.). However, for a general evaluation method, the measure must be simple
and geometric.

In this paper, ground truth segmentations of white and gray matter for both
real and simulated MRI brain scans are used (figures 3 and 4). The real data
is from the Internet Brain Segmentation Repository [1]. The simulated data is
from the BrainWeb [4,19,5]. The quality measure is simply defined by the relative
error (misclassified pixels relative to number of pixels in ground truth object,
where a pixel is uncorrectly segmented if it is included only in the segmentation
or only in the ground truth).
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Fig.3. Simulated T1 MR brain Fig.4. Real T1 MR brain scan
scan  with ground truth white of a 55 year old male. The set
and gray matter. The volume is contains 60 256x256 slices with
181x217x181 with coronal slice thick- slice thickness 3.0mm. The slices
ness 1 mm, intensity non-uniformity are coronal with a flip angle of
level 20%, noise level 9%. From 40 degrees. From http://neuro-
http://www.bic.mni.mcgill.ca/brainweb www.mgh.harvard.edu/cma/ibsr

The pixel-sized building blocks allow the user to reach an arbitrary seg-
mentation — therefore any diffusion scheme allow perfect segmentation. The
evaluation of the semi-automatic method measures the user effort required to
reach a specific quality threshold. In an evaluation with clinicians, the user effort
could be measured as the time needed. For this evaluation, the effort is naturally
measured as the minimal number of basic user actions required. The canonical
actions are selection and deselection of the building blocks.

The quantitative evaluation allows automatic optimisation of the parame-
ter sets for the diffusion schemes. For details on the evaluation method, the
algorithm for establishing the optimal combinations of building blocks, the op-
timisation method, and the optimal parameter sets, see the technical report [7].

5 Results

The performance is illustrated by the error as a function of the number of actions
for each scheme (with parameters optimised to the specific data set). This is put
into perspective by the performance of a Quad tree linking scheme [31] (here
denoted QT). The number of quad tree blocks required has a close relation to
the boz-counting dimension of the ground truth objects — also denoted the
Hausdorff dimension [28]. Furthermore, the building blocks of the quad tree
are not adapted to the geometry of the image. Thereby the performance of the
quad tree linking gives a frame of reference for the performances of the diffusion
schemes defined in terms of the complexity of the ground truth objects.
Figures 5 and 6 display the performance on the simulated and the real data,
respectively. The best of the existing schemes is the regularised Perona-Malik
scheme. The new GAN scheme is slightly better than this. However, the graphs
do not give a clear notion of the quantitative differences in performance. Figure
7 delivers the desired relative performance indicator on average for all data
sets. The relative performance is determined both for the training set used for
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Fig. 5. Evaluation on simulated data from figure 3. White matter is left and
gray matter is right. Slices 60, 80, 100, 120, and 140 from the data set are used.
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Fig. 6. Evaluation on real data from figure 4. Left is white matter and right is

gray matter. Slices 10, 20, 30, 40, and 50 from the data set are used.
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Performance
Training Independent

3.83
1.18
1.00
1.20
0.66
0.59
0.58
0.51
0.46

3.34
1.19
1.00
1.17
0.66
0.63
0.62
0.51
0.49

Fig.7. Average performances with the Gaussian scheme as reference. For a
given number of actions the performance of the LG scheme is noted — for each
scheme is measured the actions required to get equal quality. The incline of a
curve determines the number of actions required to obtain a given segmentation
quality relative to the performance of the Gaussian scheme. This performance
indicator is displayed in the table for each diffusion scheme. The new GAN
scheme requires less than half as many actions compared to the Gaussian scheme

for both the training set and an independent data set.
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optimisation of the parameters for the diffusion schemes and for an independent
data set.

The results show that Perona-Malik is superior among the existing diffu-
sion schemes — somewhat surprising even the anisotropic schemes show inferior
performance. Furthermore, the optimal parameter sets for the GAN scheme re-
veal the optimal degrees of anisotropy and edge preservation aggressiveness. The
anisotropy parameter 6 is close to zero for all data sets (0.06, 0.12, 0.0, and 0.0).
The improved performance compared to RPM is due to slightly increased ag-
gressiveness in the diffusivity function (the parameter m is 1.4, 1.0, 1.1, and 1.0
compared to the approximate value of 0.75 for RPM).

In the technical report [7], a number of other results are documented as well:

— With a tolerance area 1 pixel wide around the borders of the ground truth
segments, 97% of the ground truth pixels can be segmented without the use
of pixel-sized building blocks.

— A simpel user heuristic requires around one third more user actions than the
optimal actions used by the evaluation method for all diffusion schemes.

— The diffusion schemes require up to 30 scale levels for the discrete linking to
be sufficiently closely discretised.

— Similar results are measured for higher number of actions, from simulated
data with less noise and from real data of a schizophrenic brain.

6 Conclusion

We have constructed a generalised anisotropic diffusion scheme GAN capturing
many known diffusion schemes. Tuning this for interactive multi-scale watershed
segmentation of white/gray matter in T1-weighted MR slices of the brain shows
that diffusion similar to regularised Perona-Malik is superior to the other dif-
fusion schemes. Furthermore, the aggresiveness in the diffusion cut-off is more
important than the degree of anisotropy. The best among the tested diffusion
schemes yields a decrease in interaction time with more than a factor two com-
pared to linear Gaussian scale-space. Our expectation is that the gain is even
higher in a 3D implementation (if nothing else changes, the expected speed up

N
factor in ND is approximately v/2' ). The conclusion is linked to the segmenta-
tion task of white/gray matter in the brain. For cases like vessels or abdominal
organs, other diffusion schemes may be optimal.
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