

J.-B. Stefani, I. Demeure, and D. Hagimont (Eds.): DAIS 2003, LNCS 2893, pp. 15–28, 2003.
© IFIP International Federation for Information Processing 2003

A Scheme for the Introduction
of 3rd Party, Application-Specific Adaptation Features

in Mobile Service Provision

Nikos Houssos, Nancy Alonistioti, and Lazaros Merakos

Communication Networks Laboratory, Department of Informatics & Telecommunications,
University of Athens, 15784, Athens, Greece

{nhoussos,nancy,merakos}@di.uoa.gr

Abstract. The long term vision of beyond 3G wireless communications de-
scribes an evolution towards beyond 3G systems. The ultimate goal of this evo-
lution is a dynamic environment that enables the delivery of situation-aware,
personalised multimedia services over heterogeneous, ubiquitous infrastruc-
tures. Under this perspective, the need is emerging for applying, in a systematic
way, adaptability and reconfigurability concepts for service delivery in largely
diverse contexts. Moreover, it is widely recognised that services will be increas-
ingly developed by independent third parties. The present contribution com-
plements previous work by the authors, related to mediating service provision
platforms and advanced adaptability and profile management frameworks, by
introducing mechanisms that allow third parties to dynamically enhance the
service delivery and adaptation middleware in order to achieve application-
specific customisations in various aspects of the mobile service provision proc-
ess.

1 Introduction

The evolution of mobile networks and systems to 3rd generation and beyond is ex-
pected to bring about substantial changes to telecommunication service provision. In
the envisioned beyond 3G era, a plethora of functionality-rich, profit-creating value-
added services (VAS)1 should be delivered to mobile users [1] over an unprecedented
variety of infrastructures and contexts, which could not be predicted or catered for
during service design and development. These extensively demanding requirements
indicate the need for adaptability of applications as well as service provision and
delivery procedures to highly diverse environments. Adaptability, an inherently chal-
lenging task, is further complicated by the fact that adaptation intelligence should be
generic, portable and interoperable so that it can be flexibly applied to a diversity of
entities in different circumstances.

1 In the present paper the terms service, value-added service (VAS) and application are used

interchangeably to refer to an information technology product which is directly accessible
and perceptible to the end user and whose value resides mostly in functionality and content,
rather than transport or connectivity.

16 Nikos Houssos, Nancy Alonistioti, and Lazaros Merakos

In previous research efforts, the authors have developed schemes for addressing the
above issue and incorporated them in a middleware platform for service provision [2].
In this paper, we complement this work by providing detailed mechanisms for ena-
bling adaptation logic to be run-time injected into the service provision middleware
by 3rd parties. This feature is important, since different services may require different
algorithms for matching service requirements with context parameters. As a simple
example one could consider a context parameter that is expressed in terms of dimen-
sion (e.g., terminal screen resolution). Two services could have the same value in
their profile as a dimension requirement, but the algorithm for matching it with the
corresponding context value could differ (e.g., one algorithm would require the cur-
rently supported screen resolution of the terminal to be just greater than or equal to
the value in the service profile, while another one could additionally require that the
width/height ratio would be equal to a specific quotient). Implementing such an algo-
rithm is something trivial for the service developer; however, the lack of frameworks
that would enable the dynamic loading of suitable service-specific algorithms does
not currently allow this type of adaptation flexibility. In this contribution we demon-
strate that this can be achieved through a procedure that does not incur significant
overhead to the service creator and mainly involves specifying adaptation metadata in
RDF/XML [3] and developing the algorithms according to certain simple, non-
restrictive guidelines.

The rest of this document is organised as follows: At first, we present the environ-
ment where the proposed adaptation mechanism was integrated and applied, namely a
software platform for provision of services over 3G mobile networks. We then discuss
the platform support for 3rd party adaptation logic introduction. This discussion in-
cludes the features offered by the platform, a detailed view of the overall procedure
from a third-party perspective and the supporting mechanisms that we have devel-
oped. The last sections of this paper are dedicated to summary, conclusions and ac-
knowledgements.

2 Service Provision Platform

The present section introduces a distributed software platform for the flexible provi-
sion and management of advanced services in next generation mobile networks. The
platform incorporates intelligent adaptation and reconfiguration mechanisms as well
as advanced support for 3rd party adaptable service deployment and management.
Before elaborating on the internal platform architecture, we provide a brief discussion
of the business and service provision models supported by the platform.

Note that the detailed architecture and functionality of the platform, as well as de-
tails about the corresponding business models, has been presented by the authors in
previous work [5] and is thus beyond the scope of the present paper. Only the basic
aspects that are useful for presenting the 3rd party support mechanisms are included
herein.

2.1 Business and Service Provision Model

The proposed framework is designed to support flexible, advanced business models
that encourage among market players the establishment of strategic partnerships,
which ultimately benefit end users by significantly enhancing service provision. The
main business entities involved in such models are the following:

A Scheme for the Introduction of 3rd Party 17

Mobile User: The mobile user is the actual consumer of services.

