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Abstract. One of the recent thrust areas in research on hyperelliptic
curve cryptography has been to obtain explicit formulae for perform-
ing arithmetic in the Jacobian of such curves. We continue this line of
research by obtaining parallel versions of such formulae. Our first contri-
bution is to develop a general methodology for obtaining parallel algo-
rithm of any explicit formula. Any parallel algorithm obtained using our
methodology is provably optimal in the number of multiplication rounds.
We next apply this methodology to Lange’s explicit formula for arith-
metic in genus 2 hyperelliptic curve – both for the affine coordinate and
inversion free arithmetic versions. Since encapsulated add-and-double al-
gorithm is an important countermeasure against side channel attacks, we
develop parallel algorithms for encapsulated add-and-double for both of
Lange’s versions of explicit formula. For the case of inversion free arith-
metic, we present parallel algorithms using 4, 8 and 12 multipliers. All
parallel algorithms described in this paper are optimal in the number of
parallel rounds. One of the conclusions from our work is the fact that
the parallel version of inversion free arithmetic is more efficient than the
parallel version of arithmetic using affine coordinates.

Keywords: hyperelliptic curve cryptography, explicit formula, parallel
algorithm, Jacobian, encapsulated add-and-double.

1 Introduction

Hyperelliptic curves present a rich source of abelian groups over which the dis-
crete logarithm problem is believed to be difficult. Hence these groups can be
used for implementation of various public key primitives.

The main operation in a hyperelliptic curve based primitive is scalar multi-
plication, which is the operation of computing mX, where m is an integer and X
is a (reduced) divisor in the Jacobian of the curve. Any algorithm for scalar mul-
tiplication requires an efficient method of performing arithmetic in the Jacobian.
This arithmetic essentially consists of two operations – addition and doubling of
divisors.

The basic algorithm for performing arithmetic in the Jacobian of hyperelliptic
curves is due to Cantor [1]. However, this algorithm is not sufficiently fast for
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practical implementation. There has been extensive research on algorithms for
efficient arithmetic. The main technique is to obtain so called “explicit formula”
for performing addition and doubling. These explicit formulae are themselves
composed of addition, multiplication, squaring and inversion operations over
the underlying finite field. Moreover, these formulae are specific to a particular
genus. Thus there are separate formulae for genus 2 and genus 3 curves. See
Table 1 in Section 2 for more details.

In this paper, we consider the problem of parallel execution of explicit for-
mula. An explicit formula can contain quite a few field multiplications and squar-
ings. (In certain cases, this can even be 50 or more.) On the other hand, the
number of inversions is usually at most one or two. An explicit formula usu-
ally also contains many field additions; however, the cost of a field addition is
significantly less than the cost of a field multiplication or inversion. Hence the
dominant operation in an explicit formula is field multiplication.

On inspection of different explicit formulae appearing in the literature there
appear to be groups of multiplication operations that can be executed in parallel.
Clearly the ability to perform multiplications in parallel will improve the speed
of execution of the algorithm. This gives rise to the following question: Given an
explicit formula, what is the best parallel algorithm for computing the formula?

Our first contribution is to develop a general methodology for obtaining paral-
lel version of any explicit formula. The methodology guarantees that the obtained
parallel version requires the minimum number of rounds. The methodology can
be applied to any explicit formula appearing in the literature. (There could also
be other possible applications.)

The most efficient explicit formula for performing arithmetic in the Jacobian
of genus 2 curve is given in [11,12]. In [11], the affine coordinate representation of
divisors is used and both addition and doubling involve a field inversion. On the
other hand, in [12] the explicit formula is developed for inversion free arithmetic
in the Jacobian.

Our second contribution is to apply our methodology to both [11] and [12].
For practical applications, it is necessary to consider resistance to side channel
attacks. One important countermeasure is to perform a so-called encapsulated
add-and-double algorithm (see [3,6,7] for details). We develop parallel versions
of encapsulated add-and-double algorithm for both [11] and [12]. In many situ-
ations, the number of parallel multipliers available may be limited. To deal with
such situations we present the encapsulated add-and-double algorithm using in-
version free arithmetic using 4, 8 and 12 multipliers. For the affine version we
have derived an algorithm using 8 multipliers. All of our algorithms are optimal
parallel algorithms in the sense that no other parallel algorithm can perform the
computation in lesser number of rounds.

Some of our results that we obtain are quite striking. For example, using
4 multipliers, we can complete the inversion free encapsulated add-and-double
algorithm in 27 rounds and using 8 multipliers we can complete it in 14 rounds.
The algorithm involves 108 multiplications. In the case of arithmetic using affine
coordinates, the 8 multiplier algorithm will complete the computation in 11
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Table 1. Complexity of Explicit Formulae.

Genus Name/Proposed in Characteristic Cost(Add) Cost(Double)
Genus 2 Cantor [19] All 3[i] + 70[m/s] 3[i] + 76[m/s]

Nagao [19] Odd 1[i] + 55[m/s] 1[i] + 55[m/s]
Harley [5] Odd 2[i] + 27[m/s] 2[i] + 30[m/s]

Matsuo et al [14] Odd 2[i] + 25[m/s] 2[i] + 27[m/s]
Miyamoto et al [17] Odd 1[i] + 26[m/s] 1[i] + 27[m/s]

Takahashi [23] Odd 1[i] + 25[m/s] 1[i] + 29[m/s]
Lange [11] All 1[i] + 22[m] + 3[s] 1[i] + 22[m] + 5[s]
Lange [12] All 40[m] + 6[s] 47[m] + 4[s]

Genus 3 Nagao [19] Odd 2[i] + 154[m/s] 2[i] + 146[m/s]
Pelzl et al [20] All 1[i] + 70[m] + 6[s] 1[i] + 61[m] + 10[s]

Genus 4 Pelzl et al [21] All 2[i] + 160[m] + 4[s] 2[i] + 193[m] + 16[s]

rounds including an inversion round. Usually inversions are a few times costlier
than multiplications, the actual figure being dependent upon exact implemen-
tation details. However, from our results it is clear that in general the parallel
version of arithmetic using affine coordinates will be costlier than the parallel
versio n of inversion free arithmetic.

