
Modeling and Model Checking
Mobile Phone Payment Systems

Tim Kempster� and Colin Stirling

School of Informatics, University of Edinburgh,
JCMB, Edinburgh, Scotland, EH9 3JZ,

{tdk,cps}@dcs.ed.ac.uk

Abstract. Recently a technique for transacting goods using GSM mo-
bile phones has become very popular. We present a formal model of these
novel transactions using a views based modeling technique. We show
how to express two safety properties namely goods and money atomicity
within this model using a sub-logic of CTL. By automatically generating
a labelled transition system from our views model we can model check
these properties. We show how to generalise this model to arbitrary num-
bers of processes. Goods atomicity fails under certain circumstances thus
exposing some deficiencies that exist in existing implementations.

1 Introduction

Using mobile telephones to pay for goods and services has become very popular
recently, particularly with younger people. A major reason is that these payment
techniques extend the hugely popular Short Message Services (SMS) available
on 600 million mobile phones world wide. Acording to the GSM association over
24 billion SMS text messages were sent around the globe in the month of May
2002 alone.

The sort of goods and services that are purchased include customised tele-
phone ring-tones, software licenses, mobile games, digital music and internet
content. Although the value of individual transactions conducted in this way
is quite small, typically around ¤1-5, the Wireless World Forum 2002 estimate
¤47.2 billion per year will be transacted by 2006.

In this paper we model an abstracted real life mobile phone payment systems
currently in use. We use temporal logic to express properties of the payment sys-
tems, and observe that model checking can be used to prove or refute properties.
Finaly we expose some non-trivial problems with these payment systems.

The payment systems we model are not fictitious, they are currently imple-
mented and widely used. Furthermore, the problems we expose can be readily
demonstrated to exist in commercial implementations. Currently, these deficien-
cies restrict the goods that can be transacted to a fairly trivial nature, for exam-
ple mobile phone ring-tones. Developing tools that allow formal modeling and
verification of properties of these types of payment systems will lead to more
� This research was supported by EPSRC grant GR/N21141.

H. König, M. Heiner, and A. Wolisz (Eds.): FORTE 2003, LNCS 2767, pp. 95–110, 2003.
c© IFIP International Federation for Information Processing 2003

96 Tim Kempster and Colin Stirling

robust systems in the future which could then be used to transact a wider range
of goods and services with increased confidence.

Mobile Phone User (p) Message Center (c)

Request for goods

Charging message
with goods

Merchant (m)

Request
for goods

Response
with goods

Fig. 1. A very simple mobile transaction. The mobile phone user requests some goods.
The goods are delivered using a charging message. A mobile message center relays the
requests and goods from merchant to phone.

2 Simple Mobile Transactions

A user wishing to purchase some goods (throughout we use the term goods to
mean both goods and services) makes a request using a mobile phone (p), by
texting a keyword, to a particular charging number called a short code. The
mobile operator’s message center (c) then routes this request to a particular
merchant (m). The keyword allows the mobile operator to route the request to a
particular merchant and also specifies the goods requested. Once the merchant
receives the request it then replies to p by sending the goods, via the message
center (c). When the mobile user receives the reply, containing the goods, their
mobile phone bill is debited by a particular amount. The message they receive
is called a charging message.

Although this seems very straightforward there are some interesting at-
tributes which makes the analysis more interesting. Messages are passed asyn-
chronously [10]. Asynchronous message passing systems are amongst the hardest
to implement correctly. Message failure is possible. Cellular Mobile devices can
drift in an out of coverage areas. If a message cannot be conveyed immediately,
between message center and mobile phone, it is stored and retried later. There
is a limit to the time a message is stored, at the message center, and thus if a
mobile device is out of a coverage area for long enough, messages are deleted.
Many phone subscribers opt for a pay-as-you-use service. This is where credits
are purchased in advance and then used up as the mobile phone is used. If suffi-
cient credits do not exist to accept a charging message the message will not be
delivered. Many transactions rely on the delivery of several charging messages
to supply goods. We will investigate these later and see how problems can arise.

Modeling and Model Checking Mobile Phone Payment Systems 97

3 The Views Model

In this section we introduce a views based model [9] to understand the exchange
of information which takes place during mobile transactions. The term protocol
is often used to describe the interaction of the various parties involved in a
transaction. We first describe the components of our model and then discuss
how they can be used.

3.1 Processes, Local State and Views

We model a transaction as a system of processes. Processes communicate by
means of message passing. Each process belongs to a particular class of processes,
corresponding to the role it plays in the transaction. Processes have a set of local
state variables, together these variables constitute a process’s internal state.
Each class has a set of rules that determine the behaviour of all processes that
belong to it. We are interested in three such classes: the merchants, the message
centers, and the mobile phones. Initially, we only consider the interaction of a
single merchant, m, message center c and phone user p as they carry out a single
transaction.