Mobile operator: This is the entity that operates the network infrastructure for mobile
user access to services and will typically also provide third-party access to its network
through a standardised API (e.g., OSA/Parlay [6], JAIN).

Platform operator: This is the entity that owns and administers the software platform
for service provision.

Value-Added Service Provider (VASP): This is the provider (and typically also the
developer) of the end-user application.

The platform operator acts as a single point of contact (“one-stop-shop”) for:

• VASPs that are able to register their services with the platform and this way to have
them delivered to a large number of mobile users over multiple networks.

• Mobile users that are given the ability to discover, select, download and execute
registered value-added services in a flexible, adaptable and personalised manner.

To accomplish these tasks, the platform operator is engaged into business relation-
ships with users, mobile operators and VASPs. A prior subscription with the VASP
for using an application is not required for the user, since a dynamic service discov-
ery, download and execution model is applied.

It is worth noting that it is possible for one single entity to undertake several of the
roles described above and vice versa. For instance, a mobile or platform operator may
also develop its own services and act as a VASP.

The service provision model supported by the RCSPP can be summarised as fol-
lows: Before a service becomes available to end-users, it is automatically deployed
based on VASP-provided detailed service metadata. This procedure may include
sophisticated actions like reconfiguration of the underlying networking infrastructure.
From then on, the user is able to dynamically discover, download and execute the
service, without the need for a prior subscription with the VASP.

2.2 Overview of Platform Architecture and Functionality

In this section we briefly present a distributed middleware platform that supports
adaptability in mobile service provision. The functionality of the platform, which is
called Reconfiguration Control and Service Provision Platform (RCSPP), comprises
automated procedures for service deployment that include appropriate reconfiguration
of the underlying network for optimal service delivery. In addition to that, an intelli-
gent context-aware mobile portal is offered to the end-user, where procedures like
service discovesry, downloading and adaptation are fully tailored to terminal capabili-
ties, user preferences and network characteristics.

The architecture of the platform is depicted in Fig. 1. The main components of this
architecture are the following:

− The Reconfiguration Control and Service Provision Manager (RCSPM) is the
central platform component in that it co-ordinates the entire service provision and
management process.

− The Charging, Accounting and Billing (CAB) system [8] is responsible for produc-
ing a single user bill for service access and apportioning the resulting revenue be-
tween the involved business players.

18 Nikos Houssos, Nancy Alonistioti, and Lazaros Merakos

− The End User Terminal Platform (EUT) [9] resides in the mobile terminal (it is not
depicted in Fig. 1) and includes functionality such as service downloading man-
agement, GUI clients for service discovery and selection, capturing of event notifi-
cations as well as service execution management.

− The VASP (or VASP Service Platform Client) component of the platform is located
in the VASP domain (e.g., enterprise servers) and handles secure terminal access to
a repository of application clients, while also providing web interfaces to RCSPM
functionality, through which VASPs can carry out sophisticated service manage-
ment operations (e.g., service deployment).

Fig. 1. Architecture for flexible service provision in 3G and beyond networks.

Fig. 2. Internal RCSPM architecture (not complete; only adaptability-relevant modules are
depicted).

VASP
domain
VASP
domain

Application using
network functionality.

Application using
network functionality

Open interfaces (OSA/Parlay,JAIN SPA)

RCSPP

Reconfiguration Control/Service Provision Manager

Charging
Accounting
Billing

Application using
network functionality
Application using
network functionality

Service platform
client

(management
application)

Service platform interfaces

Service
management
platform
domain

Cellular DVB HANWLAN

Reconfigurable network infrastructure and capabilities

Network
operator
domain

VASP
domain
VASP
domain

Application using
network functionality.

Application using
network functionality

Open interfaces (OSA/Parlay,JAIN SPA)

RCSPP

Reconfiguration Control/Service Provision Manager

Charging
Accounting
Billing

Application using
network functionality
Application using
network functionality
Application using
network functionality
Application using
network functionality

Service platform
client

(management
application)

Service platform interfaces

Service
management
platform
domain

Cellular DVB HANWLAN

Reconfigurable network infrastructure and capabilities

Cellular DVB HANWLAN

Reconfigurable network infrastructure and capabilities

Network
operator
domain

Context
Repository

User Sessio n Sta te

UIMM logic
(includ ing

context retrieval)

Adapters

UIMM

Main lo gic (inc lud ing
Adapta tion Engine)

G eneric Adaptation Module

Algorithm
repository

Reconfiguration Manager

Packaging and
Downloading Module

Reconfiguration Control & Service
Provision Manager (RCSPM)

User
Database
Manager

VAS Registrar
Module

Service
Database
Manager

VASP

Context
Repository

User Sessio n Sta te

UIMM logic
(includ ing

context retrieval)