2 Preliminaries of Hyperelliptic Curves

In this section, we give a brief overview of hyperelliptic curves. For details,
readers can refer to [15]. Let K be a field and let K be the algebraic closure
of K. A hyperelliptic curve C of genus g over K is an equation of the form
C : v2 + h(u)v = f(u) where h(u) in K[u] is a polynomial of degree at most
g, f(u) in K[u] is a monic polynomial of degree 2g + 1, and there are no singular
points (u, v) in K×K. Unlike ellip tic curves, the points on the hyperelliptic curve
do not form a group. The additive group on which the cryptographic primitives
are implemented is the divisor class group. Each element of this group is a reduced
divisor. The group elements have a nice cannonical representation by means of
two polynomials of small degree. The algorithms Koblitz [8] proposed for divisor
addition and doubling are known as Cantor’s algorithms.

Spallek [22] made the first attempt to compute divisor addition by explicit
formula for genus 2 curves over fields of odd characteristic. Harley [5] improved
the running time of the algorithm in [22]. Gaudry and Harley [4] observed that
one can derive different explicit formula for divisor operations depending upon
the weight of the divisors. In 2000, Nagao [19] proposed two algorithms; one
for polynomial division without any inversion and another for extended gcd
computation of polynomials requiring only one inversion. Both these algorithms
can be applied to Cantor’s algorithm to improve efficiency. Lange [10] generalised
Harley’s approach to curves over fields of even characteristic. Takahashi [23] and
Miyamoto, Doi, Matsuo, Chao and Tsujii [17] achieved furthur speed-up using
Montgomery’s trick to reduce the number of inversions to 1. For genus 2 curves,
the fastest version of explicit formula for inversion free arithmetic is given in [12]
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and the fastest version of explicit formula using affine coordinates is given in [11].
Lange has also proposed various co-ordinate systems and explicite formula for
arithmetic of genus 2 curves over them. Interested readers can refer to [13]. For
genus 3 curves Pelzl, Wollinger, Guajardo and Paar [20] have proposed explicit
formula for performing arithmetic. For genus 4 curves, Pelzl, Wollinger and Paar
have derived explicit formuae [21]. Curves of genus 5 and above are considered
insecure for cryptographic use.

We summarise the complexity of various explicit formulae proposed in liter-
ature in Table 1. The cost generally correspond to the most general case. In the
cost column, [i], [m], [s] stand for the time taken by an inversion, a multiplication
and a squaring in the underlying field respectively. The notation, [m/s] stands for
time of a square or multiplication. In the corresponding papers, multiplications
and squarings have been treated to be of the same complexity.

3 General Methodology for Parallelizing Explicit Formula

An explicit formula for performing doubling (resp. addition) in the Jacobian of a
hyperelliptic curve is an algorithm which takes one (resp. two) reduced divisor(s)
as input and produces a reduced divisor as output. Also the parameters of the
curve are available to the algorithm. The algorithm proceeds by a sequence
of elementary operations, where each operation is either a multiplication or an
addition or an inversion over the underlying field. In general the formulae involve
one inversion. If there is one inversion, the inversion operation can be neglected
and the parallel version can be prepared without it. Later, it can be plugged in as
a separate round at an appropriate place. The same is true if the formula contains
more than one inversions. Hence, we can assume that the formula is inversion-
free. The cost of a field multiplication (or squaring) is significantly more than
the cost of a field addition and hence the number of field multiplications is
the dominant factor determining the cost of the alg orithm. On inspection of
the different explicit formulae available in the literature, it appears that there
are groups of multiplication operations which can be performed in parallel. The
ability to perform several mulitplications in parallel can significantly improve the
total computation time. So the key problem that we consider is the following:
Given an explicit formula, identify the groups of multiplication operations that
can be performed in parallel. In this section we develop a general methodology
for solving this problem.

Let F be an explicit formula. Then F consists of mulitiplication and addition
operations. Also several intermediate variables are involved. First we perform the
following preprocessing on F .

1. Convert all multiplications to binary operation : Operations which are ex-
pressed as a product of three or more variables are rewritten as a seqence
of binary operations. For example, the operation p5 = p1p2p3 is rewritten as
p4 = p1p2 and p5 = p3p4.
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2. Reduce multiplication depth : Suppose we are required to perform the fol-
lowing sequence of operations: p3 = p2

1p2; p4 = p3p2. The straightforward
way of converting to binary results in the following sequence of operations:
t1 = p2

1; p3 = t1p2; p4 = p3p2. Note that the three operations have to be
done sequentially one after another. On the other hand, suppose we perform
the operations in the following manner: {t1 = p2

1; t2 = p2
2; }{p3 = t1p2; p4 =

t1t2}. In this case, the operations within {} can be performed in parallel and
hence the computation can be completed in two parallel rounds. The total
number of operations increases to 4, but the number of parallel rounds is
less. We have performed such operation using inspection. We also note that
it should be fruitful to consider algorithmic approach to this step.

