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Abstract. Locality of referenced data is an important aspect for dis-
tributed computing. Caching is commonly employed to achieve this goal.
However, when using current component-oriented middleware client ap-
plication programmers have to take care of this non-functional aspect
by themselves, without direct support from middleware facilities or de-
sign tools. The paper at hand describes a novel approach to disburden
them from this non-trivial, error-prone task by transparently integrating
caching as an orthogonal middleware service using interceptors which are
preconfigured at design-time using standard UML extension mechanisms.
An advanced mechanism for dynamic adaptation of the caching service
to changing access characteristics is introduced in the second part.

Keywords: Caching, distributed component-based middleware, Enter-
prise JavaBeans, adaptivity, reflection

1 Introduction

Todays middleware platforms, no matter whether procedural, object-, or com-
ponent-oriented, apparently provide the means for transparent distribution by
allowing remote procedure calls or method invocations to be as easily integrated
as their local equivalents. However, a closer look reveals the caveats of this
approach, at least if it’s naively used: Every single remote call results in at least
one network round trip which slows the code down by magnitudes.

With platforms like CORBA Components [1] or Enterprise JavaBeans [2],
this issue is typically tackled at application level by streamlining remote in-
terfaces, i.e. reducing necessary interactions between remote nodes, or by im-
plementing caching frameworks at the same level. In their pursuit for the best
possible locality of reference, distributed programs usually try to collocate data
and process. This is either done by patterns like value object [3] that transfer
bundled object attributes to the client, or by patterns like session facade [3]
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that place computation-intensive logic at server side. Nevertheless, all of these
workarounds violate the principle of transparent distribution, a non-functional
aspect that should not bother the application programmer.

Our approach is based on the assumption that most component attributes
are more often read than written which makes them suitable for caching. This
additional meta-information can already be attached to the application model
at design time. Generator tools use this information to preconfigure the caching
logic. Integrated into the middleware itself via interceptors as reflectional mech-
anism, it avoids unnecessary network round trips unnoticed by the application
programmer, thus forming a transparent proxy layer that completely hides the
complexity of attribute storage and retrieval from the client programmer.

Possible use cases include interactive multimedia applications, e.g. eLearn-
ing scenarios, where object-oriented “fat client” programs need to communicate
frequently with server-side data models. But the concept is also practicable for
distributed server-side processing, e.g. web servers or Servlet containers accessing
components on application servers. Generally, it’s usable wherever component
clients and servers are distributed over multiple network nodes.

The first prototype as explained in Sec. 2 relies on explicit, static attribute
mark-ups at deployment time to enable an augmented container to generate
necessary caching functionality. In contrast, our current activities aim at a self-
learning concept that relieves the deployer or component assembler from the
burden of classifying attributes by dynamic run-time adaptation to changing
attribute access characteristics. The extensive usage of client-/server-side in-
terceptor pairs also allows for the integration of more sophisticated centralized
cache invalidation or update propagation schemes. This approach is introduced
in Sec. 3.

2 Static Approach
As mentioned introductorily, our first prototype follows a static approach, i.e.
cachability of attributes has to be declared at deployment time. Once considered
cachable, an attribute remains in that state. A reference implementation based
on Sun’s Enterprise JavaBeans (EJB) platform [2] and the open source EJB
container JBoss [4] was developed to demonstrate the underlying concepts. One
major goal is the explicit, separate handling of the orthogonal non-functional
aspect “caching” throughout a component’s life cycle.

2.1 Component Design

Considering the standard software development process, developers already get
a fair notion about a component’s usage scenarios and corresponding data flows
at design time, right after thorough analysis. A component’s attributes are the
most suitable candidates for caching as they contain its actual data. There are
basically three categories of attributes1:
1 References to other components can be treated in the same way as attributes in

respect to caching, although they are technically handled in a different way.
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read-only – practically never changes, to be cached upon first access;
cachable – changes rarely2, to be cached upon first access; appropriate invali-

dation / update propagation protocol required for consistency;
volatile – non-cachable attributes that are subject to frequent changes or that

should only be accessed in a transactional context.