Adapters

UIMM

Main lo gic (inc lud ing
Adapta tion Engine)

G eneric Adaptation Module

Algorithm
repository

Reconfiguration Manager

Main lo gic (inc lud ing
Adapta tion Engine)

G eneric Adaptation Module

Algorithm
repository

Reconfiguration Manager

Packaging and
Downloading Module

Reconfiguration Control & Service
Provision Manager (RCSPM)

User
Database
Manager

User
Database
Manager

VAS Registrar
Module

Service
Database
Manager

Service
Database
Manager

VASP

A Scheme for the Introduction of 3rd Party 19

Adaptability management and 3rd party support in the RCSPP is based on the archi-
tectural components depicted in Fig. 2 and presented in the following:

• The VASP component of the platform, as described above.
• A subset of the components and interfaces of the RCSPM, which are described

below:
The User Interaction Management Module (UIMM) is responsible for providing
the user with a highly personalisable, context-aware mobile portal. It manages user
sessions with the RCSPP, maintains relevant contextual information and co-
ordinates user-related operations like service discovery, selection, adaptation and
downloading as well as user profile management.

The VAS Registrar Module (VASREGM) is responsible for interacting with 3rd
party service providers. Through the VASREGM the platform operator provides
VASPs with a way to automatically deploy their services. The VASP compiles an
formally specified profile of service attributes. Based on these attributes, the
VASREGM co-ordinates service deployment, including various actions like recon-
figuration of the underlying infrastructure and uploading of service components to
the RCSPM. The service provider is able to manage (add/delete/update) its services
via a convenient web interface.

The Reconfiguration Manager (RCM) undertakes network, platform and service
reconfigurability. The RCM is responsible for executing the appropriate reconfigu-
ration actions on the underlying network during VAS management procedures
(registration/de-registration/update), triggered by the VASP. The RCM also com-
prises a generic adaptation module [2] that is used for supporting adaptation
through functions like intelligent profile matching. The adaptation module is able
to dynamically load adaptation algorithms from a local repository or remote net-
work locations. These algorithms can be developed by VASPs and inserted to the
repository during the service registration operation with the mechanisms described
in Section 3.

The Packaging and Downloading Module (PDM) [7] is addressing an aspect of
adaptable service delivery by being responsible for dynamically creating a single
bundle that contains all the software components and other supporting resources
(e.g., images, etc.) required for executing a service and for making it available for
download to the mobile client. The single archive produced is dynamically tailored
to the context of the particular VAS selection request.

The RCSPM also includes database managers that provide interoperable access to the
persistent service, user and network profile repositories hosted by the platform.

3 3rd Party Support for Adaptable Service Provision

The current section presents in more detail the 3rd party support features of the
RCSPP. At first, we describe the data and mechanisms that the platform provider
makes available to VASPs for deploying their applications. Next, we present the de-
tailed sequence of actions that are required from a VASP for the flexible and adaptive
provision of a VAS and outline the general structure of the service management op-
erations offered by the RCSPP. Subsequently, we elaborate on the implementation of
certain mechanisms that are crucial for 3rd party adaptation support, namely the speci-

20 Nikos Houssos, Nancy Alonistioti, and Lazaros Merakos

fication of service profiles, with a particular focus on metadata about adaptation algo-
rithms, as well as the development and loading of the actual adaptation logic.

3.1 What Does the RCSPP Provide?

To offer third parties the capability of developing their own customised adaptation
intelligence and injecting it into the system, the platform provider carries out the fol-
lowing actions:

• Supplies service developers with the VASP platform component that enables re-
mote service deployment and data management, normally through an easy to use
graphical user interface, typically implemented as a simple web HTML page (as is
our demonstrator) or a Java application/applet.

• Publishes the formal specification of the service profile structure. The latter should
be defined using a data representation approach that promotes interoperability and
extensibility, such as XML or RDF. These approaches include constructs that are
employed for describing profile structures, like XML Document Type Definition
(DTD) and XML Schema for XML and RDF Schema for RDF. In our prototype,
we have used XML and XML DTD for service profile representation and structure
specification, respectively. This particular choice was made because it is character-
ised by simplicity, ease of implementation, although it is extensible and able to
represent arbitrarily complex profiles.

• Provides a way for the VASP to bind service requirements in terms of the values of
particular context parameters with the algorithms that shall undertake the match-
ing/adapting task regarding these parameters. In our prototype we have devised
ways to achieve that in RDF and XML, as described in Section 3.3.1.

• Provides all the necessary information that is required for a third party to develop a
custom algorithm. This includes the detailed description of the platform-internal
profile representation format and typical guidelines for code extension (e.g., which
interfaces can be extended). Moreover, the platform enables the automatic loading
of the algorithms into the adaptation module repository during the service registra-
tion operation. Notably in our prototype, custom algorithm development is sup-
ported only in Java, a language well-suited for extensibility.