3. Eliminate reuse of variable names : Consider the following sequence of op-
erations:

q1 = p1 + p2; q2 = p3; . . .; q1 = p4 + p5; . . .

In this case, at different points of the algorithm, the intermediate variable q1
is used to store the values of both p1 + p2 and p4 + p5. During the process of
devising the parallel algorithm we rename the variable q1 storing the value
of p4 + p5 by a unique new name. In the parallel algorithm we can again
suitably rename it to avoid the overhead cost of initialising a new variable.

4. Labeling process : We assign unique labels to the addition and mulitplication
operations and unique names to the intermediate variables.

Given a formula F , we define a directed acyclic graph G(F) in the following
fashion.

– The nodes of G(F) correspond to the arithmetic operations and variables of
F . Also there are nodes for the parameters of the input divisor(s) as well as
for the parameters of the curve.

– The arcs are defined as follows: Suppose id :r = qp is a multiplication op-
eration. The identifier id is the label assigned to this operation. Then the
following arcs are present in G(F) : (q, id), (p, id) and (id, r). Similarly, the
arcs for the addition operations are defined, with the only difference being
the fact that the indegree of an addition node may be greater than two.

Proposition 1. The following are true for the graph G(F).
1. The indegree of variable nodes corresponding to the parameters of the input
divisors and the parameters of the curve is zero.
2. The indegree of any node corresponding to an intermediate variable is one.
3. The outdegree of any node corresponding to an addition or multiplication
operation is one.

Note that the outdegree of nodes corresponding to variables can be greater than
one. This happens when the variable is required as input to more than one arith-
metic operation. Our aim is to identify the groups of multiplication operations
that can be performed in parallel. For this purpose, we prepare another graph
G∗(F) from G(F) in the following manner:
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– The nodes of G∗(F) are the nodes of G(F) which correspond to multiplica-
tion operation.

– There is an arc (id1, id2) from node id1 to node id2 in G∗(F) only if there
is a path from id1 to id2 in G(F) which does not pass through another
multiplication node.

The graph G∗(F) captures the ordering relation between the multiplication op-
erations of F . Thus, if there is an arc (id1, id2) in G∗(F), then the operation id1

must be done before the operation id2. We now define a sequence of subgraphs
of G∗(F) and a sequence of subsets of nodes of G∗(F) in the following manner.

– G1(F) = G∗(F) and M1 is the set of nodes of G1 whose indegree is zero.
– For i ≥ 2, Gi is the graph obtained from Gi−1 by deleting the set Mi−1 from

Gi−1 and Mi is the set of nodes of Gi whose indegree is zero.

Let r be the least positive integer such that Gr+1 is the empty graph, i.e., on
removing Mr from Gr, the resulting graph becomes empty.

Proposition 2. The following statements hold for the graph G∗(F).
1. The sequence M1, . . . , Mr forms a partition of the nodes of G∗(F).
2. All the multiplications in any Mi can be performed in parallel.
3. There is a path in G∗(F) from some vertex in M1 to some vertex in Mr.
Consequently, at least r parallel multiplication rounds are required to perform
the computation of F .

It is easy to obtain the sets Mi’s from the graph G∗(F) by a modification
of the standard topological sort algorithm [2]. The sets Mi (1 ≤ i ≤ r) rep-
resent only the multiplication operations of F . To obtain a complete parallel
algorithm, we have to organize the addition operations and take care of the in-
termediate variables. There may be some addition operations at the beginning
of the formula. Since additions are to be performed sequentially, we can ignore
these additions while deriving the parallelised formula, treating the sums they
produce as inputs. Later, they can be plugged in at the beginning of the formula.

For 1 ≤ i ≤ r−1, let Ai be the set of addition nodes which lie on a path from
some node in Mi to some node in Mi+1. Further, let Ar be the set of addition
nodes which lie on a path originating from some node in Mr. There may be more
than one addition operation in a path from a node in Mi to a node in Mi+1.
These additions have to be performed in a sequential manner. (Note that we are
assuming that F starts with a set of multiplication operations and ends with a
set of addition operations. It is easy to generalize to a more general form.)

Each multiplication and addition operation produces a value which is stored
in an intermediate variable. We now describe the method of obtaining the set of
intermediate variables required at each stage of computation. Let I1, . . . , I2r and
O1, . . . , O2r be two sequences of subsets of nodes of G(F), where each Ii and Oj

contain nodes of G(F) corresponding to variables. The parameters of the curve
and the input divisor(s) are not included in any of the Ii and Oj ’s. These ar e
assumed to be additionally present throughout the algorithm. For 1 ≤ i ≤ r,
these sets are defined as follows:
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1. I2i−1 contains intermediate variables which are the inputs to the multiplic-
ation nodes in Mi.

2. I2i contains intermediate variables which are the inputs to the addition no-
des in Ai.

3. O2i−1 contains intermediate variables which are the outputs of the multipl-
ication nodes in Mi.

4. O2i contains intermediate variables which are the outputs of the addition
nodes in Ai.

For 1 ≤ j ≤ 2r, define

Vj = (∪j
i=1Oi) ∩ (∪2r

i=j+1Ii). (1)

If a variable x is in Vj , then it has been produced by some previous operation
and will be required in some subsequent operation. We define the parallel version
par(F) of F as a sequence of rounds

par(F) = (R1, . . . ,Rr). (2)

where Ri = (Mi, V2i−1, Ai, V2i). In round i, the multiplications in Mi can be
performed in parallel; the sets V2i−1 and V2i are the sets of intermediate variables
and Ai is the set of addition operations. Note that the addition operations are
not meant to be performed in parallel. Indeed, in certain cases the addition
operations in Ai have to be performed in a sequential manner. We define several
parameters of par(F).

