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Abstract. We estimate the yield of the number field sieve factoring al-
gorithm when applied to the 1024-bit composite integer RSA-1024 and
the parameters as proposed in the draft version [17] of the TWIRL hard-
ware factoring device [18]. We present the details behind the resulting
improved parameter choices from [18].
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1 Introduction

RSA with 1024-bit moduli is widely used. It is unlikely that breaking a single
1024-bit RSA modulus will change much, just as repeatedly breaking DES had,
for obvious economic reasons, limited effect on legacy applications. Nevertheless,
despite the possible lack of immediate practical relevance, in cryptographic cir-
cles there is wide-spread interest in the question how hard it would be to factor
a 1024-bit RSA modulus (cf. [2], [12]).

At the Asiacrypt 2002 rump session an innovative hardware device, ‘TWIRL’,
was presented that would be able to factor 1024-bit RSA moduli at a much lower
cost than before. The work reported here was inspired by that presentation and
the draft of TWIRL [17]. The draft presents cost estimates for a number field
sieve (NFS) factorization of a 1024-bit composite that rely on extrapolations of
parameter settings used for a 512-bit NFS factorization (cf. Section 4). To our
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knowledge the accuracy of long range extrapolation from 512 to 1024 bit param-
eter selection had never been properly tested. Our goal was therefore to do a
‘reality check’ of the choices made in [17]. Given the many uncertainties involved
in the factoring process we did not expect conclusive results but hoped to get an
indication if the proposed parameters looked ‘reasonable’ or not. As it turned
out, our results suggested that the choices were over-optimistic. Our approach
was subsequently adopted by the authors of TWIRL. It allowed them to derive
realistic parameters and to fine-tune the improved design [18]. The additional
cost of the new choices is offset, approximately, by the greater efficiency of the
new design, so that the overall cost estimates of [17] and [18] are similar. The
details of the parameter settings from [18] are presented in Appendix B.

A sketch of our approach follows. We assume elementary background on
the NFS (cf. Section 2). We selected the number RSA-1024 from [16] as a rep-
resentative 1024-bit RSA modulus. This choice was supported by experiments
that did not reveal significant differences between RSA-1024 and several other
1024-bit products of randomly selected 512-bit primes. We followed the search
strategy from [13], [14], [15] to select number fields of degrees 5, 6, 7, 8, and 9
for RSA-1024, but we did not spend as much time on the search as we would
have done for an actual factoring attempt. The resulting number fields can thus
be regarded as somewhat worse than the number fields that would result from
a more extensive search and the resulting estimates are on the pessimistic side.
The better polynomial selection program of Jens Franke and Thorsten Kleinjung
can handle only degree 5. It was used in Appendix B.

For all these number fields and a wide range of factor base sizes and sieving
regions (including the choices made in [17]) we estimated the expected number of
relations using numerical approximation of the applicable smoothness and semi-
smoothness probabilities. Unfortunately, there is no a priori way to evaluate how
close the resulting estimates are to the actual yield. To validate the estimates,
we therefore ran extensive (semi-)smoothness tests on the actual numbers that
would appear in an NFS factoring attempt, restricted to the most promising
degrees and subsets of the sieving regions. We used the relatively slow test de-
scribed in Section 3. This posed no problems because our object was determining
the yield, not optimizing the speed. It can be seen in Section 5 that although the
different methods do not produce identical results, the actual smoothness tests
do inspire a high level of confidence in the numerical approximations.

Furthermore, we computed similar estimates for the multiple number field
approach from [5], under the untested and possibly over-optimistic assumption
that all number fields are about equally ‘good’ as the number fields we generated
(cf. Section 6). In the same section we estimated the yield under the assumption
that we are able to find much better number fields than we found, for instance
by adapting the Franke/Kleinjung program to higher degrees. Corresponding
actual smoothness experiments were not performed for these variations, because
they involve number fields that we did not actually manage to construct.

There is nothing new to our approach and neither are the results earth-
shaking. In particular we did not attempt to address the uncertainties referred



Factoring Estimates for a 1024-Bit RSA Modulus 57

to above, namely to analyse the cycle-matching behavior of relations involving
large primes. We are not aware of any progress in that area. Despite the lack of
innovative results, we hope that the approach presented in this paper is help-
ful to other researchers in this field. From that point of view our work already
proved useful, as witnessed by the evolution of [17] into [18] (cf. Appendix B).

2 Number Field Sieve Background

This section describes the parts of the number field sieve factoring algorithm
which are relevant for this paper. See [10] for further details. The number of
primes ≤ x is denoted by π(x). An integer is y-smooth if all its prime factors are
≤ y. An integer k is (y, z, �)-semi-smooth if it is y-smooth except for at most �
prime factors that are > y and ≤ z (referred to as large primes). If this is the
maximal such �, then k is strictly (y, z, �)-semi-smooth.
Regular NFS. Let n be the number to be factored. Fix a degree d. Find an
integer m (close to n1/(d+1)), an irreducible polynomial f ∈ Z[X] of degree d such
that f(m) ≡ 0 mod n, and a corresponding skewness ratio s (cf. [13], [14], [15]).
This f is chosen such that the values bdf(a/b), for coprime pairs of integers (a, b)
with b > 0, have a larger than average y-smooth factor, for small y. For integer k,
let η(y, k) denote the largest y-smooth factor of k and λ(y, k) = log(η(y, k))
the natural logarithm thereof. For random integers, the expected value E(y) of
λ(y, k) is known to be

E(y) =
∑

p<y, p prime

(log p)/(p − 1).

The expected value Ef (y) of λ(y, bdf(a/b)) can be determined experimentally
by averaging λ(y, bdf(a/b)) over a large random set of coprime pairs (a, b) with
b > 0. The correction factor that measures f ’s advantage is defined as t =
exp(Ef (230) − E(230)).

Fix rational smoothness and semi-smoothness bounds yr and zr and algebraic
ones ya and za, with yr ≤ zr and ya ≤ za. Fix the number of large primes
on the rational side �a and on the algebraic side �r. In the sieving step find
relations: pairs of coprime integers (a, b) with b > 0 such that the rational
norm Nr(a, b) = |a − bm| is (yr, zr, �r)-semi-smooth and the algebraic norm
Na(a, b) = |bdf(a/b)| is (ya, za, �a)-semi-smooth. If Nr(a, b) is yr-smooth and
Na(a, b) is ya-smooth, the relation is referred to as a full relation, otherwise it is
called a partial relation. Approximately π(min(yr, ya))/d! full relations are free,
namely one for each prime p ≤ min(yr, ya) such that f has d roots modulo p
(cf. [10]). A non-free relation (a, b) for which Nr(a, b) is strictly (yr, zr, Lr)-
semi-smooth and Na(a, b) is strictly (ya, za, La)-semi-smooth will be called an
(Lr, La)-partial relation. We use the standard abbreviations ff for (0, 0)-partial
relations, fp for (0, 1)-partial relations, pf for (1, 0)-partial relations and pp for
(1, 1)-partial relations.

For the Nr(a, b)’s the sieving step involves sieving with the primes ≤ yr, the
rational factor base of cardinality π(yr). For the Na(a, b)’s it involves sieving
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with pairs (p, r) with p ≤ ya prime and f(r) ≡ 0 mod p, the algebraic factor base
of cardinality ≈ π(ya). Let T (yr, ya) = π(yr) + π(ya) − π(min(yr, ya))/d!.

The purpose of the sieving step is to find approximately T (yr, ya) independent
cycles: sets C of relations such that

∏
(a,b)∈C Nr(a, b) is a square times a yr-

smooth number and, simultaneously,
∏

(a,b)∈C Na(a, b) is a square times a ya-
smooth number. The condition on the last square is slightly more involved; see
below. A full relation is a cycle of length 1. Two (1, 0)-partial relations whose
rational norms share a large prime can be combined into a cycle of length 2.
Similarly, for two (0, 1)-partial relations (a1, b1) and (a2, b2) whose algebraic
norms share the large prime p, a length 2 cycle follows if the relations correspond
to the same root of f mod p, i.e., if a1/b1 ≡ a2/b2 mod p. Longer cycles may
be built by pairing matching rational large primes or matching algebraic large
primes with corresponding roots.