• Makes public the type of context profile elements for which there is a default algo-
rithm, as well as the algorithms themselves (including their implementation). The
default algorithm is used for adaptation decision-making regarding a specific pro-
file element in the case that the VASP has not explicitly identified an algorithm for
this particular element.

3.2 What Does the VASP Have to Do?

Before making use of the platform, a third-party application provider should obtain
the corresponding authorisation. This procedure, a part of which is performed through
off-line business interaction between platform operator and VASP, is completed when
the latter becomes the information (e.g., an SPKI certificate) that enables its authenti-
cation by the platform.

The deployment of an application and its delivery to end-users is performed with
the support of the platform and requires the following actions from the side of regis-
tered VASPs:

A Scheme for the Introduction of 3rd Party 21

1. Development of the service logic. Various versions and implementations may exist
for a single service. No particular constraints in terms of programming languages,
methodologies and tools is imposed by the platform on the service creator. How-
ever, in case a component-based development approach is followed, the on-
demand composition of the optimal service configuration is possible, as described
in Section 2.1.

2. Specification of service requirements in terms of context parameters. Environ-
mental parameters are bound to all elements (e.g., service client, version, compo-
nent, implementation) that model the downloadable part of a service offering. Con-
textual requirements have different “scope”, depending on the type of element with
which they are associated. That is, the service client software context requirements
concern all versions and, therefore, if these requirements are not compatible with a
user’s current service provision environment no version of the application can be
provided to this particular user. Likewise, the version requirements pertain to all
components (core and optional) and the component requirements relate to all im-
plementations.

3. Development of custom adaptation/matching algorithms for certain context pa-
rameters. This is necessary in case the platform does not provide a default algo-
rithm for these parameters or the provided default algorithm is not appropriate for
the application in question. The development of the algorithm should follow the
relevant guidelines publicly announced by the platform operator. In general, a
VASP is required to implement custom algorithms only for a small number of pa-
rameters that are particularly significant for the optimal provision of the service
and for which special requirements exist.

4. Identifying and expressing the necessary metadata for service registration in the
appropriate format. This metadata constitutes the service profile, which includes a
variety of information, as elaborated in Section 3.3.1. A crucial part of the service
profile relates to the contextual requirements of the application, for example termi-
nal capabilities, network characteristics and user preferences and status, together
with the identification of custom-made algorithms associated with individual pa-
rameters, if any. The service descriptor in our prototype is defined in XML and
should be compatible with a particular XML DTD. However, parts of the profile,
like the requirements and their associated algorithms can be specified in
RDF/XML (see Section 3.3.1).

5. Performing the service registration operation through the platform’s VASP com-
ponent.

The platform makes available to VASPs service registration and the relevant service
data management operations (service update and deletion), which all have the form of
distributed transactions. Typical sub-tasks of these transactions are the following:

• Validation checks, applied on the VASP-originated service profile. The latter
should comply (e.g., in terms of billing/pricing data) with the (prior) business
agreement between VASP and platform operator. This task is performed by the
VASREGM.

• Insertion/update/removal of information stored in the services database. This task
is handled by the VASREGM, which makes use of the Service Database Manager
interface.

22 Nikos Houssos, Nancy Alonistioti, and Lazaros Merakos

• Insertion/update/removal of algorithm implementations that are stored in the corre-
sponding repository, maintained by the adaptation module of the RCM. This task,
which mainly comprises the uploading to the repository of the appropriate binary
files/archives, is handled by the VASREGM and involves interactions with the
RCM.

• Reconfiguration actions on the underlying infrastructure. The execution of these
actions, which are determined by suitable interpretation of service metadata and
context information (e.g., network capabilities/load), is co-ordinated by the RCM
that receives high-level events (e.g., an update of the pricing policy and/or traffic
flow information regarding service “X”) and maps them to appropriate signaling
(based on standardised or proprietary APIs/protocols) with network/system com-
ponents/devices (e.g., routers, billing systems).

The co-ordination of the above mentioned transaction is handled by the VASREGM.
For example, if during VAS update the reconfiguration of underlying network routers
fails, any changes to the service database and algorithm repository should not be
committed.

3.3 Supporting Mechanisms

3.3.1 Specification of Service Metadata
The service provision functions of the RCSPP are largely dependent on the availabil-
ity of accurate metadata regarding the service, which is referred to as the service pro-
file. The service profile is formulated by the VASP and communicated to the RCSPM
during the service registration operation. The RCSPM maintains this information in
an appropriate service database, whose data can be updated at any time by authorised
third parties. The current section first describes the contents of the service profile,
then elaborates on our choice of the format of its representation and finally presents
how adaptation algorithm metadata can be included in service metadata, with the
support of RDF.
The application profile encompasses a variety of information, such as:

• General data about the service, like name, version, description and VASP informa-
tion.

• Data describing the service software architecture, including any optional compo-
nents.