Let p be a phone process that has a local state variable g, denoted p.g.
Variables can have values. If p’s variable g has value tt (true) we say p.g holds
at p. The variables of each process have initial values. Most of our variables will
be boolean type. The type of a view is the same as the variable it is viewing
with the addition of ⊥ which means undefined or unknown. Views have initial
value ⊥. If p.g = ⊥ then p.g fails but ¬p.g holds. In other words ⊥ is treated
like ff (false) when tested.

Together with its local state variables a process may have a view of the inter-
nal state variables of other processes. This view is constructed from information
it receives from other processes in the form of messages. We say, @p(c.g) holds at
process p if the most up-to-date view p has of c.g is tt. That is p has received a
message from c informing p that c’s variable g had the value tt. It is important
to note that if at some point, c.g has value tt then this does not imply that,
@p(c.g) holds. This is because the message reporting c’s state change may not
have arrived at p. Similarly, if @p(c.g), this does not imply that c’s variable g
still has value tt, merely that at some point in the past, c’s variable g was true.
We also allow views of views. So for example @c(@p(c.g)) holds if c receives a
message from p informing c that p has updated its view of c.g to be true.

Views can be thought of as capturing knowledge in our model. If @c(@p(c.g))
then c knows that p knows that c.g holds. The approach of modeling protocols
using knowledge-based systems has gained much interest. Halpern and Zuck [5]
use knowledged based reasoning to derive correctness proofs for a family of
protocols. More recently Stulp [12] used a knowledge based algorithm to reason
about the Internet protocol TCP.

98 Tim Kempster and Colin Stirling

3.2 Protocol Rules

The behaviour of each process within a particular class is defined by a set of
protocol rules. Each rule consists of a pre-condition and a post-action. Let R be
a rule for a class of phone processes P , and p be a phone process from that class.
The pre-condition of R makes assertions over p’s local state variables together
with p’s view of remote process variables. If the pre-condition of rule R holds at
p, we say R is applicable at p and then R’s post-action may happen changing
the local state at p. When p’s local state is updated in the post-action of a rule,
messages are sent to any process that maintains a view of p’s state, enabling them
to update their view of p, when these messages arrive. For example, suppose we
have a system consisting of a single process p and a single process c. To express
the behaviour that p’s variable p.g may move to state tt, from initial state ff,
if it believes c’s state variable g to be in state tt, we write the following rule.

R(p)
g = ff ∧ @p(c.g)

g := tt

The pre-condition of this rule is a conjunction of two clauses, that the process
executing the rule, p, has state variable g set to ff, and that that p views c with
its internal state variable c.g set to tt. If this is the case p can execute the post-
action and update its internal state variable p.g to tt. In general a post-action
may contain more than one assignment. It is assumed that all the assignments
in the post-action are performed atomically and are ordered from left to right.

3.3 Environment Rules

If p has a view of variable g at a remote process c and c assigns a value tt,
by executing an assignment in the post-action of a rule, then a message is sent
to p informing p that c.g was updated. At the point the message arrives and is
delivered1 to p, p’s view of c.g is updated. That is @p(c.g = tt) now holds at
p. Again we model this behaviour using rules. We call these rules environment
rules rather than protocol rules.

If process p updates its view of c.g to tt we write @p(c.g := tt) in the post-
action of the environment rule. A typical rule for updating p’s view of a process
c is as follows.

UV
c.g = tt ∧ @p(¬c.g)

@p(c.g := tt)

Unlike the protocol rules, this rule does not take place at any particular process.
It is used to model the flow of information caused when messages are sent.

3.4 Message Exchange in Our Protocols

In the protocols we study connection based message passing is used. The proto-
cols that implement connection based message passing are examples of transport
1 The term “delivered” is often used to mean that the incoming message is processed

rather than just residing in a buffer on the input device.

Modeling and Model Checking Mobile Phone Payment Systems 99

layer protocols in the ISO OSI reference model [8] for example the widely used
Transfer Control Protocol (TCP) [3]. In these protocols a connection between
sender and receiver is set up and an initial message sequence number is agreed
upon. The sender then sends messages tagged with sequence numbers. The re-
ceiver sends back acknowledgements to these messages with matching sequence
numbers. If an acknowledgement is not received within a certain time the sender
resends the message. In this way a reliable message passing channel is imple-
mented from sender to receiver. This method allows a byte stream to be sent
without error. If two back to back channels are created in this way, a sender
can reliably send a message to a receiver on one channel and reliably receive an
acknowledgement to this message on the other.