The part of the (a, b)-plane where relations are sought, the sieving region,
consists of a, b with −A < a ≤ A and 0 < b ≤ B for sufficiently large A, B > 0
with A/B ≈ s. The size 2AB of the sieving region is denoted by S. A rectangular
sieving region is in general not optimal in the sense that certain carefully chosen
and somewhat smaller regions may yield the same number of relations (cf. [20]).
For our yield computations this is hardly a concern.

Given approximately T (yr, ya) independent cycles, the factorization of n fol-
lows by applying the matrix step to the cycles and the square-root step to the
results of the matrix step; these final two steps are not discussed in this paper.

Cycle Yield. The number of relations required to obtain T (yr, ya) independent
cycles is determined by the matching behavior of the large primes. This behavior
varies from factorization to factorization and is not yet well understood. Obvi-
ously, T (yr, ya) distinct (non-free) full relations suffice, but this is necessary only
if the large primes cannot be paired at all — that has never occurred in practice
so far. Furthermore, the behavior gets considerably more complicated if more
than a single large prime is allowed in the rational and algebraic norms. This is
customary in current factorizations because it leads to a considerable speedup
(cf. [4]). The uncertainty about the matching behavior of the large primes is
the main reason that it is currently impossible to give reliable estimates for the
difficulty of factoring numbers that are much larger than the numbers we have
experience with. For that reason, we mostly restrict ourselves to estimates of the
sieving region that would be required to find T (yr, ya)/c non-free full relations
for a range of yr and ya values and several values of c ≥ 1. Note that, for any
number of large primes per relation, π(zr) + π(za) relations always suffice.

Effort Required. For smoothness bounds yr and ya, sieving region size S and
assuming a traditional implementation, the sieving effort is dominated by the
number of times the primes and (prime,root) pairs in the factor bases hit the
sieving region. This value is approximately proportional to

S(log log(yr) + log log(ya)).

Furthermore, memory for the sieve and the factor bases may be needed.
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Coppersmith’s Multi-polynomial Version. As shown in [5] an improve-
ment of the regular NFS can be obtained by considering a set G of irreducible
degree d polynomials with shared root m modulo n. In that case, a relation is a
pair of coprime integers (a, b) with b > 0 such that Nr(a, b) is (yr, zr, �r)-semi-
smooth and bdg(a/b) is (ya, za, �a)-semi-smooth for a g ∈ G. The goal is to find
π(yr) + #G(π(ya) − π(min(yr, ya))/d!) cycles. First, sieving is used to find a
set V of (yr, zr, �r)-semi-smooth rational norms (with a and b coprime). Next, a
smoothness test different from sieving is used (in [5] the elliptic curve method
is suggested) to test bdg(a/b) for (ya, za, �a)-semi-smoothness for all (a, b) ∈ V
and all g ∈ G. The approximate runtime of the relation collection becomes
proportional to

S log log(yr) + E(#V )(#G)

where E is a constant of proportionality that depends on the (ya, za, �a)-semi-
smoothness test used. Its value is best determined empirically.

3 Number Field Sieve Analysis and Estimates

Let the notation be as above. This section describes the methods we used to
estimate the yield of the NFS. Let Lx[r, α] denote any function of x that equals

exp((α + o(1))(log x)r(log log x)1−r), for x → ∞,

where α and r are real numbers with 0 ≤ r ≤ 1 and logarithms are natural.
Estimating Smoothness and Semi-smoothness Probabilities. Let σ�

(u, v) denote the probability that a random integer ≤ x is strictly (x1/u, x1/v, �)-
semi-smooth, for x → ∞. In particular, σ0(u, v) is the probability of x1/u-
smoothness, and equals the Dickman ρ(u) function (cf. [1], [6]) which is u−u+o(1)

for u → ∞ (cf. [3], [7]). Also, let σ̄2(u, v, w) be the probability that a random in-
teger ≤ x is x1/u-smooth except for exactly two prime factors > x1/u and ≤ x1/v

whose product is < x1/w (note that σ2(u, v) = σ̄2(u, v, v/2)). We assume that
these functions give good approximations of the semi-smoothness probabilities
for the finite values of x that we consider (cf. Section 5, [1], [9]).

Closed expressions for σ� are not known. Thus, for ρ and σ1 we used the
numerical approximation methods given in [1]. To compute σ2 and σ̄2 we used
a natural generalization of [9, Theorem 3.1] and performed the integration nu-
merically using the GNU Scientific Library.
Asymptotic Runtime. It is heuristically assumed that with respect to
smoothness properties Nr(a, b) and Na(a, b) behave independently as random in-
tegers of comparable sizes. It follows that a pair of coprime integers (a, b) leads to
a full relation with probability ur

−ur+o(1)ua
−ua+o(1), where ur = log(Nr(a,b))

log(yr)
and

ua = log(Na(a,b))
log(ya) . Optimization of the parameters leads to the heuristic asymp-

totic expected NFS runtime Ln[1/3, (64/9)1/3] ≈ Ln[1/3, 1.923], for n → ∞, yr

and ya both equal to Ln[1/3, (8/9)1/3] (the ‘square-root of the runtime’), and
the sieving region size S = Ln[1/3, (64/9)1/3]. The correction factor t and large
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primes are believed to affect these values only by a constant factor (which disap-
pears in the o(1)). Coppersmith’s multi-polynomial variant [5] runs, asymptot-
ically, slightly faster in expected time Ln[1/3, 1.902]. These expressions provide
some insight into parameter selection, but the presence of the o(1) limits their
practical value. See Section 4 for how they are often used in practice.

Estimating the Yield Using ρ and σ�. For actual yield estimates we include
the correction factor t defined in Section 2. Redefine ua = log(Na(a,b)/t)

log(ya) , and

define vr = log(Nr(a,b))
log(zr)

, va = log(Na(a,b)/t)
log(za) . Then under the same assumptions as

above, it follows that (a, b) forms an (Lr, La)-partial relation with probability

σLr(ur, vr) · σLa(ua, va).

Integration of these probabilities over the sieving region gives an estimate for the
total yield of (Lr, La)-partial relations. An estimate for #V in the runtime of
Coppersmith’s variant is obtained by integrating the σLr(ur, vr) values over the
sieving region. Similar integrations are used to compute candidate frequencies in
Appendix B. A correction factor 6/π2 ≈ 0.608 is applied to all results to account
for the probability that a and b are coprime. The integrations were carried out
using Mathematica and the GNU Scientific Library.

Actual Smoothness Tests. To get an impression of the accuracy of the above
ρ and σ1-based estimates compared to the actual NFS yield, we tested Nr(a, b)
and Na(a, b)-values for smoothness for wide ranges of (a, b) pairs. Because it has
never been doubted that the probability that Nr(a, b) and Na(a, b) are smooth
equals the product of the smoothness probabilities, we did not test that assump-
tion.

We had no access to a siever that allows the range of factor base sizes we
intended to test, nor to hardware on which it would be able to run efficiently.
Therefore we wrote a smoothness test that uses trial division up to 230 combined
with the elliptic curve factoring method (ECM). The choice 230 was partially
inspired by our wish not to miss any semi-smooth Nr(a, b) or Na(a, b)-values that
would, in theory, be found when using one of the parameter choices from [17].

The simplest approach would have been to subject each successive number to
be tested to trial division followed, if necessary, by the ECM. To obtain slightly
greater speed, and without having to deal with the imperfections (overlooking
smooth values) and inconveniences (memory requirements, resieving or trial di-
visions to obtain the cofactor) of sieving, the trial divisions were organized in
such a way that a large consecutive range of a’s could be handled reasonably
efficiently, for a fixed b. For the algebraic norms this was achieved as follows (the
rational norms are processed similarly). Let [A1, A2] be a range of a-values to
be processed. For all (prime,root) pairs (p, r) with p < 230 calculate the smallest
ap ≥ A1 such that ap ≡ br mod p (i.e., p divides Na(ap, b)) and if ap ≤ A2 insert
the pair (p, ap) in a heap that is ordered with respect to non-decreasing ap values.
Next, for a = A1, A1 +1, . . . , A2 in succession compute ca = Na(a, b), remove all
elements with ap = a from the top of the heap, remove all corresponding factors
p from ca, and if ap +p ≤ A2 insert (p, ap +p) in the heap. Note that this can be
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seen as a variant of the ‘largish station’ design from [18]. The resulting ca values
have no factors < 230, are prime if < 260, and subjected to the ECM if com-
posite. Due to the probabilistic nature of the ECM, factors between 230 and the
smoothness bound ya (or yr) may be overlooked. With proper ECM parameter
settings and reasonably sized ya (and yr) this does not occur often. Furthermore,
no relation relevant for the primary choice in [17] will be overlooked.