• Requirements from terminals.
• Requirements from network infrastructure. These include pure technical character-

istics like network type (e.g., GSM/GPRS, UMTS, WLAN) and available band-
width as well as requirements of a hybrid business/technical nature such as revenue
sharing policy of network operator and availability of open interfaces (e.g.,
OSA/Parlay) to network functionality.

• User preferences that are supported by the application (e.g., available languages).
• VAS-specific information about tariffing/billing as well as revenue sharing be-

tween VASP and platform provider.
• Security data.

Since service metadata is subject to processing and exchange in different administra-
tive domains, it should be represented in a storage-independent format that promotes

A Scheme for the Introduction of 3rd Party 23

interoperability. Two current recommendations of the World-Wide-Web Consortium,
XML [11] and RDF [12] can be thus considered as prime candidates for this task.
XML is a ubiquitous, widely adopted by industry meta-language, which enables the
representation of hierarchical data structures and incorporates capabilities for the
definition of new vocabularies and schemata. RDF is a more complex framework that
can be used for the encoding of arbitrarily complex information in the form of di-
rected labeled graphs. Notably, XML is the most common format for serialising RDF
data.

In general, XML is easier to use and manipulate, while RDF has greater capabili-
ties for expressing semantically rich information. RDF results in more clarity, since
there is an explicit format interpretation of any RDF-encoded data, based on the RDF
Model Theory [13]. Consequently, a certain piece of information can be represented
in RDF in exactly one, unique way, while in XML many different encodings with the
same meaning are possible [16]. This advantage of RDF, however, comes at the cost
of being more verbose and significantly more complex. The latter characteristic
makes it less attractive for the majority of users and developers [14].

Fig. 3. XML DTD for service profile (Note: only part of it and simplified for readability)

In our approach, the service profile is encoded in XML; an XML Document Type
Definition (DTD) is employed for defining the application metadata vocabulary.
However, there is the possibility for the incorporation of RDF models as values of
certain XML elements, as XML CDATA sections [15]. This has been considered
necessary for certain elements, like contextual requirements, which can include in-
formation that is not a priori predictable and thus is not possible to include in an XML
DTD or XML Schema that is universally adopted by all VASPs. This way, VASPs
are allowed to insert in the service profile context requirements, while still producing
XML documents that are valid and compatible with the service metadata DTD. The
inherent greater extensibility capabilities of RDF [17] have been the main reason for
this choice, although some researchers claim that they create challenging validation
problems and can potentially create the risk for storing of incorrect data [18].

The above are exemplified by the corresponding DTD displayed in Fig. 3.

<!--DTD for VAS descriptor-->
<!--Author: Nikos Houssos, UoA-CNL-->
<!ELEMENT VAS (VASGEN, VASP, SOFTWAREARCH, SECURITY)>
<!ELEMENT VASGEN (VASName, VASID?, VASVersion, VASDescription, SubscriptionType, Category, Keywords, Availability,
UpdateDescription?, OSA_Parlay_InfoGen?)>
. . .
<!ELEMENT VASP (VASPName, VASPType, VASPPublicKey, VASPReference)>
. . .
<!ELEMENT SOFTWAREARCH (ServerPart, ClientPart)>
. . .
<!ELEMENT ClientPart (ServiceClientVersion+, ContextReq)>
<!ELEMENT ContextReq (TermReq?, NetworkReq?, UserPref?, UserStatus?, OtherReq?)>
<!ELEMENT TermReq (#PCDATA)>
<!ELEMENT NetworkReq (#PCDATA)>
<!ELEMENT UserPref (#PCDATA)>
<!ELEMENT UserStatus (#PCDATA)>
<!ELEMENT OtherReq (#PCDATA)>
<!ELEMENT ServiceClientVersion (CorePart, OptionalPart?, ContextReq, PricingModel, TariffClass, CostDescription, FlowMonitoring,
QoSIndicator)>
. . .
<!ELEMENT CorePart (Component+)>
<!ELEMENT OptionalPart (Component+)>
<!ELEMENT Component (Description, Implementation+, ContextReq?, OptionalPart?)>
. . .
<!ELEMENT Implementation (Codebase, ContextReq?)>
. . .
<!ELEMENT SECURITY (IPRProtection, Confidentiality, VASConditionsOfUse, SecurityDomain, SPKICertificate)>
. . .

24 Nikos Houssos, Nancy Alonistioti, and Lazaros Merakos

An important issue relates to how the VASP can specify custom algorithms that
should be used for adaptation/matching of service profiles according to the current
service provision context. We have identified a solution for this issue, based on the
assumption that the context requirements metadata is encoded in RDF. We have de-
fined a specific RDF property called ComparatorAlgorithm2, whose subject can be
any RDF resource and whose value is of type ComparatorDescriptor. The latter is a
class of RDF resources, which represents adaptation/matching algorithms. Compara-
torDescriptor is a sub-class of the more general AlgorithmDescriptor class. A Com-
paratorDescriptor object can have various properties, which provide data adequate
for locating and loading the algorithm implementation (e.g., FullyQualifiedName,
ImplementationLocation) or are used for providing general information about the
algorithm (e.g., AlgorithmDescription, DeveloperDescriptor). The corresponding
declarations are included in an RDF Schema that we have defined and made publicly
available. The schema is shown in Fig. 4.