The OMG’s Unified Modeling Language [5] provides the means for storing
such additional information using so-called stereotypes which imply certain char-
acteristics and roles that can be evaluated by code generators and other tools to
deduce applicable algorithms and code segments.

2.2 Component Implementation

As the underlying EJB platform encapsulates component attributes as pairs of
get/setXyz methods by convention, stereotypes have to be mapped to these rep-
resentations, accordingly. The Java programming language provides tagged com-
ments, i.e. JavaDoc, for storing additional information about language elements
that can be evaluated by compiler-independent parsers and tools. Some UML
modeling tools already make use of this language feature. Thus, a stereotype <<
cacheable >> for a component attribute becomes a /** @stereotype cachable
*/ comment above the corresponding accessor method, or a component-level
constraint caching.policy=LRUCachePolicy translates to /** @invariant ca-
ching.policy=LRUCachePolicy */ above the Bean class. We decided to use
this feature for our EJB prototype in conjunction with XDoclet [6], an open
source code generator for EJBs.

Originally intended to bridge the disconnection between bean implementa-
tions and interfaces that often tend to get out of sync, XDoclet generates inter-
faces, deployment descriptors, and auxiliary classes from Bean classes. It allows
the construction of arbitrary code segments depending on special JavaDoc com-
ments at class / method level and special template files that actually control the
code generation process.

2.3 Code Generation

A special XDoclet Template is used to generate a separate caching.properties
file conveying this information for client deployment. There is no use to package
this information in a XML file along with other deployment descriptors because
our static caching approach necessitates no additional processing by the server-
side component container. Additionally, the generated jboss.xml is adapted to
include our CachingClientInterceptor in the client-side interceptor chain, as
explained below.

2.4 Deployment

To understand the way our caching-enabled components are deployed, a few
introductory words about interceptors should be said:
2 The definition of “rarely” is application-specific!
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The modular architecture of JBoss features an interceptor framework similar
to the OMG’s specification [7] but more flexible for caching purposes. Intercep-
tors are a meta-programming facility for distributed middleware platforms. On
both client and server side, interceptors can be hooked into the control flow of
(remote) operation calls, basically to add parameters and to augment results, but
generally to alter virtually any property of a call’s context, even its semantics.

The main difference between JBoss interceptors and CORBA Portable In-
terceptors is the way they are chained and handled: The CORBA specification
defines different types of Interceptors and certain access points during request
processing when they have to be called. The ORB would typically keep con-
figured interceptors in an array and invoke them sequentially, each interceptor
returning control after its task has been accomplished. In contrast to that, JBoss
defines a slightly different protocol, described in [8], based on a linked list of in-
terceptors established by the container. Although this imposes on every single
interceptor the responsibility to invoke its successor, this allows for greater flexi-
bility, i.e. to cut short the interceptor chain by quickly returning cached results.

Fig. 1. Interceptors in JBoss Dynamic Proxies.

Client-side integration of these interceptors is shown in Fig. 1: Component
proxies are transparently generated and instantiated using Java’s Dynamic Re-
flection API. A ClientContainer passes each request through a chain of Inter-
ceptors, whose sequential order is determined by the bean provider or application
assembler at deployment time. The last interceptor always hands the request to
an InvokerProxy that finally calls the server. Server-side interceptors are stacked
in a similar fashion. When a response returns from the server, it passes through
the same interceptor chain in reverse order.

After code generation, the application assembler / deployer is given the op-
portunity to make certain manual adjustments to given descriptors, e.g. changing
cachability of certain attributes, caching policy etc.

When a caching-enabled component is deployed, the interceptor chain is as-
sembled as configured in the component’s jboss.xml along with a Proxy as
shown in Fig. 1. This conglomerate is transferred to the client upon its first
JNDI lookup of the component. Interceptor instances are then created in the
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client VM as needed by remote references. The first instance of a CachingClient-
Interceptor loads the information about cachable component attributes from
the caching.properties located in the client class path and initializes the in-
memory cache according to configured policies / replacement strategies.