4 Traditional Extrapolation

In this section we sketch the traditional approach to estimate the difficulty of
factoring a 1024-bit RSA modulus. Let R indicate a resource required for a
factorization effort. For instance, R could indicate the computing time or it
could be the factor base size, or the total matrix weight, or any other aspect of
the factorization for which one wants to measure the cost or size.

For each resource R let CR(x) be a function that measures, asymptotically
for x → ∞ and in the relevant unit, how much of R is needed to factor x. For
several resources a theoretical expression for this function is known. For instance,
when R measures the total expected computing time, then

CR(x) ≈ Lx[1/3, (64/9)1/3],

with Lx[, ] as in Section 3. If R measures the factor base size the constant
(64/9)1/3 in this expression would, in theory, be halved.

Assume that Rn′ units of some resource R are known to be required (or
were used) to factor some RSA modulus n′. Then CR(n)

CR(n′)Rn′ is used to estimate
how much of R would be required (or feasible) for the factorization of RSA
modulus n. In this type of estimate it is customary to ignore all o(1)’s, if they
occur in CR. Based on frequent observations this is not unreasonable if log(n′)
and log(n) are close. For large scale extrapolations, however, omitting the o(1)’s
may be an over-simplification that might produce misleading results.

Furthermore, even if log(n′) and log(n) are close, CR-based extrapolation for
resources R that are well understood in theory, may lead to results that have
no practical value. As an example, for a 512-bit factorization, e.g. RSA-155, one
would recommend a factor base size that is about 2.5 times larger than for a
462-bit factorization (as RSA-140). In practice, however, the entire concept of
factor base size is obscured by the use of multiple large primes and special q’s: it
turned out that using the same factor base size did not lead to severe performance
degradation.

This particular effect that not-even-nearly-optimal factor base sizes still lead
to only slightly suboptimal performance is due to the behavior around the min-
imum of the runtime curve as a function of the factor base size: the runtime
only gradually increases for factor base sizes that are much larger or somewhat
smaller than the optimum. On the other hand, it increases sharply if the factor
base size gets much too small (cf. [20]). This explains the potential dangers of
o(1)-less factor base size extrapolation: a suboptimal small choice, in the region
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where the curve is relatively well behaved, for the factor base for n′ may extrap-
olate to a factor base size for n in the steep region of the curve, thereby leading
to a much larger total runtime for n than anticipated; see also Section 5, Table 2.

It is not uncommon to use n′ = RSA-155 (a 512-bit number) as the basis
for the extrapolation. In [11] the following parameters were proposed for 512-bit
numbers (in the notation of Section 2), which is close to the values used for the
factorization of RSA-155 (cf. [4]):

512-bit moduli: yr = ya = 224, sieving region of size S = 1.6E16 (A = 9E9,
B = 9E5; we use ‘vEw’ for ‘v · 10w’). According to [17] the sieving step can
be done in less than ten minutes on a US$10K device.

Straightforward (o(1)-less) extrapolation suggests that 768 and 1024-bit moduli
would require smoothness bounds that are 75 and 2700 times larger and sieving
regions that are 6000 and 7.5E6 times larger, respectively: smoothness bounds
approximately 230 and 235 and S ≈ 1E20 and S ≈ 1.2E23, respectively. As
shown in [12] additional optimization arguments may enter into and further
complicate the extrapolation. In [17] this leads to relatively small estimates for
the smoothness bounds and relatively large sieving regions:

768-bit moduli: yr = ya = 1.2E7 (< 224), S = 4.2E20 (A = 1.5E12, B =
1.5E8). The sieving step can be done within 70 days on a US$5K device.

1024-bit moduli: yr = ya = 2.5E8 (< 228), S = 6E23 (A = 5.5E13, B =
5.5E9). The sieving step takes a year on a US$10M device.

Furthermore, the following is given in [17] and claimed to be an overestimate
based on traditional extrapolation:

1024-bit moduli, but not using partial relations: yr = ya = 1.5E10 (<
234), S = 6E23. The sieving step takes a year on a US$50M device.

5 Results

Let the notation be as in Section 2. In this section we present our ρ and σ1-based
estimates for the yield of the NFS when applied to RSA-155 and RSA-768 with
the parameters as suggested in [17] (and specified in Section 4) and to RSA-
1024 for a wide variety of parameters, including those from [17]. Furthermore,
we compare the estimates to the results of smoothness tests applied to numbers
that would occur in an actual NFS factorization attempt. In Appendix B we give
the corresponding estimates for RSA-1024 and the parameter choices from [18].

512-bit Moduli. Let n = RSA-155, d = 5, f as in [4], s = 10800, and
t = exp(5.3). Application of our ρ and σ1-based estimates to yr = ya = 224,
zr = za = 26yr = 230, A = 9E9, and B = 9E5 result in an estimated yield of
T (yr, ya)/8.9 ≈ 2.4E5 ff’s, 2.2E6 fp’s, 9.1E5 pf’s, and 8.1E6 pp’s. Because the
parameter choice was intended for the use of more than a single large prime per
norm, these results look acceptable: if more than one tenth of the matrix is filled
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with ff’s, combinations of multi-prime partial relations will certainly fill in the
rest.

With yr = 229, ya = 230, and B = 4.0E4 the same fraction of the matrix
would be filled with ff’s for a sieving effort that is more than 470 times lower,
but T (yr, ya) would be 38.4 times larger, and sieving would have required more
fast RAM than was available in 1999. Because yr = ya = 224 is much smaller
than the choice that would minimize the sieving effort, extrapolation may result
in very large sieving efforts, as mentioned in Section 4. See also Table 2 below.
768-bit Moduli. For n = RSA-768 we generated a fifth degree polynomial
with s ≈ 26000 and t ≈ exp(5.3). To get S = 4.2E20, we use B = 9E7 and
A = sB. With yr = ya = 224, T (yr, ya) = 2.1E6, and zr = za = 210yr = 234

we estimate a yield of fewer than 40 ff’s, 1200 fp’s, 500 pf’s, and 2E4 pp’s. It
is unlikely that this is feasible, unless a substantial effort is spent on finding
multi-prime partial relations. With yr = 229, ya = 230, and the same sieving
region, about T (yr, ya)/16 ≈ 5.2E6 ff’s can be expected. With reasonable use of
partial relations this may be feasible.
1024-bit Moduli. For n = RSA-1024 we considered degrees d = 5, 6, 7, 8, 9,
each with corresponding integer m, d-th degree polynomial f , skewness ratio s,
and correction factor t as specified in Appendix A. For each of these degrees
and S = 6E23 the estimated yield figures are presented in the first two parts of
Table 1, both for yr = ya = 228 and yr = ya = 234. Because the skewness ratio s
depends on d, the height B =

√
S/(2s) and width 2A = 2sB of the sieving

region depend on d. In the last two parts the effect is given of doubling and
quadrupling B, thereby increasing S (and the sieving effort) by a factor 4 and 16,
respectively (since the skewness ratio s is kept invariant). We used zr = za = 2jyr

for j ∈ {8, 12, 16} and indicate the expected fp, pf, and pp yield by fpj , pfj , and
ppj , respectively. Note that [17] does not use partial relations for yr = ya = 234.