We model this in our views model by not only updating the view of a receiving
process of a senders variable, but also updating the view at the sender of the
view at the receiver of the senders variable. Suppose we have two processes, a
sender s and a receiver r. s has a viewable variable x, r maintains a view of
s.x and s maintains a view of r’s view of s.x. To model s sending x to r and r
acknowledging this with a receipt we write @r(s.x := tt) ∧ @s(@r(s.x = tt)).

3.5 Global State and Executions

In our simple example we are interested in modeling a phone process p, a message
center c, and a merchant process m. A protocol configuration C can be modeled
as a triple of internal states and views, with one entry for p, c and m respectively.
We denote this 〈p, c, m〉, where each p, c and m represent the internal state and
view of the phone, message center and merchant respectively.

The system takes a step whenever a process within the composition takes a
step by executing a protocol rule. Thus if R(p) is applied to process p which we

can write as p
R(p)−→ p′2, then C

R(p)−→ C′ where C = 〈p, c, m〉 and C′ = 〈p′, c, m〉. A
process (and therefore the system configuration) can also take a step when its
view is updated through the application of an environment rule.

An execution , therefore is a possibly infinite evolution of system configura-
tions.

C0
R1−→ C1

R2−→ . . .

where C0 is the initial configuration obtained by composing processes in their
initial states.

Sometimes the pre-condition of more than one rule might hold for a process
allowing more than one rule to be applied at that process. If this is the case we
allow both rules to be applied leading to two new configurations.

4 Modeling a Simple Transaction

As we saw in section 2 a simple transaction is carried out by the mobile phone
user making a request for some goods to a merchant via a message center. The
2 Sometimes we omit the name of the process that the rule is applied to.

100 Tim Kempster and Colin Stirling

merchant then replies with a charging message to the phone containing the goods
via the message center. In our simple example we model the goods as a one bit
value. In reality this may consist of a software license key, a mobile phone ring-
tone or perhaps a password for web site content.

We first consider the internal state of processes in our system and then go
on to examine the rules that drive the protocol. The state of the phone process
will consist of two boolean variables and a credit counter which is an integer
variable. A request variable p.r initially set to ff is used to convey a request
to the merchant for some goods. Setting this request variable models the user
texting a keyword to a short code. The goods variable p.g is initially ff denoting
that the single bit good has not yet been received. The credit counter p.b is set
to 0 or 1 to show that the mobile phone account has enough credit to receive one
charging message. The phone process also keeps a view of the message center’s
goods variable in our notation @p(c.g).

The message center c is a little more complicated. It stores a boolean variable
c.r which is initially ff reflecting that p has not yet requested goods. It also stores
@c(p.r), c’s view of p.r. It stores boolean variable c.g which are the goods ready
to ship to p and also @c(m.g) a view of the merchant’s goods variable. c.b is an
integer counter which stores the money the merchant has earned from sending
charging messages. The message center stores @c(@p(c.g)) which is c’s view of
p’s view of c.g. Finally, the message center holds a timeout variable t which
becomes true if the message cannot be sent within a certain time.

The merchant is relatively simple. It keeps a view of the message centers
request variable @m(c.r) and also some goods to ship m.g. Table 1 summarises
the state of the processes.

We now examine the rules that drive our protocol. The first rule REQ is very
simple it just allows a phone to make a request for some goods for the first time.

Table 1. The state stored at the phone, message center and merchant processes.

state of p Initial value
p.r ∈ {tt, ff} p is requesting goods ff

p.g ∈ {tt, ff} p’s goods ff

@p(c.g) ∈ {tt,⊥} p’s view of c’s goods ⊥
p.b ∈ {0, 1, . . .} p’s bank account 1 or 0

state of c

c.r ∈ {tt, ff} c’s request for goods ff

@c(p.r) ∈ {tt,⊥} c’s view of p.r ⊥
@c(m.g) ∈ {tt,⊥} c’s view of m’s goods ⊥
c.g ∈ {tt, ff} c’s goods for p ff

c.b ∈ {0, 1, . . .} c’s bank account for m 0
@c(@p(c.g)) ∈ {tt, ff,⊥} c’s view of p’s view of c.g ⊥
c.t ∈ {tt, ff} c’s has timed out ff

state of m

m.g ∈ {tt, ff} m’s goods for c ff

@m(c.r) ∈ {tt,⊥} m’s view of c.r ⊥

Modeling and Model Checking Mobile Phone Payment Systems 101

Next UV1 is an environment rule that propagates this request to the message
center.

REQ(p)
¬r

r := tt
UV1

@c(¬p.r) ∧ p.r

@c(p.r := tt)

Once the message center views this request it can set it’s own request variable
c.r to propagate the request to the merchant. UV2 is an environment rule that
updates the merchants view of this request.