To illustrate the above, we provide in the following some examples, in which we
use certain terminal capability attributes (as specified in the OpenMobileAlliance
UAProf specification [19]) as cases of context parameters and assume an RDF/XML
serialisation of RDF data.

If the value of the RDF property (context parameter) is compound, it is augmented
with an ComparatorAlgorithm property element. For instance, the following
definition for the JVMVersion property:
<prf:JVMVersion>
 <rdf:Bag><rdf:li>SunJRE/1.2</rdf:li></rdf:Bag>
</prf:JVMVersion>

becomes:
<prf:JVMVersion>
 <rdf:Bag><rdf:li>SunJRE/1.2</rdf:li></rdf:Bag>
 <alg:ComparatorAlgorithm>
 <alg:ComparatorType>Matcher</alg:ComparatorType>
 <alg:FullyQualifiedName>gr.uoa.di.cnl.adaptation.VersionMatcher<
/alg:FullyQualifiedName>
 <alg:ImplementationCodebase>http://www.cnl.di.uoa.gr/People/nhou
ssos/Impl/classes/</alg:ImplementationCodebase>
 </alg:ComparatorAlgorithm>
</prf:JVMVersion>

Lest the value of the RDF property (context parameter) is atomic (RDF Literal), we
use the standard RDF technique for representing higher arity relations using binary
relations [17]. Thus, the principal value of the property is included as an rdf:value
property and a ComparatorAlgorithm property element is also added. Thus, the
following definition for a ScreenSize property:
<prf:ScreenSize>1024x768</prf:ScreenSize>

becomes:
<prf:ScreenSize>
 <rdf:value>1024x768</rdf:value>

2 In the reference to RDF resources in this paper we present them as “local” resources; we omit

the globally qualified name for the sake of readability and simplicity of the text. Thus, for
example, we write “ComparatorDescriptor” instead of
“http://www.cnl.di.uoa.gr/People/nhoussos/Schemata/AlgorithmSchema-
20030622#ComparatorDescriptor” or “alg:ComparatorDescriptor”

A Scheme for the Introduction of 3rd Party 25

 <alg:ComparatorAlgorithm>
<alg:ComparatorType>Matcher</alg:ComparatorType>
<alg:FullyQualifiedName>gr.uoa.di.cnl.adaptation.ScreenSizeMatcher</alg:
FullyQualifiedName>
 <alg:ImplementationCodebase>http://www.cnl.di.uoa.gr/People/nhou
ssos/Impl/classes/</alg:ImplementationCodebase>
 </alg:ComparatorAlgorithm>
</prf:ScreenSize>

Fig. 4. Algorithm Description RDF Schema

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-
schema#" xml:base="http://www.cnl.di.uoa.gr/People/nhoussos/Schemata/AlgorithmSchema-20030622">
 <!-- Algorithm Descriptor Definition -->
 <rdf:Description rdf:ID="AlgorithmDescriptor">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:comment> The base class for resource classes that represent algorithms. </rdfs:comment>
 </rdf:Description>
 <!-- Comparator Descriptor Definition -->
 <rdf:Description rdf:ID="ComparatorDescriptor">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#AlgorithmDescriptor"/>
 <rdfs:comment>
 A resource that represents an algorithm used for adaptation/matching.
 </rdfs:comment>
 </rdf:Description>
 <!-- Properties common for all AlgorithmDescriptor resources. -->
 <rdf:Description rdf:ID="FullyQualifiedName">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Property"/>
 <rdfs:domain rdf:resource="#AlgorithmDescriptor"/>
 <rdfs:comment>
 Provides the fully qualified name of the algorithm.
 Example: "gr.uoa.di.cnl.adaptation.LocationMatcher"
 </rdfs:comment>
 </rdf:Description>
 <rdf:Description rdf:ID="AlgorithmDescription">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Property"/>
 <rdfs:domain rdf:resource="#AlgorithmDescriptor"/>
 <rdfs:comment>Provides a textual description of the algorithm.</rdfs:comment>
 </rdf:Description>
 <rdf:Description rdf:ID="DeveloperDescriptor">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Property"/>
 <rdfs:domain rdf:resource="#AlgorithmDescriptor"/>
 <rdfs:comment>Provides a textual description of the entity that has developed the algorithm.</rdfs:comment>
 </rdf:Description>
 <rdf:Description rdf:ID="ImplementationLocation">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Property"/>
 <rdfs:domain rdf:resource="#AlgorithmDescriptor"/>
 <rdfs:comment>
 Indicates the network location (codebase) from where the algorithm implementation may be retrieved.
 Example: "http://www.cnl.di.uoa.gr/People/nhoussos/Algorithms/"
 </rdfs:comment>
 </rdf:Description>
 <rdf:Description rdf:ID="TargetResourceInstance">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Property"/>
 <rdfs:domain rdf:resource="#AlgorithmDescriptor"/>
 <rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>
 <rdfs:comment> Indicates the resource instance on which the algorithm will be applied. This property has
meaning only when the algorithm metadata is specified separately from the context requirements metadata.
</rdfs:comment>
 </rdf:Description>
 <!-- Properties specific to ComparatorDescriptor resources. -->
 <rdf:Description rdf:ID="ComparatorType">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Property"/>
 <rdfs:domain rdf:resource="#ComparatorDescriptor"/>
 <rdfs:comment>Indicates the type of the Comparator algorithm (Adaptor or Matcher)</rdfs:comment>
 </rdf:Description>
</rdf:RDF>