Table 1. Estimated yields for smoothness bounds from [17].

d s B ff fp8 pf8 pp8 fp12 pf12 pp12 fp16 pf16 pp16
yr = ya = 228, T (yr, ya) ≈ 2.9E7, S = 6E23, sieving effort 3.6E24

5 87281.9 1.9E9 22 4.7E2 2.3E2 5.1E3 9.2E2 4.3E2 1.8E4 1.6E3 6.9E2 5.1E4
6 458.9 2.6E10 74 1.7E3 6.3E2 1.4E4 3.3E3 1.1E3 5.0E4 5.8E3 1.8E3 1.4E5
7 40.9 8.6E10 1.5E2 3.6E3 1.0E3 2.4E4 6.9E3 1.8E3 8.1E4 1.2E4 2.8E3 2.2E5
8 107.3 5.3E10 34 8.2E2 1.8E2 4.5E3 1.6E3 3.2E2 1.5E4 2.8E3 4.8E2 4.0E4
9 8.5 1.9E11 3 69 14 2.5E2 1.3E2 24 8.2E2 1.8E2 37 2.2E3

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 6E23, sieving effort 3.8E24
5 87281.9 1.9E9 9.1E6 1.1E8 5.6E7 6.9E8 2.0E8 9.5E7 2.1E9 3.3E8 1.5E8 5.2E9
6 458.9 2.6E10 2.1E7 2.8E8 1.0E8 1.4E9 5.1E8 1.7E8 4.1E9 8.2E8 2.6E8 1.0E10
7 40.9 8.6E10 3.1E7 4.3E8 1.2E8 1.7E9 7.7E8 2.0E8 5.0E9 1.3E9 2.9E8 1.2E10
8 107.3 5.3E10 6.8E6 1.0E8 2.2E7 3.3E8 1.9E8 3.6E7 9.9E8 3.1E8 5.2E7 2.4E9
9 8.5 1.9E11 5.3E5 8.5E6 1.5E6 2.5E7 1.6E7 2.5E6 7.3E7 2.6E7 3.6E6 1.8E8

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 2.4E24, sieving effort 1.5E25
5 87281.9 3.7E9 1.9E7 2.4E8 1.2E8 1.5E9 4.4E8 2.0E8 4.6E9 7.1E8 3.1E8 1.1E10
6 458.9 5.1E10 4.0E7 5.6E8 2.0E8 2.7E9 1.0E9 3.3E8 8.1E9 1.6E9 5.0E8 2.0E10
7 40.9 1.7E11 5.2E7 7.4E8 2.0E8 2.9E9 1.3E9 3.3E8 8.7E9 2.2E9 5.0E8 2.1E10

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 9.8E24, sieving effort 6.1E25
5 87281.9 7.4E9 4.1E7 5.3E8 2.5E8 3.3E9 9.5E8 4.3E8 1.0E10 1.5E9 6.6E8 2.5E10
6 458.9 1.0E11 7.5E7 1.0E9 3.7E8 5.2E9 2.0E9 6.3E8 1.6E10 3.2E9 9.5E8 3.9E10
7 40.9 3.4E11 8.6E7 1.3E9 3.4E8 5.0E9 2.3E9 5.7E8 1.5E10 3.8E9 8.4E8 3.7E10



64 Arjen Lenstra et al.

It follows from Table 1 that unless multi-prime partial relations are collected
on a much wider scale than customary or practical, the choice yr = ya = 228,
and thus the smaller choice yr = ya = 2.5E8 from [17], looks infeasible. Also the
choice yr = ya = 234, and therefore the choice yr = ya = 1.5E10 from [17], is
infeasible if, as suggested in [17], partial relations are not used and if a sieving
region size S as proposed in [17] is used. To get the choice yr = ya = 234 to work
without partial relations, our estimates suggest that d = 6 with B ≈ 2.9E12
(corresponding to S ≈ 8E27) would suffice. This would, however, be about 13000
times more expensive than the estimate from [17]: the initial 2.6E10 b-values
produce about T (yr, ya)/72 ff’s, but the performance deteriorates for larger b’s
so that much more than 72 times the initial effort is needed to find T (yr, ya)
ff’s. For d = 5 or 7 it would be 1.1 or 3.5 times more expensive, respectively.

Using partial relations is probably a more efficient way to get yr = ya = 234 to
work, as suggested by the last two parts of Table 1. Since there are no adequate
methods yet to predict if the partial relation yield as listed, in practice augmented
with partial relations with 3 or more large primes, would suffice or not, we cannot
make any definite statements on the resulting cost, the practical merit of the cost
estimate from [17], or the semi-smoothness bound that would be required. Note
that the performance of d = 6, 7 deteriorates faster than for d = 5, as expected.

In Table 2 the effect of low smoothness bounds is illustrated. The total ex-
pected sieving effort to find T (yr, ya)/32 ff’s is listed for d = 6, yr = 2j with
j = 28, 29, . . . , 51 and ya = 2yr. The optimum 9.3E20 is achieved at j = 47.
When j gets smaller the effort at first increases slowly and gradually, but around
j = 39 the effort grows faster than the smoothness bounds shrink, and for
smaller j the performance deteriorates rapidly.

Table 2. Sieving effort to find T (2j , 2j+1)/32 ff’s for d = 6.

j effort j effort j effort j effort j effort j effort
28 1.5E36 32 5.6E26 36 1.7E23 40 4.8E21 44 1.2E21 48 9.6E20
29 4.7E32 33 3.7E25 37 5.2E22 41 2.9E21 45 1.0E21 49 1.0E21
30 1.4E30 34 4.2E24 38 2.0E22 42 2.0E21 46 9.4E20 50 1.2E21
31 1.7E28 35 7.2E23 39 9.1E21 43 1.5E21 47 9.3E20 51 1.4E21

We now vary d and ir, ia ∈ {25, 26, . . . , 50} and minimize the sieving effort
to find T (2ir , 2ia)/c ff’s, for various c’s. The resulting sieving efforts with corre-
sponding optimal smoothness bounds are listed in Table 3. It can be seen that
both effort and smoothness bounds decrease with increasing c. This effect is
stronger for larger d. Overall, d = 7 is the best choice, with d = 6 better than
d = 8 for small c but vice versa for larger ones. For non-optimal smoothness
bounds, however, d = 7 may not be the best choice, as illustrated in Table 1.
Actual Smoothness Tests for RSA-1024. The accuracy of our ρ and σ1-
based estimates as derived for n = RSA-1024 was tested by applying smoothness
tests (as explained in Section 3) to Nr(a, b) and Na(a, b)-values for wide ranges of
(a, b)-pairs with coprime a and b and degrees and parameters as in Appendix A.
More than 100 billion values have been tested for degrees 6 and 7. No major
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Table 3. Minimal sieving efforts to find T (2ir , 2ia)/c ff’s.

c = 1 c = 8 c = 16 c = 32 c = 64 c = 128
d ir, ia effort ir, ia effort ir, ia effort ir, ia effort ir, ia effort ir, ia effort
6 48,49 1.6E23 47,48 7.2E21 47,48 2.6E21 47,48 9.2E20 47,48 3.3E20 46,47 1.2E20
7 47,49 9.4E22 47,49 3.5E21 46,48 1.1E21 46,47 3.5E20 45,47 1.1E20 45,46 3.6E19
8 48,50 3.7E23 47,49 1.0E22 46,48 3.0E21 46,48 8.7E20 45,47 2.5E20 45,47 7.5E19

Table 4. Actual and estimated number of (2i, 2j , 1)-semi-smooth Nr(a, b)’s for d = 6.