2.5 Runtime

Prototypically, the cache back-end was implemented selectively using JBoss’
LRUCachePolicy or TimedCachePolicy with component identity, method, and
parameters as combined keys and results as values, i.e. (i, m, {p}) → r. The
basic granularity of cached data is per-attribute but as these are members of
identifiable components, collective invalidation of attributes is still possible.

As we already elaborated in [9], multiple reference handling is also an impor-
tant issue for caching services in distributed component middleware. Component
references are typically passed around as marshaled objects, i.e. proxies / stubs,
which makes it possible for a client to obtain a number of proxy objects for
one and the same remote entity. This is counterproductive for memory con-
sumption. CachingInterceptors have also been leveraged to support efficient
multiple reference handling by checking all returned remote references, i.e. prox-
ies, for duplicates in the local cache, ensuring that at most one reference exists
to a given component. The same is done with returned collections of references
by querying their elements individually against the cache. Sun’s EJB specifi-
cation [2] explicitly discourages direct equality testing between entities using
equals(), and isIdentical() may result in additional undesired remote calls,
so EJBHandles are held liable for component equality that is necessary for dupli-
cate checking. Note that JBoss’s proxy implementation already transfers handles
upon initialization, hence no additional network round-trips are required. Calls
to remove() methods require the interceptor’s special attention because they
imply the removal of all cache entries for keys (ir, m, {p}) with a given iden-
tity ir.

2.6 Performance and Usability Benefits

Our experiences with the framework showed general feasibility of the concept.
The use of client-side interceptors is mandatory with JBoss, so the overhead for
invoking yet another interceptor is quite low. Cache lookups turned out to be
magnitudes faster than direct component attribute queries. A simple test sce-
nario was set up with both client and server VM running on the same host3

to eliminate the interfering influence of variable network delays. Preliminary re-
sults of cache miss times for queries to a component’s value object were around
20ms per request, compared to 1ms and even less for cache hits. Depending on
networking infrastructures, several more ms can be added for cache misses in
non-local scenarios. More profound data is currently being collected in connec-
tion with the results of the following section.
3 AMD AthlonTM XP1600+, 1GB RAM, Linux 2.4.21, Sun J2SE 1.4.1, JBoss 3.0.6.
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However, the main advantage of our approach lies in the field of software
engineering, formed by the usability benefits of the solution in comparison to
traditional pattern-based solutions of the caching challenge.

3 Dynamic Approach

An obvious disadvantage of the above described static approach is necessity for
component developers and deployers to precisely describe a component’s cacha-
bility properties before deployment without any chance of later interference.
This drawback gave the motivation for our current endeavors [10] to extend the
framework to dynamically adapt cachability status of component attributes at
runtime, i.e. whether a certain attribute should be considered for caching or not.

3.1 Server-Side Data Gathering

It has been anticipated in Sec. 2.4 that interceptors are also available at server
side in quite a similar fashion. This enables us to centrally collect data about
component access characteristics by implementing and chaining CachingSer-
verInterceptors. How the gathered information is evaluated and eventually
used to dynamically adapt the ClientCachingInterceptor’s behavior is shown
in Fig. 2.

Fig. 2. Adaptive Caching Approach.

1. A container-generated dynamic proxy implementing the desired component’s
remote interface is called from somewhere within the client application code.

2. The proxy creates an Invocation object and passes this through the in-
terceptor chain where a CachingClientInterceptor is installed to quickly
answer invocations whose results it can anticipate from its cache contents.

3. If the invocation does not refer to an exceptional case like a create or
remove method, the CachingClientInterceptor first checks its cachability
table, a client-local singleton preconfigured from the caching.properties
file (optional, if existent) and continuously updated by dynamic adaptation
as described below. This table basically contains information about whether
to cache certain component attributes based on accessor methods (getXyz).
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4. Provided the afore mentioned test succeeded, the cache is eventually queried
for valid invocation results as already explained in Sec. 2.5. Mutator meth-
ods (setXyz) lead to updates of their corresponding attributes before being
passed on.

5. If the queried attribute was not found in the cache or is not to be cached for
some reason, the invocation will finally be transferred to the server where
it will pass another interceptor chain containing the CachingServerInter-
ceptor.