26 Nikos Houssos, Nancy Alonistioti, and Lazaros Merakos

Note that in the above, the alg: prefix refers to the publicly accessible Internet loca-
tion http://www.cnl.di.uoa.gr/People/nhoussos/Schemata/AlgorithmSchema-20030622#.

As is obvious from the above, the additional property element increases the size of
the service profile. However, this additional size should not be a problem, mainly for
two reasons:

• Typically a VASP would provide customised algorithms only for a small set of
context parameters. The default algorithms (see Section 3.3.2) should suffice for
the large majority of cases.

• Service registration as well as the other procedures utilising the service profile are
management plane procedures that are not time-critical and do not involve com-
munication over the costly and resource-constrained wireless link to the mobile
terminal. Thus, lack of resources is not a principal issue in this case.

3.3.2 Development and Loading of Adaptation Algorithms
Adaptation algorithms, as stated in previous sections, can be developed by VASPs. In
this section we elaborate on the framework that enables the easy development and
dynamic loading of these algorithms.

Every adaptation procedure includes a phase during which crucial decisions are be-
ing made regarding what is the optimal adaptation action that should take place [2].
This procedure is performed based on the comparison of current context parameters
and the contextual requirements of the adaptable entity. In the RCSPP this procedure
is accomplished by a generic adaptation decision engine [2] that accepts as input two
profiles, called the adaptor (representing context information) and the adaptee (repre-
senting the adaptable entity).

All types of profiles in our implementation are represented in a common, internal,
object-oriented format, depicted in Fig. 5 [2]. Notably, the adaptee and adaptor pro-
files are instances of the same class (Profile). Profiles are instances of profile ele-
ments and consist of single profile attributes and sub-profiles (this is an application of
the Composite design pattern [10]).

The adaptation algorithm is typically encapsulated in an object that implements the
Adapter or Matcher interface, is aggregated in a ProfileElement instance and is dy-
namically loaded. This way, new adaptation algorithms for specific attributes can be
introduced without the need to reprogram the code of the ProfileElement classes that
represent those attributes (this is an application of the Strategy design pattern [10]).

The RCSPM is able to construct profiles according to the above representation,
containing the service information stored in the application database after service
registration. Based on the RDF-based algorithm metadata that has been provided by
the VASP with the mechanism explained in the previous section, the constructed
service profile hierarchies aggregate the appropriate algorithms specified by the
VASP. Notably, the adaptation module has a default algorithm per each context pa-
rameter, which is used when no customised version is introduced by the VASP.

The implementation of an algorithm in Java (this is the only language supported in
our prototype), is quite straightforward. The developer creates a class that implements
one of the Adapter or Matcher interfaces. The algorithm logic typically retrieves the
value of certain situational parameters from the context (adaptor) profile and, based
on them, reaches a decision according to service-specific criteria. An example of a
very simple algorithm regarding matching screen sizes is depicted in Fig. 6.

A Scheme for the Introduction of 3rd Party 27

Fig. 5. Generic profile representation.

Fig. 6. Example Matcher implementation.

4 Summary – Conclusions

The significance of adaptation in next generation mobile systems and services is
widely recognised. Adaptation capabilities form a principal enabler of ubiquitous,
seamless service provision over highly diverse underlying infrastructures. Moreover,
third-party VASPs are expected to play an increasingly significant role in the devel-
opment and delivery of mobile services. The present paper has introduced a scheme
for offering third parties advanced capabilities for performing their own adaptations
and customisations to the process of the provision of their applications. The proposed
scheme exploits knowledge representation and object-orientation techniques to
achieve this goal without incurring excessive additional overhead to VASPs.

public class ScreenSizeMatcher implements Matcher {
public boolean matchElements(ProfileElement element1, ProfileElement element2) {

boolean returnValue = false;
int w1, w2, h1, h2;
double ratio1, ratio2;
if ((element1.getType().equals("gr.uoa.di.cnl.ScreenSize"))