j i

24 25 26 27 28 29 30
24 2.4E3(2.7E3)
25 4.9E3(5.5E3) 6.3E3(7.0E3)
26 7.7E3(8.6E3) 1.2E4(1.4E4) 1.5E4(1.7E4)
27 1.1E4(1.2E4) 1.9E4(2.1E4) 2.8E4(3.1E4) 3.4E4(3.7E4)
28 1.4E4(1.6E4) 2.6E4(2.9E4) 4.3E4(4.7E4) 6.1E4(6.7E4) 7.1E4(7.7E4)
29 1.8E4(2.0E4) 3.4E4(3.7E4) 5.8E4(6.4E4) 8.9E4(9.8E4) 1.2E5(1.3E5) 1.4E5(1.5E5)
30 2.2E4(2.4E4) 4.2E4(4.7E4) 7.5E5(8.2E4) 1.2E5(1.3E5) 1.8E5(1.9E5) 2.3E5(2.5E5) 2.5E5(2.7E5)
31 2.6E4(2.9E4) 5.1E4(5.7E4) 9.3E4(1.0E5) 1.5E5(1.7E5) 2.4E5(2.6E5) 3.3E5(3.6E5) 3.8E5(4.1E5)
32 3.1E4(3.4E4) 6.1E4(6.8E4) 1.1E5(1.2E5) 1.9E5(2.1E5) 3.0E5(3.2E5) 4.3E5(4.7E5) 5.1E5(5.5E5)
33 3.6E4(4.0E4) 7.2E4(8.0E4) 1.3E5(1.5E5) 2.3E5(2.5E5) 3.7E5(4.0E5) 5.5E5(5.9E5) 6.5E5(7.1E5)
34 4.2E4(4.7E4) 8.4E4(9.3E4) 1.6E5(1.7E5) 2.7E5(3.0E5) 4.4E5(4.8E5) 6.7E5(7.2E5) 8.0E5(8.7E5)
35 4.8E4(5.4E4) 9.7E4(1.1E5) 1.8E5(2.0E5) 3.2E5(3.5E5) 5.2E5(5.6E5) 8.0E5(8.6E5) 9.7E5(1.0E6)
36 5.5E4(6.1E4) 1.1E5(1.2E5) 2.1E5(2.3E5) 3.6E5(4.0E5) 6.0E5(6.5E5) 9.3E5(1.0E6) 1.1E6(1.2E6)
37 6.3E4(7.0E4) 1.3E5(1.4E5) 2.4E5(2.6E5) 4.2E5(4.6E5) 6.9E9(7.5E5) 1.1E6(1.2E6) 1.3E6(1.4E6)
38 7.1E4(7.9E4) 1.4E5(1.6E5) 2.7E5(3.0E5) 4.7E5(5.2E5) 7.8E5(8.5E5) 1.2E6(1.3E6) 1.5E6(1.6E6)
39 8.1E4(9.0E4) 1.6E5(1.8E5) 3.0E5(3.3E5) 5.3E5(5.8E5) 8.9E5(9.7E5) 1.4E6(1.5E6) 1.7E6(1.9E6)
40 9.1E4(1.0E5) 1.8E5(2.0E5) 3.4E5(3.8E5) 6.0E5(6.6E5) 1.0E6(1.1E6) 1.6E6(1.7E6) 1.9E6(2.1E6)

surprises or unexpected anomalies were detected. Thus, although it may be too
early to have complete confidence in the ρ and σ1-based estimates, there is
neither any reason to dismiss them.

For d = 6 this is illustrated in Tables 4, 5, and 6. Tables 4 and 5 contain
the accumulated results of smoothness tests for Nr(a, b) and Na(a, b)-values,
respectively, for more than 100 billion coprime (a, b) pairs and 176 different b
values ranging from 29 to 231. They list the number of (2i, 2j , 1)-semi-smooth
Nr(a, b) and Na(a, b)-values (for i, j ranges as specified in the tables) that were
found using trial division up to 230, followed by the (ρ + σ1)-based estimate
between parentheses. Table 6 contains the accumulated results of more expensive
smoothness tests for Na(a, b)-values for 5.6 million coprime (a, b) pairs and 13
different b-values ranging from 214 to 226. For 34 ≤ j ≤ 40 and 31 ≤ i ≤ j it lists
the number of (2i, 2j , 1)-semi-smooth Na(a, b)-values, found using trial division
up to 230 followed by ECM, again followed by the (ρ+σ1)-based estimate between
parentheses. The fact that the estimated value is systematically somewhat higher
than the actual value can be attributed to the fact that the estimated values
average over all positive numbers less than some bound, whereas most values
that are actually tested are close to the bound. This is partly offset by the use
of asymptotic smoothness probabilities, which are somewhat smaller than the
concrete probabilities (e.g., for ρ(ur) the correction term is roughly +0.423ρ(vr−
1)/ log Nr(a, b); cf. [1]).

For d = 7 we found comparable results. Because of the asymptotic nature of
the estimates, it may be expected that they become even more accurate for the
larger b’s that may occur in practice (cf. Table 1).
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Table 5. Actual and estimated number of (2i, 2j , 1)-semi-smooth Na(a, b)’s for d = 6.

j i
24 25 26 27 28 29 30

28 0(0.15) 0(0.41) 0(0.96) 0(1.85) 0(2.53)
29 0(0.19) 1(0.54) 1(1.36) 1(2.94) 1(5.32) 1(7.01)
30 0(0.23) 1(0.69) 1(1.80) 1(4.14) 1(8.34) 5(14.18) 10(16.87)
31 0(0.29) 1(0.86) 2(2.28) 2(5.45) 5(11.63) 17(21.94) 24(28.52)
32 1(0.34) 2(1.04) 3(2.81) 3(6.88) 8(15.21) 27(30.34) 40(41.10)
33 1(0.41) 2(1.24) 5(3.40) 5(8.45) 12(19.11) 39(39.44) 58(54.70)
34 1(0.48) 2(1.47) 5(4.05) 5(10.17) 15(23.36) 49(49.31) 70(69.41)
35 1(0.56) 2(1.72) 6(4.76) 7(12.05) 21(28.00) 60(60.01) 82(85.33)
36 1(0.65) 2(2.00) 7(5.55) 10(14.12) 27(33.05) 71(71.63) 97(102.57)
37 1(0.75) 2(2.30) 8(6.42) 11(16.39) 31(38.58) 82(84.26) 111(121.26)
38 2(0.86) 3(2.65) 9(7.38) 12(18.88) 36(44.61) 95(97.98) 132(141.52)
39 2(0.99) 3(3.03) 10(8.45) 14(21.62) 41(51.20) 106(112.90) 148(163.51)
40 2(1.13) 3(3.46) 11(9.62) 19(24.63) 47(58.41) 115(129.13) 163(187.36)

Table 6. Actual and estimated number of (2i, 2j , 1)-semi-smooth Na(a, b)’s for d = 6.

j i

31 32 33 34 35 36 37 38 39 40
34 0(0.30) 0(0.49) 0(0.70) 0(0.82)
35 0(0.39) 0(0.66) 0(1.03) 1(1.41) 1(1.62)
36 0(0.48) 0(0.85) 0(1.38) 1(2.05) 1(2.73) 1(3.08)
37 0(0.58) 0(1.05) 0(1.75) 2(2.72) 2(3.90) 2(5.03) 2(5.60)
38 0(0.69) 0(1.26) 0(2.15) 2(3.44) 3(5.14) 4(7.11) 5(8.95) 5(9.84)
39 1(0.81) 1(1.49) 1(2.58) 3(4.21) 4(6.46) 8(9.30) 9(12.48) 12(15.36) 13(16.72)
40 1(0.93) 1(1.74) 1(3.04) 4(5.02) 6(7.86) 12(11.62) 15(16.20) 18(21.16) 21(25.51) 23(27.52)

6 More or Better Polynomials?

Estimating the Performance of Coppersmith’s Variant. We estimated
the yield and performance of Coppersmith’s multi-polynomial version of the
NFS by assuming that for any degree d we can find a set G of any reasonable
cardinality consisting of degree d polynomials with a shared root m modulo n and
with skewness ratios and correction factors comparable to those in Appendix A.
Table 7 lists some estimates for d = 6, 7 and #G = 6 that can be compared
to the estimates in Table 1. The dimension of the matrix increases 7/2-fold
and the yield improves by a factor 6. The fp and pp yield increase may not
be that effective, since large primes match only if they occur in the norm of
the same polynomial. The relation collection effort changes from sieving effort
3.8E24 to sieving effort 1.9E24 plus a number of semi-smoothness tests (indicated
by ‘ECM effort’) involving a constant of proportionality E measuring the relative
performance compared to sieving.