Definition 1. Let par(F) = (R1, . . . ,Rr), be the r-round parallel version of the
explicit formula F . Then
1. The total number of multiplications (including squarings) occuring in par(F)
will be denoted by TM.
2. The multiplication width (MW) of par(F) is defined to be MW = max1≤i≤r

|Mi|.
3. The buffer width (BW) of par(F) is defined to be BW = max1≤i≤2r |Vi|.
4. A path from a node in M1 to a node in Mr is called a critical path in par(F).
5. The value r is the critical path length (CPL) of par(F).

The parameter MW denotes the maximum number of multipliers that can oper-
ate in parallel. Using MW parallel multipliers F can be computed in r parallel
rounds. The buffer width BW denotes the maximum number of variables that
are required to be stored at any stage in the parallel algorithm.

3.1 Decreasing the Multiplication Width

The method described above yeilds a parallel algorithm par(F) for a given ex-
plicit formula F . It also fixes the number of computational rounds r required to
execute the algorithm using MW number of proessors. By definition, MW is the
maximum number of multiplications taking place in a round. However, it may
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happen that in many rounds the actual number of multiplications is less than
MW. If we use MW multipliers, then some of the multipliers will be idle in such
rounds. The most ideal scenario is MW ≈ �TM/r�. However, such an ideal situa-
tion may not come about automatically. We next describe a method for making
the distribution of the number of multiplication operations more uniform among
various rounds.

We first prepare a requirement table. It is a table containing data about the
intermediate variables created in the algorithm. For every variable it contains
the name of the variables used in the expressions computing it, the latest round
in which one of such variables is created and the earliest round in which the
variable itself is used. For example, suppose an intermediate variable vx = vy ∗vz

is computed in the j-th round. Of vy and vz, let vz be the one which is computed
later and in the i-th round. Let vx be used earliest in the k-th round. Then in
the requirement table we have an entry for vx consisting of vy, vz, i, k. If both of
vx and vy are input values then we may take i = 0. Note that we have i < j < k.

Now suppose, there are more than �TM/r� multiplications in the j-th round.
Further suppose that for some j1 (i+1 ≤ j1 ≤ k − 1), the number of multiplica-
tions in the jth1 round is less than �TM/r�. Then we transfer the multiplication
producing vx to the jth1 round and hence reduce the multiplication width of
the j-th round. This change of position of the multiplication operation does not
affect the correctness of the algorithm.

This procedure is applied as many times as possible to rounds which contain
more than �TM/r� multiplications. As a result we obtain a parallel algorithm
with a more uniform distribution of number of multiplication operations over
the rounds and consequently reduces the value of MW.

3.2 Managing Buffer Width

The parameter BW provides the value of the maximum number of intermediate
variables that is required to be stored at any point in the algorithm. This is
an important parameter for applications where the amount of memory is lim-
ited. We justify that obtaining parallel version of an explicit formula does not
substantially change the buffer width. Our argument is as follows.

First note that the total number of multiplications in the parallel version is
roughly the same as the total number of multiplications in the original explicit
formula. The only place where the number of multiplications increases is in the
preprocessing step of reducing the multiplication depth. Moreover, the increase
is only a few multiplications. The total number of addition operations remain the
same in both sequential and parallel versions. Since the total numbers of multi-
plications and additions are roughly the same, the total number of intermediate
variables also remains roughly the same.

Suppose that after round k in the execution of the parallel version, i inter-
mediate variables have to be stored. Now consider a sequential execution of the
explicit formula. Clearly, in the sequential execution, all operations upto round
k has to be executed before any operation of round greater than k can be exe-
cuted. The i intermediate variables that are required to be stored after round k
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are required as inputs to operations in round greater than k. Hence these inter-
mediate variables are al so required to be stored in the sequential execution of
the explicit formula.

4 Application to Lange’s Explicit Formulae
In [11] and [12], Lange presented explicit formulae for addition and doubling
in the Jacobian of genus 2 hyperelliptic curves. In fact, there are many special
cases involved in these explicit formulae and our methodology can be applied to
all the cases. But to be brief, we restrict our attention to the most general and
frequent case only. The formulae in [11] uses an inversion each for addition and
doubling while the formulae in [12] does not require any inversion.

We apply the methodology described in Section 3 separately to the formulae
in [11] and [12]. In the case of addition, the inputs are two divisors D1 and D2
and in the case of doubling the input is only one divisor D1. We use the following
conventions.
– We assume that the curve parameters h2, h1, h0, f4, f3, f2, f1, f0 are available

to the algorithm.
– We do not distinguish between squaring and multiplication.
– The labels for the arithmetic operations in the explicit formula for addition

start with A and the labels for the arithmetic operations in the explicit
formula for doubling start with D. The second letter of the label (M or A)
denotes (m)ultiplication or (a)ddition over the underlying field. Thus AM23
denotes the 23rd multiplication in the explicit formula for addition.

– The intermediate variables for the explicit formula for addition are of the
form pi and the intermediate variables for the explicit formula for doubling
are of the form qj .