6. At this moment, the interceptor will just hand off the invocation till it gets
processed by the component container.

7. Depending on component type and state, the container may also query a
database or other back-end information source to retrieve the desired data.

8. On its way back4, the invocation is logged in a server-side cachability table
for counting read / write accesses and deriving a cachability categorization
based on the current read / write ratio for a given attribute. The last change
time of an attribute’s categorization is also logged in this table.

9. Successfully processed mutator methods receive special treatment: They are
logged together with their time of occurrence and average time period in
between for purposes of update propagation. The average time period is not
calculated over all write accesses but rather only over the last five, which
seems to be an appropriate heuristic, more economical in respect to memory
consumption and more sensitive to rapid changings. These slots are initially
set to a configurable default value.

3.2 Update Propagation and Client-Side Cache Adaptation

One Question remains unclear in the above presented procedure: How are clients
notified about server-side updates concerning component state and cachability?
Earlier experiments with event-based publish-subscribe middleware [11] scaled
poorly for increasing numbers of clients due to the tremendous amount of status
data and connections the server has to govern when using such an approach.
Therefore, the decision was made for a client-driven “pull” strategy that relieves
the server from the burden of direct “push” update propagation. The general
proceedings of this approach can be described as follows:

– When a cachable attribute is accessed, the CachingServerInterceptor at-
taches the times of last modification and expiration according to the at-
tribute’s current average time span between changes as additional payload
to the Invocation object, taken from step (9) above. The JBoss Proxy pack-
age uses Invocation objects to encapsulate all data belonging to a remote
call. This object is passed through the interceptor chains where interceptors
may attach and detach additional context information. The current cacha-
bility setting as explained in step (8) is also attached, accordingly.

4 For concision and better readability, the return path has not been explicitly marked
in Fig. 2. It basically follows the numbers in reverse order.
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– Back on client side, the CachingClientInterceptor updates the attribute’s
cachability categorization if necessary and schedules a java.util.Timer-
Task with the given expiration time. This TimerTask will enqueue the at-
tribute’s identity together with its last modification time in a list of expired
objects.

– The next remote call passing a CachingClientInterceptor picks up the
value pairs from this expiration list and attaches them to the Invocation,
thus preventing additional network traffic by this piggy-back strategy.

– Unmarshalled at server side, the expiration list is compared with the last
modifications in the cachability and update tables, resulting in the creation
of positive list containing a bit mask for changed cachability categorizations
and value updates, which is transfered on the call’s way back to the client.

– Updated attributes are then discarded from the client-side cache, implicating
a normal retrieval upon next access that causes the described procedure to
start over again. If an attribute turns out to be not cachable any longer, any
of its possibly existing cache entries will also be discarded.

3.3 Performance Considerations

As the described dynamic approach for continuous adaptation of the caching
service to changing access characteristics is still partially under development, it
naturally contains a number of flaws. At the current status, the considerable
overhead for update propagation limits the algorithm’s efficiency to scenarios
with larger attributes.

A number of optimization is currently being implemented. For instance, the
mentioned value objects provide a convenient way for grouping attributes with
similar access characteristics. Instead of caching individual attributes, single at-
tribute queries can be mapped to cached value objects. Overhead for invalidation
decreases as well. The current invalidation scheme could also be enhanced to sup-
port update propagation for certain attributes that require fast availability of
changes at all replicating nodes, in other words: Instead of transmitting a list
of updated attributes, the server-side interceptor could immediately send the
changed values, thus saving a network round trip.

4 Related Work

Paradigms for distributed computing can basically be distinguished into dis-
tributed shared memory systems (DSM) and systems communicating via mes-
sage queues or remote procedure calls (RPC). The former ones, typically found
in high speed computing environments, share a mutual set of distributed memory
pages whose consistency is maintained by the memory subsystem using multi-
cast and similar technologies. Whereas in middleware of the latter category, the
application programmer usually has to take care of data distribution and con-
sistency by himself. If caching is used as a special form of partial replication,
DSM systems typically rely on page-oriented caching strategies and procedural
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or message-oriented middleware on object caching algorithms, respectively. As
current distributed component middleware platforms like defined by [12] obvi-
ously belong to the latter kind, we will concentrate on the corresponding caching
issues only.