The practical implications are as yet unclear. For current implementations
E would be too large to make the multi-polynomial version competitive, but
an entirely different picture may emerge for dedicated non-sieving hardware
smoothness tests. Also, our choices d = 6, 7 and #G = 6 were not meant to
optimize anything, they are just for illustrative purposes to facilitate comparison
with the regular NFS data in Table 1. Clearly, this subject deserves further study.
The Effect of Much Better Polynomials. In an actual factorization at-
tempt considerably more time would be spent to find good polynomials. So, in
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Table 7. Estimated yields for smoothness bounds from [17] with 6 polynomials.

yr = ya = 234, goal ≈ 5.3E9, S = 6E23, sieving effort 1.9E24
d s B ff fp8 pf8 pp8 ECM effort fp12 pf12 pp12 ECM effort
6 458.9 2.6E10 1.3E8 1.7E9 6.2E8 8.2E9 E5.6E20 3.0E9 1.0E9 2.5E10 E8.7E20
7 40.9 8.6E10 1.8E8 2.6E9 7.1E8 9.9E9 E3.6E21 4.6E9 1.2E9 3.0E10 E5.4E21

Table 8. Estimated yields for smoothness bounds from [17] with correction factor t3.

d s B ff fp8 pf8 pp8 fp12 pf12 pp12 fp16 pf16 pp16
yr = ya = 228, T (yr, ya) ≈ 2.9E7, S = 6E23, sieving effort 3.6E24

6 458.9 2.6E10 2.6E2 5.8E3 2.2E3 4.9E4 1.1E4 4.0E3 1.7E5 2.0E4 6.3E3 4.7E5
7 40.9 8.6E10 6.8E2 1.5E4 4.6E3 1.0E5 2.9E4 8.0E3 3.5E5 5.1E4 1.2E4 9.5E5

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 6E23, sieving effort 3.8E24
6 458.9 2.6E10 5.7E7 7.2E8 2.8E8 3.5E9 1.3E9 4.9E8 1.1E10 2.1E9 7.3E8 2.6E10
7 40.9 8.6E10 9.9E7 1.3E9 3.9E8 5.1E9 2.4E9 6.4E8 1.5E10 3.9E9 9.4E8 3.7E10

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 2.4E24, sieving effort 1.5E25
6 458.9 5.1E10 1.1E8 1.4E9 5.3E8 6.9E9 2.5E9 8.9E8 2.1E10 4.1E9 1.3E9 5.1E10
7 40.9 1.7E11 1.7E8 2.3E9 6.6E8 9.1E9 4.2E9 1.1E9 2.7E10 6.8E9 1.6E9 6.5E10

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 9.8E24, sieving effort 6.1E25
6 458.9 1.0E11 2.0E8 2.8E9 1.0E9 1.4E10 4.9E9 1.7E9 4.1E10 8.0E9 2.6E9 1.0E11
7 40.9 3.4E11 2.8E8 4.0E9 1.1E9 1.6E10 7.3E9 1.9E9 4.8E10 1.2E10 2.8E9 1.2E11

practice, we may expect correction factors t that are larger than the ones given
in Appendix A for polynomials which may have smaller coefficients. An example
of such a polynomial is given in Appendix B. This effect can be approximated
by applying our estimates to the same f and m values but with incorrect (too
large) correction factors t. In Table 8 the results are given if t is replaced by
t3 for d = 6, 7, with parameters as in Table 1 (i.e., mostly as in [17]). With
the current state of the art of polynomial selection methods it is unlikely that
such large correction factors can be found in practice. Thus, the figures in Ta-
ble 8 are probably too optimistic. Compared to Table 1 the yield improves by
a factor about 3: a relatively small effect that does not have an impact on the
observations made in Section 5 about yr = ya = 228 and yr = ya = 234. For
d = 6 and yr = ya = 234 not using partial relations (and correction factor t3)
would require B = 9.4E11 with corresponding S = 8.2E26. This is about 1300
times more expensive than the estimate from [17]. We conclude that our limited
polynomial search did not lead to overly poor estimates.

7 Conclusion

We applied numerical methods to estimate the yield of the NFS when applied
to the 1024-bit RSA modulus RSA-1024, and tested the accuracy of our results
using actual smoothness tests. Our methods and results were taken into account
in the updated version [18] of the draft version of TWIRL [17] and are presented
in Appendix B. Accurate estimates of the difficulty of factoring 1024-bit RSA
moduli require a better understanding of the large prime matching behavior than
is available today. Continued large factorization efforts may prove helpful.

Our results suggest that effective smoothness bounds for RSA-1024 are larger
than the ones proposed in [17]. Larger smoothness bounds stress the importance
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of the alternative cost measure proposed in [2] and of approaches to smoothness
testing that avoid sieving and storage of the complete factor bases. TWINKLE
and TWIRL (cf. [19], [18]) both require processing elements or storage for es-
sentially the complete factor bases and time for the sieving. Such designs may
eventually be surpassed by, say, a carefully designed ECM-based smoothness
test as proposed in [2], because the latter allows a better trade-off between space
and time. This does not disqualify TWIRL for the sizes proposed in [18], but
indicates that in the long term the approach from [2] may be more promising.
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A Polynomials for RSA-1024

Let the notation be as in Section 2. RSA-1024 = 135 . . . 563 is a 1024-bit number
whose 309 decimal digits can be found in [16]. For d = 5, 6, 7, 8, 9 we present the
value of m, the skewness ratio s, the correction factor t, and the d-th degree
polynomial f . For all d we have that f(m) = RSA-1024 and the number of free
relations behaves as estimated in Section 2.
d = 5: m = 40166061499405767761275922505205845319620673223962394269848,

s = 87281.9, t = exp(4.71),
f(X) = 1291966090228800X5 − 640923572655549773652421X4

+ 22084609569698872827347541432045436154518749958885X3

+ 395968894120701874630226095753546547718334332711719805X2

− 96965973957066386285836042292532199420340774279358321957826X
− 4149238485198657863882627412883817567549615187136520422680871493.

d = 6: m = 6290428606355899027255723320027391715970345088070, s = 458.857, t = exp(3.10),
f(X) = 2180047385355840X6 − 3142872579455569636X5

− 1254155662796860036208992514969847001569768X4

− 12346184596682129311885354974311793670338999X3

+ 326853630498301587526877377811152784944999520522X2

+ 4609395911122979440239635705733809071478223546768X
− 11074692768758259967955017581674706364925519996590997.

d = 7: m = 103900297567818360319524643906916425458585, s = 40.9082, t = exp(3.66),
f(X) = 1033308066924956844000X7 − 160755011543490353038479X6

− 195303627236151056576676296300427751X5

− 67322997660970472962322331424620518857X4

+ 852886687422682194441338494667584979283X3

+ 122261247387346205137507554160155213223449X2

− 941042262598628457425892609296624845278218X
− 38806712095590448575304126518627120637325432.

d = 8: m = 1364850538695913738402818687041215458, s = 107.255, t = exp(5.13),
f(X) = 11216738509080904800X8 + 4126963962861489385859X7

− 1175791917822439782941507504635X6

+ 2996639999067533888196133035298645X5

+ 208240147656019048048262524877102283X4

− 27357702926139861867857609251152887873X3

− 3424834099100207742896726960114709926535X2

− 12957538712647811491436510238283188219229X
+ 8733287829967486818441309661955398847347705.
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d = 9: m = 1310717071544062886859477360545488, s = 8.51584, t = exp(3.89),
f(X) = 11829510000X9 − 323042712742X8 − 2296009166444361125150144310X7

− 17667833832765445702215975840307X6

+104750984243461509795139799847908X5

+ 684082899341824778960200186325064X4

−8558486132848151826178414424938636X3

+ 32301718781994667946436083991144874X2

−42118837302218928303637260451515638X
− 1293558869408225281960437545569172565.