PROP(c)
@c(p.r) ∧ ¬r

r := tt
UV2

@m(¬c.r) ∧ c.r

@m(c.r := tt)

The merchant once it views the request can service the request and provide some
goods. Again UV3 updates the view as required.

SER(m)
@m(c.r) ∧ ¬g

g := tt
UV3

@c(¬m.g) ∧ m.g

@c(m.g := tt)

Once the message center views that goods are to be sent it attempts to send the
goods to the phone user. The merchant’s bank is credited with one unit.

SEND(c)
@c(m.g) ∧ ¬g

g := tt ∧ b++

Two possible update view rules are now possible to propagate the message to
the phone user. If the phone has enough credit to receive a message the next
rule applies. Notice the message is propagated to the phone only if it has enough
credit. Furthermore, in the post-action of the rule, the @c(@p(c.g)) is updated
reflecting that the phone has acknowledged the receipt of this message.

UV4
@p(¬c.g) ∧ c.g ∧ p.b > 0 ∧ @c(@p(c.g = ⊥)) ∧ ¬c.t

@p(c.g := tt) ∧ @c(@p(c.g := tt)) ∧ p.b−−
The next update view rule covers the case that no credit was available at the
phone so the message was not delivered. In this case we decrease the merchants
bank account.

UV5
@p(¬c.g) ∧ c.g ∧ p.b = 0 ∧ @c(@p(c.g = ⊥)) ∧ ¬c.t

c.b−− ∧ @c(@p(c.g := ff))

At last the goods message arrives at the phone.

RCV(p)
@p(c.g = tt) ∧ ¬g

g := tt

To make our model a little more realistic we allow a timeout rule to delete any
pending message which have not been propagated to the phones. This rule allows
us to model the situation where a phone has been out of coverage for so long
that a message waiting to be delivered to it is deleted by the message center.

102 Tim Kempster and Colin Stirling

Notice in the post action c’s view of p’s view is set to false because c knows that
p will not receive the goods as they are now not going to be sent.

DELETE(c)
@c(@p(c.g = ⊥)) ∧ g ∧ t

b−− ∧ @c(@p(c.g := ff))

TIMEOUT(c)
¬t ∧ g ∧ @c(@p(c.g := ⊥))

t := tt

4.1 An Execution

As we saw before an execution is a sequence of configuration changes by the
application of rules. A configuration 〈p, c, m〉 has the form

〈(p.r, p.g,@p(c.g), p.b), (c.r,@c(p.r), @c(m.g), c.g, c.b,@c(@p(c.g)), c.t),
(m.g,@m(c.r))〉

We can now write a possible execution of our transaction as follows. We underline
the last state change to happen in the configuration.

〈(ff, ff,⊥, 1), (ff,⊥,⊥, ff, 0,⊥, ff), (ff,⊥)〉 REQ(p)−→ (1)
〈(tt, ff,⊥, 1), (ff,⊥,⊥, ff, 0,⊥, ff), (ff,⊥)〉 UV1−→ (2)

〈(tt, ff,⊥, 1), (ff, tt,⊥, ff, 0,⊥, ff), (ff,⊥)〉 PROP(c)−→ (3)
〈(tt, ff,⊥, 1), (tt, tt,⊥, ff, 0,⊥, ff), (ff,⊥)〉 UV2−→ (4)

〈(tt, ff,⊥, 1), (tt, tt,⊥, ff, 0,⊥, ff), (ff, tt)〉 SER(m)−→ (5)
〈(tt, ff,⊥, 1), (tt, tt,⊥, ff, 0,⊥, ff), (tt, tt)〉 UV3−→ (6)

〈(tt, ff,⊥, 1), (tt, tt, tt, ff, 0,⊥, ff), (tt, tt)〉 SEND(c)−→ (7)
〈(tt, ff,⊥, 1), (tt, tt, tt, tt, 1,⊥, ff), (tt, tt)〉 UV4−→ (8)

〈(tt, ff, tt, 0), (tt, tt, tt, tt, 1, tt, ff), (tt, tt)〉 RCV(p)−→ (9)
〈(tt, tt, tt, 0), (tt, tt, tt, tt, 1, tt, ff), (tt, tt)〉 (10)

In fact, states (1) to (8) are the same for all executions because there is exactly
one rule that can be applied at every transition. From state (8) depending on
the initial value of p.b either UV4, UV5 or TIMEOUT can happen. The case
of UV4 is dealt with above. The case of UV5 forms the last transition. The
case TIMEOUT must be before UV4 or UV5 and not before state (7). After
TIMEOUT, DELETE is applied and is the last applicable rule. Figure 2 is
the transition graph of the behaviour of the system.