– In [11,12], multiplications by curve constants are presented. However, during
the total multiplication count, some of these operations are ignored, since for
most practical applications the related curve constants will be 0 or 1. In this
section, we include the multiplication by the curve parameters. In Section 5,
we consider the situation where these are 0 or 1.

– The set of intermediate variables (Vi’s) required at any stage is called the
buffer state.

4.1 Inversion Free Arithmetic
In this section, we consider the result of application of the method of Section 3
to the inversion free formula for addition and doubling given in [12]. The details
are presented in the Appendix. The details of addition formula is presented in
Section A.1 and the details of the doubling formula is presented in Section A.2.
We present a summary of the parameters of the parallel versions in Table 2.

Based on Table 2 and Proposition 2(3), we obtain the following result.

Theorem 1. Any parallel algorithm for executing either the explicit formula for
addition or the explicit formula for doubling presented in [12] will require at least
8 parallel multiplication rounds. Consequently, the parallel algorithms presented
in Sections A.1 and A.2 are optimal algorithms.
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Table 2. Parameters for parallel versions of explicit formula in [12].

MW BW CPL TM
Add 8 20 8 59
Double 11 15 8 65

4.2 Arithmetic Using Affine Coordinates

The most efficient explicit formula for arithmetic using affine coordinates has
been presented in [11]. Here we consider the result of applying the methodology
of Section 3 to this formula. Again due to lack of space we present the details full
version of the paper. The parallel version of the addition formula is presented
therein.

A summary of the results is presented in Table 3.

Table 3. Parameters for parallel versions of explicit formula in [11].

MW BW CPL TM
Add 6 12 7∗ 29∗

Double 5 13 8∗ 34∗
∗ Including one inversion

We have the following result about the parallel versions of the explicit formula
in [11].

Theorem 2. Any parallel algorithm for executing the explicit formula for ad-
dition (resp. doubling) presented in [11] will require at least 7 (resp. 8) parallel
multiplication rounds. Consequently, the parallel algorithms presented in [16] are
optimal algorithms.

5 Encapsulated Addition and Doubling Algorithm

In this section, we address several issues required for actual implementation.

– The algorithms of Section A include multiplications by the parameters of
the curve. However, we can assume that h2 ∈ {0, 1}. If h2 
= 0, then by
substituting y = h5

2y
′

and x = h2
2x

′
and dividing the resulting equation

by h10
2 , we can make h2 = 1. Also, if the underlying field is not of char-

acteristic 5, we can assume that f4 = 0. Otherwise, we can make it so by
substituting x

′
= (x − f4/5). In the algorithms presented below, we assume

that h2 ∈ {0, 1} and f4 = 0 and hence the corresponding multiplications are
ignored. These decreases the total number of multiplications and hence also
the number of parallel rounds. In most applications h1, h0 also are in {0, 1}.
Hence efficiency in such situations can go up further. Thus all the operations
in Section A of Appendix do not occur in the algorithms in this section.
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– The usual add-and-double scalar multiplication algorithm is susceptible to
side channel attacks. One of the main countermeasures is to perform both
addition and doubling at each stage of scalar multiplication (see [3]). We call
such an algorithm an encapsulated add-and-double algorithm. The parallel
algorithms we present in this section are encapsulated add-and-double algo-
rithms. All of them take as input two divisors D1 and D2 and produce as
output D1 + D2 and 2D1.

5.1 Inversion Free Arithmetic

In this section, we consider parallel version of encapsulated add-and-double for-
mula. We obtain the algorithms from the individual algorithms presented in
Section A.1 and A.2.

First we note that the total number of multiplication operations for encap-
sulated add-and-double under the above mentioned conditions is 108. Since the
value of MW for addition is 8 and for doubling is 11 and both have CPL = 8,
a total of 19 parallel finite field multipliers can complete encapsulated addition
and doubling in 8 parallel rounds. However, 19 parallel finite field multipliers
may be too costly. Hence we describe algorithms with 4, 8 and 12 parallel multi-
pliers. (Note that an algorithm with two multipliers is easy to obtain – we assign
one multiplier to perform addition and the other to perform doubling.)

Suppose the number of multipliers is m and the total number of operations is
TM. Then at least �(TM/m)� parallel rounds are necessary. Any algorithm which
performs the computation in these many rounds will be called a best algorithm.
Our parallel algorithms with 4 and 8 multipliers are best algorithms. Further,
our algorithm with 12 multipliers is optimal in the sense that no other parallel
algorithm with 12 multipliers can complete the computation in less rounds.

The actual algorithms for performing inversion free arithmetic with 4 pro-
cessors is presented in Table 5. Such tables for 8 and 12 processors are presented
in the full version of the paper. This table only lists the multiplication and addi-
tion of field elements. Interested readers can access the full version of the paper
at [16]. The labels in the table refer to the labels of operations in the algorithms
in Section A.1 and A.2. We present a summary of the results in Table 2.

Table 4. Summary of algorithms with varying number of processors for inversion free
arithmetic of [12].

No of Multipliers 2 4 8 12
Number of rounds 54 27 14 10

5.2 Affine Coordinates

An eight multiplier parallel version of explicit formula for encapsulated add-and-
double is presented in the full version of the paper. In this case the total number
of multiplications is 65. The eight multiplier algorithm requires 11 parallel rounds
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Table 5. Computation chart using four parallel multipliers for inversion free arithmetic
of [12].