B The Parameter Settings from [18]

This appendix provides analysis of the NFS parameters used in the revised
TWIRL design [18]. It follows the approach of Section 3, extended to produce
estimates for the frequency of intermediate candidates.
Polynomials. We used the NFS polynomial selection program of Jens Franke
and Thorsten Kleinjung, which contains several improvements on the strategy
of [13][14][15] which was used to obtain the polynomials of Section 3 and Ap-
pendix A. We employed several Pentium 1.7GHz computers, for a total CPU
time of about 20 days. However, most of this time was spent on experimentation
with search parameters; the conclusions can be reused for other composites, so
future experiments would require just a few hours. We observe that with this
polynomial selection program there is a lot of flexibility in the search parame-
ters: at a small cost in yield, one can obtain polynomials with much larger or
much smaller skew, trade root properties for size properties, etc. Appendix B.2
of [18] gives the best polynomial we found for RSA-1024, which is as follows:
d = 5: m = 2626198687912508027781823689041581872398105941296246738850076103682306196740

55292506154513387298663560887146183854975198160502278243245067074820593711054723850
57002739575614001142020313480711790373206171881282736682516670443465012822281608387
169409282469138311259520392769843104985793744494821437272961970486,
s = 1991935.4, t = exp(6.33),
f(X) = 1719304894236345143401011418080X5

− 6991973488866605861074074186043634471X4

+ 27086030483569532894050974257851346649521314X3

+ 46937584052668574502886791835536552277410242359042X2

− 101070294842572111371781458850696845877706899545394501384X
− 22666915939490940578617524677045371189128909899716560398434136,

g(X) = 93877230837026306984571367477027X
− 37934895496425027513691045755639637174211483324451628365.

Here the rational-side polynomial g is non-monic; thus we redefine Nr(a, b) =
|b·g(a/b)|. Table 9 estimates the yield of this polynomial using the parameter sets
from [17] that were considered in Section 5. A comparison with Table 1 shows
that this polynomial has much higher yield; indeed, both its size properties and
its root properties are better (cf. [15]). Throughout this appendix we shall use
this polynomial, except where noted otherwise.

Note that Section 5 gives strong indication that d = 5 is suboptimal, but
the program we used is limited to d = 5. One can expect that an adaptation
of the improved algorithm to d = 6 or d = 7 will yield even better results. In
this light, the parameters of [18] merely imply an upper bound on cost; further
improvement is likely to be possible.
Yield. To increase yield, [18] uses higher smoothness bounds than [17]: yr =
3.5E9, ya = 2.6E10, zr = 4.0E11, za = 6.0E11. This has a dramatic effect,
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Table 9. Estimated yields with [18]’s RSA-1024 polynomial and [17]’s parameters.

d B ff fp8 pf8 pp8 fp12 pf12 pp12 fp16 pf16 pp16
yr = ya = 228, T (yr, ya) ≈ 2.9E7, S = 6E23, sieving effort 3.6E24

5 3.88E8 9.9E2 2.0E4 9.7E3 2.0E5 3.8E4 1.8E4 6.8E5 6.6E4 2.8E4 1.9E6
yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 6E23, sieving effort 3.8E24

5 3.88E8 1.8E8 2.1E9 1.0E9 1.2E10 3.7E9 1.7E9 3.5E10 5.9E9 2.6E9 8.6E10
yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 2.4E24, sieving effort 1.5E25

5 3.88E8 3.8E8 4.5E9 2.2E9 2.5E10 8.1E9 3.7E9 7.7E10 1.3E10 5.6E9 1.9E11
yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 9.8E24, sieving effort 6.1E25

5 3.88E8 8.2E8 9.9E9 4.7E9 5.7E10 1.8E10 8.0E9 1.7E11 2.9E10 1.2E10 4.2E11

Table 10. RSA-1024 parameters and estimates for [18].

yr = 3.5E9, ya = 2.6E10, zr = 4.0E11, za = 6.0E11, T (yr, ya) ≈ 1.3E9, S = 3.0E23
d = 5, s = 1991935.4, B = 2.7E8
yield of (La, Lr)-partial relations

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) Total
5.6E7 3.0E8 6.7E8 3.1E8 1.7E9 3.8E9 6.6E8 3.5E9 7.9E9 1.9E10

#PRS #PBS #PPT #RCF #RSS #ACF avg(Nr(a, b)) avg(Na(a, b))
1.1E20 5.0E12 6.2E10 4.9E10 3.4E10 2.7E10 5.2E63 3.1E103

suggesting that the choice from [17] indeed resides on the steep region of the
run-time curve (cf. Section 4). Also, the number of allowed large primes is
increased to �r = �a = 2. Conversely, the sieving region size is reduced to
S = 3.0E23. Table 10 gives the corresponding estimates of yield, as well as the
number of intermediate candidates (see below). Note that [18] uses different
notation: there R, H, BR and BA stand for our 2A, B, yr and ya, respectively.

Ultimately we are interested in the number of cycles among the relations
found. Alas, the dependence of the number of cycles on the number (and type)
of relations is poorly understood (cf. Section 2). As noted, π(zr)+π(za) relations
always suffice, and in past experiments the number of relations collected was
always somewhat lower. Here, the estimated number of relations is 0.49 ·(π(zr)+
π(za)). Using �a, �r > 2, as in the aforementioned experiments, would further
increase the relation yield. Note that there are T (yr, ya)/23.2 ff’s, which seems
very reasonable.

It is worth observing that while the most ‘fertile’ area of the sieving region is
close to the origin, the relation yield of the sieving region is not yet ‘dried out’:
for example, doubling S to 6E23 increases the number of relations significantly,
to 2.8E10. The practical significance is that if someone builds a TWIRL device
with hard-wired smoothness bounds and (for whatever reason) does not find
enough relations using the above parameters, recovery may be possible simply
by increasing S, i.e., by sieving for a longer time using the same hardware.
Candidates. For integer k, let µ(y, k) = k/η(y, k) denote the non-y-smooth
cofactor of k. Sieving per se (i.e., the task handled by TWIRL) merely identi-
fies the pairs (a, b) for which µ(yr, Nr(a, b)) ≤ zr

�r and µ(ya, Na(a, b)) ≤ za
�a .

For �a = �r = 2, not all such pairs form relations. Thus subsequent filtering is
applied, and it should be verified that its cost is manageable. Also, in the “cas-
caded sieves” variant employed by the revised TWIRL design, the algebraic-side
sieve handles only the pairs (a, b) that passed the rational sieve, and it should be
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verified that the latter are sufficiently infrequent (cf. [18, A.6]; this is crucial for
achieving the high parallelism factor of 32768 inspected pairs per clock cycle).
Thus, we estimate the number of candidates at the relevant points in the algo-
rithm by writing down the appropriate probability, integrating it over the sieving
region and multiplying the result by the correction factor 6/π2 (cf. Section 3).

The types of candidates are listed below; the results of the integrations are
given in Table 10. In the following, let k1, k2 (k1 ≥ k2) denote the two largest
prime factors of Nr(a, b), and let κ1, κ2 (κ1 ≥ κ2) denote the two largest prime
factors of Na(a, b).

Pass rational sieve (PRS): The pairs that pass the rational sieve are those
that fulfill µ(yr, Nr(a, b)) ≤ zr

2. Noting that zr
2 < za

3, we get that the
above is equivalent to the following: (k1, k2 < yr) ∨ (yr < k1 ≤ zr

2 ∧ k2 <
yr) ∨ (yr < k1, k2 ∧ k1k2 ≤ zr

2). Accordingly, the probability that (a, b)
fulfills this can be estimated by ρ(ur) + σ1(ur, vr/2) + σ̄2(ur, vr/2, vr/2).

Pass both sieves (PBS): the probability that a pair (a, b) passes both sieves
is obtained by multiplying the above by the analogous expression for the al-
gebraic side: (ρ(ur)+σ1(ur, vr/2)+σ̄2(ur, vr/2, vr/2))·(ρ(ua)+σ1(ua, va/2)+
σ̄2(ua, va/2, va/2)).