In our example in the initial state p.b = 1 and c.b = 0 and in the final state
p.b = 0 ∧ p.g = tt ∧ m.b = 1. We see our phone user used one credit to buy a
single bit good from the merchant who acquired a single credit. Suppose however
we started off with our phone being void of any credits i.e. p.b = 0. We see then
that the last rule RCV(p) could never be applied and therefore the goods will
not be delivered. We will return to these points later.

Modeling and Model Checking Mobile Phone Payment Systems 103

(1) (2) (7) (8)
UV4SEND

(9) (10)
RCV

(11)UV5*

TIMEOUT
(12) (13)

DELETE

REQ

Fig. 2. The labeled transition system for the simple transaction protocol.

5 Goods and Money Atomicity

Goods and Money atomicity were defined in [6], they provide the basis of some
useful properties that we would like to show hold for the protocols we examine.

– Money atomicity states that, “Money should be neither created nor de-
stroyed in electronic commerce protocols.”

– Goods atomicity states that, “A merchant should receive payment if and
only if the consumer receives the goods.”

Suppose we want to show that our mobile transaction has the desirable prop-
erty of goods atomicity. That is, in any execution, a phone receives goods if and
only if the phone pays a credit. To show this we need to verify that in every
execution p.g := tt happens if and only if p.b−− happens. More generally, for
any property Φ we write C |= Φ if property Φ holds of a configuration C.

Since temporal logic expresses the capabilities over time, we are able to de-
termine properties of executions by determining if a temporal property holds
of the initial configuration. The temporal logic we use to express properties is a
sub-logic of the widely used computation tree temporal logic, CTL due to Clarke,
Emerson and Sistla [1]. Infact, a selection of other logics could have been used
instead for example LTL.

Let Z range over basic propositions. A basic proposition details information
about variables and views of variables of a configuration: for example, p.g = tt,
c.b = 0 or @p(c.g = tt). We also allow arithmetic operations: for example
p.b+c.b = 1. Given a basic proposition Z we let C(Z) be the set of configurations
where Z is true. A property in our logic can now be expressed as Φ ::= tt | Z |
¬Φ | Φ1 ∧ Φ2 | AGΦ | AFΦ

We write C → C′ to mean there exists a rule R where C R−→ C′. The definition
of satisfaction between a configuration C0 and a formula proceeds by induction
on the formula.

C0 |= tt
C0 |= Z iff C0 ∈ C(Z)
C0 |= ¬Φ iff C0 �|= Φ
C0 |= Φ ∧ Ψ iff C0 |= Φ and C0 |= Ψ
C0 |= AF(Φ) iff for all executions C0 −→ C1 −→ . . .

there is i ≥ 0 with Ci |= Φ
C0 |= AG(Φ) iff for all executions C0 −→ C1 −→ . . .

for all i ≥ 0, Ci |= Φ

104 Tim Kempster and Colin Stirling

We let ff abbreviate ¬tt, Φ ∨ Ψ abbreviate ¬(¬Φ ∧ ¬Ψ) and Φ ⇒ Ψ abbreviate
¬Φ ∨ Ψ and Φ ⇔ Ψ iff Φ ⇒ Ψ and Ψ ⇒ Φ.

Strong liveness properties are expressed using AFΦ. For example if Z is the
proposition p.g = 1, “The phone receives the goods”, then formula AFZ means
in all executions the phone eventually receives the goods.

Goods atomicity therefore can be expressed as

p.b = k ⇒ AF((k = 1 ∧ p.b = k − 1) ⇔ p.g = tt), k ∈ {0, 1}
That is in all futures we eventually reach a situation where we only pay for goods
that are received. Money atomicity can also be expressed. Let Y be p.b + c.b =
k, k ∈ {0, 1}, informally “The center’s bank account for the merchant and the
phone’s bank account sums to the value k”. We can express money atomicity as
Y ⇒ AF(AG(Y)).

This formula states if Y holds then in all executions we eventually reach a
point where Y holds again and continues to do so forever. This property takes
into account that Y may fail to be true for a time (e.g. after rule SEND(m) but
before rule RCV(p).), but in all futures Y is eventually restored.

Fact 1. In any execution of our simple protocol both goods and money atomicity
hold.

Proof. The proof is straightforward by examining the possible executions of
the system. There are only three possible different executions see Fig. 2. Clearly
Money and Goods atomicity holds in each execution. �

6 Systems of Arbitrary Numbers of Phone Processes

In this section we enrich our model to include an arbitrary number of phone
processes. We do this by extending the state at the message center and by
adding the extra phone processes. In order to keep the model simple we only
consider the second half of the protocol and omit the part of the protocol where
a phone requests some goods. This is done by removing rules REQ, UV1,
PROP, UV2, SER and UV3. We now also remove the merchant process as it
is no-longer required. The protocol starts when the message center sends some
goods using the SEND rule. We weaken the pre-condition of this rule so it can
spontaniously send without the requirement of a having received a request.