Rnd Operation
1 AM01, AM02, AM03, AM04
2 AM05, AM06, AM07, AM08

AA01, AA02, AA03, AA04
3 DM01, DM02, DM04, DM08

DA01, DA02, DA03, DA04
4 DM09, AM09, AM10, AM11

DA05, DA06, DA07, AA07, AA08, AA09
5 AM12, AM13, AM14, AM16

AA05, AA06
6 DM12, DM13, DM14, DM15

DA08
7 DM16, DM17, DM18, DM19

DA09, DA10
8 DM20, DM22, AM17, AM18

AA10, DA11, DA11, DA12, DA13
9 AM19, AM20, AM21, AM22

AA12, AA13, AA14, AA15
10 DM23, DM24, DM25, DM26

DA14, DA15, DA16, DA17, DA18, DA19
11 DM27, DM29, AM23, AM24
12 AM25, AM26, AM27, AM28
13 AM29, AM30, DM30, DM31

AA16, AA17
14 DM32, DM33, DM34, DM35

DA20, DA21
15 AM31, AM32, AM33, AM34

AA18, AA19
16 AM35, AM37, AM38, DM36
17 DM37, DM38, DM39, DM41
18 DM43, AM39, AM40, AM41
19 AM42, AM43, AM44, AM46

AA20, AA21, AA22, AA23, AA24, AA25
20 DM44, DM45, DM46, DM47
21 DM48, DM49, DM50, AM47

DA22, DA23, DA24, DA25
22 AM48, AM49, AM50, AM51
23 AM52, AM53, DM51, DM52

AA26, AA27
24 DM53, DM54, DM55, DM56
25 DM57, AM54, AM55, AM56

DA26, DA27, DA28
26 AM57, DM58, DM59, DM60

AA28, AA29, AA30, AA31
27 DM62, DM63, DM65, DM66

DA29, DA30, DA31, DA32, DA33, DA34
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including an inversion round. On the other hand, the eight multiplier algorithm
for inversion free arithmetic requires only 14 multiplication rounds. Thus, in
general the parallel version of inversion free arithmetic will be more efficient
than the parallel version of arithmetic obtained from affine coordinates.

6 Conclusion

In this work, we have developed a general methodology for deriving parallel ver-
sions of any explicit formula for computation of divisor addition and doubling.
We have followed the methods to derive the parallel version of the explicit for-
mula given in [12] and [11]. We have considered encapsulated add-and-double
algorithms to prevent side channel attacks. Moreover, we have described parallel
algorithms with different number of processors.

It has been shown that for the inversion free arithmetic of [12] and with 4, 8
and 12 field multipliers an encapsulated add-and-double can be carried out in 27,
14 and 10 parallel rounds respectively. All these algorithms are optimal in the
number of parallel rounds. In the case of arithmetic using affine coordinates [11],
an eight multiplier algorithm can perform encapsulated add-and-double using 11
rounds including an inversion round. Since an inversion is usually several times
costlier than a multiplication, in general the parallel version of inversion free
arithmetic will be more efficient than the parallel version of arithme tic using
affine coordinates.

We have applied our general methodology to explicit formula for genus 2
curves. The same methodology can also be applied to the explicit formula for
genus 3 curves and to other explicit formulae appearing in the literature. Pe-
forming these tasks will be future research problems.
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A Details of Parallel Versions of Explicit Formula
The organisation of this section is as follows.
– Parallel version of the explicit formula for addition using inversion free arith-

metic of [12] is presented in Section A.1.
– Parallel version of the explicit formula for doubling using inversion free arith-

metic of [12] is presented in Section A.2.
Similar paralellised versions of addition and doubling algorithms for affine

co-ordinates given in [11] have been derived using the methods presented in this
paper and are available in the full version of the paper. Interested readers can
find them at [16].
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A.1 Addition Using Inversion Free Arithmetic

Algorithm
Input : Divisors D1 = [U11, U10, V11, V10, Z1] and D2 = [U21, U20, V21, V20, Z2].
Output : Divisor D1 + D2 = [U ′

1, U
′
0, V

′
1 , V ′

0 , Z ′]
Initial buffer: U11, U10, V11, V10, Z1, U21, U20, V21, V20, Z2.

Round 1
AM01. Z = Z1Z2; AM02. Ũ21 = Z1U21; AM03. Ũ20 = Z1U20;
AM04. Ṽ21 = Z1V21; AM05. Ṽ20 = Z1U20; AM06. p1 = U11Z2;
AM07. p2 = U10Z2; AM08. p3 = V11Z2.
Buffer: Z, Ũ21, Ũ20, Ṽ21, Ṽ20, p1, p2, p3.
AA01. p4 = p1 − Ũ21; AA02. p5 = Ũ20 − p2;
AA03. p6 = p3 − Ṽ21; AA04. p7 = Z1 + U11.
Buffer: Z, Ũ21, Ũ20, Ṽ21, Ṽ20, p3, p4, p5, p6, p17, p7, Z.