Pass primality testing (PPT): For pairs that passed both sieves,
the smooth factors are divided out to obtain µ(yr, Nr(a, b)) and µ(ya,
Na(a, b)) (note that most prime factors smaller than yr or ya are reported
by TWIRL). If µ(yr, Nr(a, b)) is prime and > zr, or µ(yr, Na(a, b)) is prime
and > za, then the pair is discarded. A pair (a, b) reaches and survives this
test iff (k1, k2 < yr) ∨ (yr < k1 ≤ zr ∧ k2 < yr) ∨ (yr < k1, k2 ∧ k1k2 ≤ zr

2)
and analogously for the algebraic side. The probability that this holds is
estimated by (ρ(ur) + σ1(ur, vr) + σ̄2(ur, vr/2, vr/2)) · (ρ(ua) + σ1(ua, va) +
σ̄2(ua, va/2, va/2)).

Rational cofactor factorizations (RCF): For pairs that survived primality
testing, if the cofactor µ(yr, Nr(a, b)) is composite then it needs to be fac-
tored and tested for zr-smoothness. The size of the cofactor to be factored
is bounded by zr

2. This step is reached and the factorization is performed
if (yr < k1, k2 ∧ k1k2 ≤ zr

2) and (κ1, κ2 < ya) ∨ (ya < κ1 ≤ za ∧ κ2 <
ya)∨(ya < κ1, κ2 ∧ κ1κ2 ≤ za

2). The probability that this holds is estimated
by σ̄2(ur, vr/2, vr/2) · (ρ(ua) + σ1(ua, va) + σ̄2(ua, va/2, va/2)).

Rational semi-smooth (RSS): A pair reaches the rational cofactor factor-
ization step and passes (or skips) it if indeed Nr(a, b) is (yr, zr, �r)-smooth
and (a, b) passed the algebraic sieve. For this to happen, the condition on the
rational side is (k1, k2 < yr) ∨ (yr < k1 ≤ zr ∧ k2 < yr) ∨ (yr < k1, k2 ≤ zr),
and the condition on the algebraic side is as in the previous step. Thus
the probability is estimated by (ρ(ur) + σ1(ur, vr) + σ2(ur, vr)) · (ρ(ua) +
σ1(ua, va) + σ̄2(ua, va/2, va/2)).
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Algebraic cofactor factorizations (ACF): For pairs that passed all of the
above, if the cofactor µ(ya, Na(a, b)) is composite then it needs to be factored
and tested for za-smoothness. This step is reached and the factorization is
performed iff (ya < κ1, κ2 ∧ κ1κ2 ≤ za

2) and also the rational-side condition
of the previous step holds. The corresponding probability is estimated by
(ρ(ur) + σ1(ur, vr) + σ2(ur, vr)) · σ̄2(ua, va/2, va/2).

Relations (Total): A pair that passes all of the above forms a relation; the
probability of this occurring is estimated by (ρ(ur)+σ1(ur, vr)+σ2(ur, vr)) ·
(ρ(ua) + σ1(ua, va) + σ2(ua, va)).

The above describes one plausible ordering of the filtering steps; other varia-
tions are possible (e.g., performing the algebraic cofactor factorization before
the rational cofactor factorization, or even before the rational primality testing).

Cost of Cofactor Factorization. As indicated above, we expect to perform
about #RCF + #ACF = 7.7E10 factorizations of integers whose size is at most
max(zr, za)2 = 3.6E23. Such factorizations require under 30ms on average using
a modern CPU. Thus, the cofactor factorization can be completed in 1 year
(i.e., in parallel to the operation of the TWIRL device) using about 74 bare-
bones PCs. This cost is negligible compared to the cost of TWIRL, and in large
volumes custom hardware would reduce it further.

Optimality and Effect of Technological Progress. The revised TWIRL
parameters were essentially determined by practical concerns. Most crucially,
they employ the largest value of ya for which the algebraic-side TWIRL device
still fits on single silicon wafer. Theoretically, this ya is suboptimal; it would
be beneficial to increase it. Such increase will become possible when progress in
chip manufacturing technology allows fitting larger circuits into a single wafer,
either by increasing the wafer size or by decreasing the feature size. Thus, for
the foreseeable future we may expect the cost of TWIRL to decrease more than
linearly as a function of the relevant technological parameters, i.e., faster than
naively implied by Moore’s law.

For a concrete example, one may consider an implementation of TWIRL
using 90nm process technology, which is expected to be widely deployed during
2004. Compared to the 130nm process technology considered in [18], we may
assume a reduction in area by a factor of 2 and an increase in speed by a factor
of 2, for a total cost reduction by a factor of 4 (cf. [8]). Table 11 presents two
appropriate NFS parameter sets. The first set is about as plausible as the one in
Table 10; the cost of such a TWIRL implementation is roughly 1.1M US$×year
(predicted analogously to [18]) — considerably lower than 2.5M US$×year one
may expect.

The second parameter set in Table 11 shows the effect of improved technology
on yield, when keeping the cost constant at 10M US$×year (i.e., the same as
in [18]). Here, the estimated number of relations is 1.95 · (π(zr) + π(za)), which
is nearly twice the trivially sufficient number. Also, there are T (yr, ya)/3.6
ff’s, which is much more than in any recent factoring experiment. Thus, we
may conclude that using 90nm technology, a budget of 10M US$×year per
factorization (in large quantities) leaves an ample safety margin — arguably,



74 Arjen Lenstra et al.

Table 11. RSA-1024 parameter sets for TWIRL with 90nm process technology.

yr = 1.2E10, ya = 5.5E10, zr = 8.0E11, za = 1.0E12, T (yr, ya) ≈ 2.9E9, S = 8.0E22
d = 5, s = 1991935.4, B = 1.4E8
yield of (La, Lr)-partial relations

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) Total
2.2E8 9.8E8 1.8E9 9.2E8 4.0E9 7.5E9 1.4E9 6.1E9 1.1E10 3.4E10

#PRS #PBS #PPT #RCF #RSS #ACF avg(Nr(a, b)) avg(Na(a, b))
6.3E19 1.1E13 9.8E10 7.2E10 5.9E10 4.5E10 2.7E63 1.1E102

yr = 1.2E10, ya = 5.5E10, zr = 9.0E11, za = 1.2E12, T (yr, ya) ≈ 2.9E9, S = 7.3E23
d = 5, s = 1991935.4, B = 4.3E8
yield of (La, Lr)-partial relations

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) Total
7.9E8 3.9E9 7.9E9 3.4E9 1.7E10 3.4E10 5.4E9 2.7E10 5.5E10 1.5E11

#PRS #PBS #PPT #RCF #RSS #ACF avg(Nr(a, b)) avg(Na(a, b))
5.2E20 4.6E13 4.6E11 3.4E11 2.7E11 2.1E11 8.1E63 2.8E104

Table 12. RSA-768 parameters and estimates for [18].

yr = 1.0E8, ya = 1.0E9, zr = 2.0E10, za = 3.0E10, T (yr, ya) ≈ 5.7E7, S = 3.0E20
d = 5, s = 1905116.1, B = 8.9E6
yield of (La, Lr)-partial relations

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) Total
3.5E6 2.2E7 5.5E7 2.5E7 1.5E8 3.9E8 6.2E7 3.8E8 9.7E8 2.1E9

#PRS #PBS #PPT #RCF #RSS #ACF avg(Nr(a, b)) avg(Na(a, b))
5.3E17 3.4E11 7.5E9 6.3E9 3.9E9 3.2E9 3.4E49 7.1E82

more than enough to account for estimation errors, relations that are lost due to
approximations in the sieving process, and sub-optimal cycles-finding algorithms.
Parameter Settings for 768-bit Composites. For RSA-768, [18] uses the
following polynomial, obtained by the same method as above:
d = 5: m = 2980427354552256959621694668022969720925142335553136586170340190386865951921

42458430585097389943648179813292845509402284357573098406890616147678906706078002760
825484610584689826591183386558993533887364961255454143572139671622998845,
s = 1905116.1, t = exp(3.78),
f(X) = 44572350495893220X5

+ 1421806894351742986806319X4

− 1319092270736482290377229028413X3

− 4549121160536728229635596952173101064X2

+ 6062531470679201843447146909871507448641523X
− 1814356642608474735992878928235210850251713945286,

g(X) = 669580586761796376057918067X − 7730028528962337116069068686542066657037329.

The parameter choice and yield estimates using this polynomial are given in
Table 12.
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