A configuration is now C = 〈c, p1, . . . , pn〉 a message center and n phone
processes pj for j ∈ {1, . . . , n}. The state at the message center and at each
phone process is now also changed as shown in Table 2.

The rules of our system are as follows where j ∈ {1, . . . , n}

SENDj(c)
¬gj

gj := tt ∧ bj ++

UV4j
@pj(¬c.gj) ∧ c.gj ∧ pj .b > 0 ∧ @c(@pj(c.gj = ⊥)) ∧ ¬c.tj

@pj(c.gj := tt) ∧ @c(@pj(c.gj := tt)) ∧ pj .b−−

Modeling and Model Checking Mobile Phone Payment Systems 105

Table 2. The state stored at the phone, message center for a model with arbitrary
phone processes pj for j ∈ {1, . . . , n}.

state of each pj Initial value Colour
pj .g ∈ {tt, ff} p’s goods ff j
@p(c.gj) ∈ {tt, ⊥} pj ’s view of c’s goods for pj ⊥ j
pj .b ∈ {0, 1, . . .} pj ’s bank account 1 or 0 j

state of c

c.gj ∈ {tt, ff} c’s goods for pj ff j
c.bj ∈ {0, 1, . . .} c’s bank for pj 0 j
@c(@pj(c.gj)) ∈ {tt, ff, ⊥} c’s view of pj ’s view of c.gj ⊥ j
c.tj ∈ {tt, ff} c’s has timed out on pj ff j

UV5j
@pj(¬c.gj) ∧ c.gj ∧ pj .b = 0 ∧ @c(@pj(c.gj = ⊥)) ∧ ¬c.tj

c.bj −− ∧ @c(@pj(c.gj := ff))

RCV(pj)
@pj(c.gj = tt) ∧ ¬g

g := tt
DELETEj(c)

@c(@pj(c.gj = ⊥)) ∧ gj ∧ tj
bj −− ∧ @c(@pj(c.gj := ff))

TIMEOUTj(c)
¬tj ∧ gj ∧ @c(@pj(c.gj := ⊥))

t := tt

Using these rules we automatically generated the transition system for sys-
tems with one and two phone processes. These systems can be seen in Fig. 3.

It is useful to partition a configuration into coloured parts. We use colour j to
colour a variable within the configuration if it is associated with phone process j
in the system otherwise a variable is not coloured. Table 2 shows how we set up
colours in our configuration. It is also possible to colour the rules of our system.
We say a rule is colour j if it only reads j-colour variables in it’s pre-condition
and only changes j-colour or no-colour variables in it’s post-action. SENDj(c)
is therefore a j-colour rule.

1

2

SEND1

3

UV41

5

TIMEOUT1

4

RCV1

6

DELETE1

10

20

SEND1

320

SEND2

30

UV41

150

TIMEOUT1

270

SEND2SEND1

330

UV42

350

TIMEOUT2

40

RCV1

100

SEND2

160

DELETE1

220

SEND2UV41 TIMEOUT1

280

UV42

300

TIMEOUT2

50

SEND2RCV1

110

UV42

130

TIMEOUT2

60

UV42

80

TIMEOUT2

70

RCV2

90

DELETE2

RCV1

120

RCV2RCV1

140

DELETE2

RCV1RCV1

170

SEND2DELETE1

230

UV42

250

TIMEOUT2

180

UV42

200

TIMEOUT2

190

RCV2

210

DELETE2

DELETE1

240

RCV2DELETE1

260

DELETE2

DELETE1DELETE1

UV41 TIMEOUT1

290

RCV2UV41 TIMEOUT1

310

DELETE2

UV41 TIMEOUT1UV41 TIMEOUT1

SEND1

340

RCV2SEND1

360

DELETE2

SEND1SEND1

Fig. 3. One and Two Phone Process. Each phone starts with one credit. The graph for
three phone processes (omitted) has 539 states.

106 Tim Kempster and Colin Stirling

6.1 Goods and Money Atomicity for Multiple Phones

We can define goods atomicity for the multiple-phone case as follows

∀j ∈ {1, . . . , n}, pj .b = k ⇒ AF((pj .b = 1∧pj .b = k−1) ⇔ pj .g = tt), k ∈ {0, 1}

Goods atomicity, defined in this way, is really just a collection of smaller prop-
erties one for each process pj all of which must hold. The smaller property for
pj is identical to the goods atomicity property we saw for phone process p in the
single phone case of section 5. Let Φj be the property for pj . It is clear Φj only
makes reference to state in the configuration which has colour j.

In order to show goods atomicity holds we must show that Φj holds for all
j. It is useful to this end to note (1) Each Φj only makes reference to variables
in the configuration that have colour j. (2) Any rule that changes variables of
colour j only changes variables of colour j. (3)Any rule that depend on colour j
variables only depends on colour j variables.