&& (element2.getType().equals("gr.uoa.di.cnl.ScreenSize")) {
w1 = ((Integer) ((ProfileAttribute) element1).getValueAt(0)).intValue();
w2 = ((Integer) ((ProfileAttribute) element2).getValueAt(0)).intValue();
h1 = ((Integer) ((ProfileAttribute) element1).getValueAt(1)).intValue();
h2 = ((Integer) ((ProfileAttribute) element2).getValueAt(1)).intValue();
ratio1 = w1/h1;
ratio2 = w2/h2;
if ((ratio1 == ratio2) && (w2 < 1.2*w1) && (w2 > 0.8*w1)

&& (h2 < 1.2*h1) && (h2 > 0.8*h1))
return true;

}
return returnValue;

}
}

Matc her

m atchElem ents ()

<<Interface>>

ProfileAttribute

Adaptor

adaptEl em en t()

<<Interface>>

ConcreteMatcher1 ConcreteMatcher2Concret eA daptor1ConcreteAdaptor2

Co mparat or
<<Interface>>

ComparatorDescriptor

Profile

ProfileElement

m atch(m atchElem ent : ProfileElem ent) : boolean
adapt(adaptorElem ent : ProfileElem ent) : ProfileElem ent
m atch(m atchElem ent : ProfileElem ent, m atcher : Matcher) : boolean
adapt(adaptorElem ent : ProfileElem ent, adaptor : Adaptor) : ProfileElem ent

0..*

1..*

0..*

1..*

28 Nikos Houssos, Nancy Alonistioti, and Lazaros Merakos

Acknowledgements

Part of the work included in this paper has been performed in the framework of the
project “ANWIRE” (www.anwire.org), which is funded by the European Community
under the contract IST-2001-38835.

References

1. UMTS Forum Report No. 9, “The UMTS third generation market - structuring the service
revenues opportunities”, available from http://www.umts-forum.org/.

2. Houssos, N. et al.: Advanced adaptability and profile management framework for the sup-
port of flexible mobile service provision. IEEE Wireless Communication Magazine, Vol.
10, No. 4, August 2003, pp. 52-61.

3. World Wide Web Consortium: RDF/XML Syntax Specification, available from
http://www.w3c.org/TR/rdf-syntax-grammar/.

4. Dillinger M., Alonistioti N., Madani K., (Eds.): Software Defined Radio: Architectures,
Systems and Functions. John Wiley & Sons, June 2003.

5. Alonistioti N., Houssos N., “The need for network reconfigurability”, in [4].
6. Moerdijk A. J., Klostermann L.:Opening the Networks with Parlay/OSA: Standards and

Aspects Behind the APIs. IEEE Network, May 2003.
7. Houssos N., Gazis V., Alonistioti A.: Application-Transparent Adaptation in Wireless

Systems Beyond 3G. M-Business 2003, Vienna, Austria, 23-24 June 2003.
8. Koutsopoulou M., Kaloxylos A., Alonistioti A.: Charging, Accounting and Billing as a

Sophisticated and Reconfigurable Discrete Service for next Generation Mobile Networks.
Fall VTC2002, Vancouver, Canada, September 2002.

9. Fouial O., Fadel K. A., Demeure I.: Adaptive Service Provision in Mobile Computing En-
vironments. IEEE MWCN 2002, Stockholm, Sweden, 9-11 September 2002.

10. Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements of Reusable Ob-
ject Oriented Software. Addison Wesley Longman, Inc., 1994.

11. XML: Extensible Markup Language home page, http://www.w3.org/XML/.
12. RDF: Resource Description Framework home page, http://www.w3.org/RDF/.
13. RDF Semantics, http://www.w3.org/TR/rdf-mt/.
14. Butler M., “Barriers to the real world adoption of Semantic Web technologies”, HP Tech-

nical Report, HPL-2002-333.
15. Extensible Markup Language (XML) 1.0, W3C Recommendation, 6 October 2000.
16. Decker S., et al., “The Semantic Web: the roles of XML and RDF”, IEEE Internet Com-

puting, September-October 2000.
17. RDF Model and Syntax Specification, W3C Recommendation, 22 February 1999.
18. Smith C., Butler M., “Validating CC/PP and UAProf Profiles”, HP Technical Report,

HPL-2002-268.
19. Open Mobile Alliance (OMA): User Agent Profile (UAProf) specification, available from

http://www.openmobilealliance.org.

	1 Introduction
	2 Service Provision Platform
	2.1 Business and Service Provision Model
	2.2 Overview of Platform Architecture and Functionality

	3 3rd Party Support for Adaptable Service Provision
	3.1 What Does the RCSPP Provide?
	3.2 What Does the VASP Have to Do?
	3.3 Supporting Mechanisms

	4 Summary – Conclusions
	References