Round 2
AM09. p8 = U11p4; AM10. p9 = Z1p5; AM11. p10 = Z1p4;
AM12. p11 = p2

4; AM13. p12 = p4p6; AM14. p13 = h1Z;
AM15. p14 = f4Z; AM16. p15 = V10Z2

Buffer: Z, Ũ21, Ũ20, Ṽ21, Ṽ20, p15, p3, p4, p5, p17, p7, p8, p9, p10, p11, p12, p13, p14.
AA05. p16 = p15 − Ṽ20; AA06. p17 = p16 + p6;
AA07. p18 = p8 + p9; AA08. p19 = p18 + p10;
AA09. p20 = p4 + Ũ21;
Buffer: Z, Ũ21, Ũ20, Ṽ21, Ṽ20, p15, p3, p4, p17, p7, p12, p13, p14, p18, p19, p20

Round 3
AM17. p21 = p5p18; AM18. p22 = p11U10; AM19. p23 = p19p17;
AM20. p24 = p18p16 AM21. p25 = p12p7; AM22. p26 = p12U10;
Buffer: Z, Ũ21, Ũ20, Ṽ21, Ṽ20, p15, p3, p4, p13, p14, p20, p21, p22, p23, p24, p25, p26
AA10. r = p21 + p22; AA11. s1 = p23 − p24 − p25;
AA12. s0 = p24 − p26; AA13. p27 = Ũ21 + Ũ20;
AA14. p28 = p13 + 2Ṽ21; AA15. p29 = p4 + 2Ũ21 − p14;
Buffer:Z, Ũ21, Ũ20, Ṽ21, Ṽ20, r, s1, s0, p15, p3, p4, p20, p27, p28, p29

Round 4
AM23. R = Zr; AM24. s0 = s0Z; AM25. s3 = s1Z;
AM26. S = s0s1; AM26. p30 = s1p4; AM27. p31 = rp29;
AM28. p32 = s1p28 AM29. t = s1p20

Buffer: Ũ21, Ũ20, Ṽ21, Ṽ20, r, s1, s0, R, s3, S, t, p15, p3, p4, p27, p30, p31, p32, p27
AA16. p33 = s0 − t, AA17. p34 = t − 2s0

Buffer:Ũ21, Ũ20, Ṽ21, Ṽ20, r, s1, s0, R, s3, S, p15, p3, p4, p27, p30, p31, p32, p33, p34

Round 5
AM30. S3 = s2

3; AM31. R̃ = Rs3; AM32. S̃ = s3s1;
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AM33. ˜̃
S = s0s1; AM34. l0 = SŨ20; AM35. p35 = h2p33;

AM36. p36 = s2
0; AM37. p37 = R2;

Buffer: Ũ21,Ṽ21, Ṽ20, l2, l0, S3, R̃,
˜̃
S, S̃, S, p15, p3, p27, p30, p31, p32, p34, p35, p36, p37

AA18. p38 = S̃ + S; AA19. p39 = p35 + p32;

Buffer: Ũ21, Ṽ21, Ṽ20, l2, l0, S3, R̃,
˜̃
S, S̃, p15, p3, p27, p30, p31, p34, p36, p38, p39

Round 6

AM38. ˜̃
R = R̃S̃; AM39. l2 = S̃Ũ21; AM40. p40 = p38p27;

AM41. p41 = p30p34; AM42. p42 = p3S̃; AM43. p43 = Rp39;
AM44. p44 = h2R̃; AM45. p45 = p15R̃;

Buffer: Ṽ21, Ṽ20, l2, l0, S3, R̃,
˜̃
S,

˜̃
R, p31, p36, p37, p40, p41, p42, p43, p44

AA20. l1 = p40 − l2 − l0; AA21. l2 = l2 + ˜̃
S;

AA22. U ′
0 = p36 + p41 + p42 + p43 + p31;

AA23. U ′
1 = 2˜̃

S − p45 + p44 − p37;
AA24. l2 = l2 − U ′

1; AA25. p46 = U ′
0 − l1;

Buffer: U
′
0, U

′
1, Ṽ21, Ṽ20, l2, l0, S3, R̃,

˜̃
S,

˜̃
R, p46

Round 7
AM46. p47 = U ′

0l2; AM47. p48 = S3l0; AM48. p49 = U ′
1l2;

AM49. p50 = S3p46; AM50. Z ′ = R̃S3; AM51. U ′
0 = R̃U ′

0;
AM52. U ′

1 = R̃U ′
1;

Buffer state: U
′
0, U

′
1, Ṽ21, Ṽ20,

˜̃
R, p47, p48, p49, p50, Z

′

AA26. p51 = p47 − p48; AA27. p52 = p49 + p50;

Buffer: U
′
0, U

′
1, Ṽ21, Ṽ20,

˜̃
R, p51, p52, Z

′

Round 8

AM53. p53 = ˜̃
RṼ20; AM54. p54 = ˜̃

RṼ21; AM55. p55 = h0Z
′;

AM56. p56 = h1Z
′; AM57. p57 = h2U

′
0; AM58. p58 = h2U

′
1;

Buffer state: U
′
0, U

′
1, p51, p52, p53, p54, p55, p55, p56, p57, p58, Z

′

AA28. p59 = p51 − p53 − p55; AA29. p60 = p52 − p54 − p56;
AA30. V ′

0 = p57 + p59; AA31. V ′
1 = p58 + p60;

Buffer state: U
′
0, U

′
1, V

′
0 , V

′
1 , Z

′
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A.2 Doubling Using Inversion Free Arithmetic

Algorithm
Input : Divisors D1 = [U11, U10, V11, V10, Z1].
Output : Divisor 2D1 = [U

′′
1 , U

′′
0 , V

′′
1 , V

′′
0 , Z

′′
].

Initial Buffer: U11, U10, V11, V10, Z1.