To verify that Φj holds of the initial configuration we need only consider
rules in our execution which are of colour j and which change configuration of
colour j. This means we only need verify Φj in the very small transition system
of a single phone process pj and infer from this, and the properties above, that
Φj holds for any j and thus goods atomiciy holds in the general case of arbitrary
many phone processes. To see this note that the application of any non j-colour
rule will not effect the validity of Φj nor will it change any state that could
effect the application of a j-colour rule. This type of sate space reduction is an
example of the partial order reduction techniques of [11].

Recall from section 5 we defined money atomicity as Y ⇒ AF (AG(Y)) where
Y is p.b + c.b = k, k ∈ {0, 1}. For the n-phone case we can generalise this. Let
Yj be pj .b + c.bj = kj , then money atomicity can be defined as

∀j ∈ {1, . . . , n}, Yj ⇒ AF(AG(Yj))

Using the same colouring arguments as before we only need to show this holds
in the very small transition system of a single phone process pj and infer that
it holds for all j. Interestingly, we can use the linear nature of our property
to infer a more global definition of money atomicity. We can use the fact that
AF(AG(Φ1)) ∧ AF(AG(Φ2)) ⇔ AF(AG(Φ1 ∧ Φ2)) to show that

∑
pj .b + c.b = k ⇒ AF(AG(

∑
pj .b + c.b = k))

where
k =

∑
kj and c.b =

∑
c.bj

7 Multiple Charging Messages

We now return to the case of a single phone process but consider multiple charg-
ing messages. As we saw in the simple transaction in section 2 the delivery of a

Modeling and Model Checking Mobile Phone Payment Systems 107

charging message to a phone debits the phone account by one credit. The value
of a credit is fixed by the mobile operator and government regulators, in most
countries. Currently, the highest charging value in the UK is £1.50. Unfortu-
nately, many goods have a greater value than a single credit. As a consequence
merchants send two (or more) messages in order to deliver the goods. We will
now extend our model to capture this situation and examine the consequences.

We replace the single variable g, and all its views, at each process with two
variables g1 and g2. We also include two timeout variables t1 and t2 to replace
the single t at the message center. The state at the message center then becomes.

(c.r,@c(p.r),@c(m.g1),@c(m.g2),c.g1,c.g2,c.b,@c(@p(c.g1)),@c(@p(c.g2)),c.t1,c.t2)

The rules are modified to accommodate these extra variables. In the following
we use i to be either 1 or 2 giving a pair of rules in each case.

SERi(m)
@m(c.r) ∧ ¬gi

gi := tt
UV3i @c(¬m.gi) ∧ m.gi

@c(m.gi := tt)

SENDi(c)
@c(m.gi) ∧ ¬gi

gi := tt ∧ b++

UV4i @p(¬c.gi) ∧ c.gi ∧ p.b > 0 ∧ @c(@p(c.gi = ⊥)) ∧ ¬c.ti

@p(c.gi := tt) ∧ @c(@p(c.gi := tt)) ∧ p.b−−

UV5i @p(¬c.gi) ∧ c.gi ∧ p.b = 0 ∧ @c(@p(c.gi = ⊥)) ∧ ¬c.ti

c.b−− ∧ @c(@p(c.gi := ff))

RCV(p)
@s(c.gi = tt) ∧ ¬gi

gi := tt
DELETEi(c)

@c(@p(c.gi = ⊥)) ∧ gi ∧ ti

b−− ∧ @c(@p(c.gi := ff))

TIMEOUTi(c)
¬ti ∧ gi ∧ @c(@p(c.gi := ⊥))

ti := tt

Some much more interesting executions are now possible. It is a relatively simple
task to automatically generate a state transition system representing all possible
executions from a particular initial state from the rules given. Using Microsoft’s
C# .Net framework we created a class for each participant and coded the rules
as class methods. A configuration class was built by composing the phone, mes-
sage center and merchant classes. By using a breadth first search algorithm we
automatically generated the complete transition system. Using Graphviz [4] we
rendered the transition system of Fig. 4. Initially we gave the phone just a single
credit.

Many merchants use the technique of sending two charging messages for
goods to charge twice the fixed charge. A question now arises. Should the goods
be sent in one message, both messages, or split into two (if this is possible) and
be sent half in one message and half in the other? Different goods providers
choose different methods. It turns out that none of these methods guarantees
goods atomicity.