4.1 Object Caching

A vast multitude of publications exists in the field of object caching, many of
them on typical hypertext transfer issues. However, solutions for object-oriented
middleware also date back a long way, e.g. to Arjuna, Shadows [13], and Orca
[14], among others. Interesting parallels to “modern” patterns like value object
[3] can already be found and the issues of invalidation versus update propagation
are discussed there.

CASCADE [15], a CORBA caching service for applications in Wide Area
Networks offers interesting insights on hierarchical cache management and stag-
gered consistency levels, an aspect also taken up by other publications [16]. Flex
[17] is a distributed caching system on top of Fresco and CORBA that also
considers issues about caching object references, like object faulting and access
detection, which shows the parallels to object-oriented databases. Although rele-
vant, these publications have a somewhat different focus. Eberhard and Tripathi
[18] proposed a transparent caching mechanism for Java RMI with configurable
caching strategies and consistency protocols but they did not take changing ac-
cess characteristics into account.

4.2 Adaptive Caching

The term “adaptive caching” is slightly overloaded, e.g. there are projects try-
ing to combine the virtues of algorithms from page-oriented caching with object-
oriented techniques. ACME (Adaptive Caching Using Multiple Experts) [19] uses
machine-learning algorithms to dynamically weigh cache replacement strategies
according to their success, which provides better performance for proxy cascades
in web / hyper-media scenarios. Divergence Caching [20] illuminates the aspects
of static and dynamic caching, i.e. fixed and variable refresh rates. Brügge and
Vilsmeier [21] propose a caching strategy for CORBA Calls similar to the one
presented in our paper, with focus on prefetching of attribute groups based on
statistical evaluations of past invocations. However, no approaches to dynami-
cally determine cachability are known to the authors.

4.3 Meta-programming

Meta-Programming or reflectional programming usually refers to coding on the
abstract meta-level of a programming language that is used to describe the ex-
ecuted code itself, i.e. in terms of classes, methods etc. The basic mechanisms
have not changed greatly since Smith’s thesis about reflection [22]: programs
or components should have a notion about their current context and (limited)
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control over their interpretive environment. Interfaces to this meta-level are de-
fined by meta-object protocols (MOP) like interceptors as they are used in the
context of this paper. Several recent publications [23,24] leverage interceptors for
building frameworks that more or less try to partly hide the complexity of meta-
programming or to add a higher abstraction level. As we are using interceptors
only as the means for integrating orthogonal functionality, current research on
this field is slightly out of this paper’s scope. The OMG’s CORBA Portable
Interceptor specification [7] is an attempt to standardize various research direc-
tions in this field, but offers less flexibility than the JBoss interceptor framework
[8] used in our approach.

ArchJava [25] recently supports a wide range of connector abstractions for
communication between components, including caches, but the focus is more on
the ease of use provided by ArchJava’s language extensions. In contrast to that,
we completely resign the use of such extensions for the sake of transparency. An
article of Filman et al. [26] is quite comparable to that but aims more at the
shortcomings of Aspect-oriented Programming [27]; caching is also mentioned
there as an example application of their approach.

5 Conclusion and Outlook

Our static approach to distributed component attribute caching showed the po-
tential performance benefits and gave a first impression of the transparent inte-
gration into a component’s life cycle. The proposed UML extension mechanisms
are currently being summarized in a special UML profile for caching.

First directions for improvement have already been outlined in Sec. 3.3: Value
objects provide a potential to decrease overhead by grouping attributes with
similar access characteristics. Update propagation can be selectively used as an
alternative to invalidation for rapidly changing, volatile attributes. The protocol
should be easy to adapt in this direction.

Further investigations will include prefetching, i.e. possibilities to transfer
data to client-side caches before it is queried, which especially suitable if cached
components are organized in a hierarchical way. The greatest challenge in this
connection will be the automatic detection of such data dependencies. Persistent
caching will also be a focus of our future work because it provides an interesting
feature for use cases like off-line client applications.
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