Round 1
DM01. q0 = Z2

1 ; DM02. q1 = h1Z1; DM03. q2 = h2U11;
DM04. q3 = h0Z1; DM05. q4 = h2U10; DM06. q5 = f4U11;
DM07. q6 = h2V11; DM08. q7 = f2Z1; DM09. q8 = V11h1;
DM10. q9 = V10h2; DM11. q10 = f4U10;
Buffer: q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10

DA01. Ṽ1 = q1 + 2V11 − q2; DA02. Ṽ0 = q3 + 2V10 − q4;
DA03. q11 = 2U10; DA04. inv1 = −Ṽ1; DA05. q12 =q7 − q8 − q9 − 2q10;
DA06. q13 = 2q11 + q10 + q6; DA07. q14 = q11 + 2q7 + q6;
Buffer: inv1, Ṽ1, Ṽ0, q0, q14, q11q12, q13

Round 2
DM12. q15 = V 2

11; DM13. q16 = U2
11; DM14. q17 = Ṽ0Z1;

DM15. q18 = U11Ṽ1 ; DM16. q19 = Ṽ 2
1 ; DM17. q20 = f3q0;

DM18. q21 = q12Z1; DM19. q22 = q13Z1 ; DM20. q23 = q14Z1;
DM21. q24 = h2U11; DM22. q25 = h1Z1;
Buffer:inv1, Ṽ1, Ṽ0, q0, q15, q16, q17, q18, q19, q20, q21, q22, q23, q24, q25
DA08. q26 = q17q18; DA09. q27 = q20 + q16;DA10. q28 = q22 − q27;
DA11. k1 = 2q16 + q27 − q23; DA12. q29 = q21 − q15;
DA13. q30 = 2V10 − q24 + q25;
Buffer:inv1, Ṽ0, k1, q0, q19, q26, q27, q28, q29, q30

Round 3
DM23. q31 = Ṽ0q26; DM24. q32 = q19U10; DM25. q33 = U11q28;
DM26. q34 = Z1q29; DM27. q35 = k1inv1; DM28. q36 = f4Z1;
DM29. q37 = Z1U10;
Buffer:inv1, k1, q0, q26, q31, q32, q37, q30, q33, q34, q35, q36
DA14. r = q31 + q32; DA15. k0 = q33 + q34;DA16. q38 = k0 + k1;
DA17. q39 = inv1 + q26; DA18. q40 = 1 + U11;
DA19. q41 = 2U11 − q36;
Buffer:q0, r, k0, q26, q37, q30, q35, q36, q38, q39, q40, q41

Round 4
DM30. R = q0r; DM31. q42 = q38q39; DM32. q43 = q35q40;
DM33. q44 = q35q37; DM34. q45 = k0q26; DM35. q46 = rq41;
Buffer:R, q30, q45, q36, q42, q43, q44, q46
DA20. s3 = q42 − q45 − q43; DA21. s0 = q45 − q44;
Buffer: R, s0, s3, q30, q46
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Round 5
DM36. q47 = R2; DM37. q48 = s0s3; DM38. s1 = s3Z1;
DM39. S0 = s2

0 ; DM40. t = h2s0; DM41. q49 = q30s3;
DM42. q50 = h2R; DM43. q51 = Z1q46;
Buffer: S0, t, s1, q47, q48, q49, q51, q50
Addition phase
No addition required at this step.
Buffer: Same as above.

Round 6
DM44. R̃ = Rs1; DM45. S1 = s2

1; DM46. q52 = s1s3;
DM47. S = q48Z1 ; DM48. l0 = U10q48; DM49. q53 = Rq49;
DM50. q54 = q50s1;
Buffer: R̃, S1, S, S0, t, l0, q47, q48, q52, q53, q51, q54
DA22. q55 = U11 + U10; DA23. q56 = q48 + q52;
DA24. U

′′
0 = S0 + q53 + t + q51;

DA25. U
′′
1 = 2S + q54 − q47;

Buffer:U
′′
0 , U

′′
1 , l0, S1, R̃, q55, q52, q56

Round 7

DM51. ˜̃
R = R̃q52; DM52. q57 = q56q55; DM53. q58 = S1l0;

DM54. Z
′′

= S1R̃ ; DM55. q59 = R̃U
′′
1 DM56. q60 = R̃U

′′
0 ;

DM57. l2 = U11s1 ;

Buffer: U
′′
0 , U

′′
1 , Z

′′
,
˜̃
R, S1, l0, l1, l2, q57, q58, q59, q60

DA26. l1 = q57 − l2 − l0;
DA27. l2 = l2 + S − U

′′
1 ; DA28. q61 = U

′′
0 − l1;

Buffer:U
′′
0 , U

′′
1 , Z

′′
,
˜̃
R, S1, l2, q58, q59, q60, q61

Round 8
DM58. q62 = U

′′
0 l2; DM59. q63 = U

′′
1 l2; DM60. q64 = S1q61;

DM61. q65 = h2q60 ; DM62. q66 = ˜̃
RV10; DM63. q67 = h0Z

′′
;

DM64. q68 = h2q59; DM65. q69 = ˜̃
RV11; DM66. q70 = h1Z

′′
;

Buffer: Z
′′
, q58, q59, q60, q62, q63, q64, q65, q66, q67, q68, q69, q70

DA29. q71 = q62 + q58; DA30. q72 = q63 + q64;
DA31. U

′′
0 = q60; DA32. U

′′
1 = q59;

DA33. V
′′
0 = q71 + q65 − q66 − q67;

DA34. V
′′
1 = q72 + q68 − q69 − q70;

Buffer:U
′′
0 , U

′′
1 , Z

′′
, V

′′
0 , V

′′
1
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