108 Tim Kempster and Colin Stirling

0

1

REQ

2

UV1

3

PROP

4

UV2

5

SER1

61

SER2

6

UV31

54

SER2 SER1

62

UV32

7

SEND1

47

SER2 UV31

55

UV32

8

UV41

22

TIMEOUT1

38

SER2 SEND1

48

UV32

9

RCV1

16

SER2

23

DELETE1

31

SER2 UV41 TIMEOUT1

39

UV32

10

SER2 RCV1

17

UV32

11

UV32

12

SEND2

13

UV52

14

TIMEOUT2

15

DELETE2

RCV1

18

SEND2

RCV1

19

UV52

20

TIMEOUT2

RCV1 RCV1

21

DELETE2

RCV1

24

SER2 DELETE1

32

UV32

25

UV32

26

SEND2

27

UV42

29

TIMEOUT2

28

RCV2

30

DELETE2

DELETE1

33

SEND2

DELETE1

34

UV42

36

TIMEOUT2

DELETE1

35

RCV2 DELETE1

37

DELETE2

DELETE1 DELETE1

UV41 TIMEOUT1

40

SEND2

UV41 TIMEOUT1

41

UV42

45

TIMEOUT2

TIMEOUT1

42

RCV2

44

UV51 UV41 TIMEOUT1

46

DELETE2

TIMEOUT1

43

UV51 RCV2 UV41 TIMEOUT1

SEND1

49

SEND2

SEND1

50

UV42

52

TIMEOUT2

SEND1

51

RCV2 SEND1

53

DELETE2

SEND1 SEND1

UV31

56

SEND2

UV31

57

UV42

59

TIMEOUT2

UV31

58

RCV2 UV31

60

DELETE2

UV31 UV31

SER1

63

SEND2

SER1

64

UV42

66

TIMEOUT2

SER1

65

RCV2 SER1

67

DELETE2

SER1 SER1

Fig. 4. The transition system where two charging messages convey goods to a phone
with only a single credit.

Clearly, if the goods are sent in both messages and the phone starts off with a
credit balance of 1, goods atomicity is violated since the phone user can acquire
the goods by spending just one credit. Similarly, if the goods are split over the
two messages 3, and the phone has only one credit, goods atomicity is again
violated. In this case the merchant will earn a credit without supplying the
goods. Since the order in which the messages arrive cannot be specified, sending
the goods in one of the two messages is also not an option if goods atomicity is
to hold.

We now use our model to show more formally that goods atomicity fails.
Suppose we send the goods in both messages then we can let Z = p.g1 ∨ p.g2.
Z holds if the goods are delivered either in one message or the other. Goods
atomicity can be stated as follows.

p.b = k ⇒ AF((Z ⇒ k > 1 ∧ p.b = k − 2) ∧ (p.b < k ⇒ Z)), k ∈ {0, 1, 2}
Note we need to be a little more accurate in describing goods atomcity now than
before. We have replaced Z ⇔ k = 1 ∧ p.b = k − 1 with (Z ⇒ k > 1 ∧ p.b =
k−2)∧(p.b < k ⇒ Z). The reason for this is that we want capture the case where
the phone user spends just one credit but does not receive the goods, while still
capturing the case that the goods are received without being fully paid for.
3 Some goods providers send a user name in one message and a password in another

which can be used to gain access to premium web content.

Modeling and Model Checking Mobile Phone Payment Systems 109

By examining Fig. 4 we see that the path through states 0, 1, 2, 3, 4, 61, 62,
55, 48, 39, 40, 41, 42, 43 violates goods atomicity. Initially (state 0) p.b = 1. Let
us examine the final state 43 more carefully. In state 43 we see that the local
state at p is

r = tt, g1 = ff, g2 = tt, @p(c.g1) = ⊥, @p(c.g2) = tt, b = 0

the local state at c is

c.r = tt, @c(p.r) = tt, @c(m.g1) = tt, @c(m.g2), c.g1 = tt, c.g2 = tt,
c.b = 1, @c(@p(c.g1)) = ff, @c(@p(c.g2)) = tt, c.t1 = ff, c.t2 = ff

and the local state at the merchant m is

m.g1 = tt, m.g2 = tt, @m(c.r) = tt

In state 43 p.b = 0 and Z = p.g1 ∨ p.g2 holds but k > 2 fails thus Z ⇒ k >
1 ∧ p.b = −1 fails so goods atomicity is violated.

Suppose we change the proposition Z to be p.g1 ∧ p.g2. This represents the
scenario where goods are split up over each of the messages. The same execution
provides a counter example. Initially p.b = 1 holds but in the final state 43,
p.b < 1 but Z now fails because p.g1 = ff. The phone user parts with half the
money but did not receive the goods (only half of them).

It is also very easy to show that if Z is defined as just Z = p.g1, where the
goods are sent in one particular message an execution can be found where goods
atomicity fails. The same is of course true for Z = p.g2.

A possible remedy to these problems is to have the message center alert
the merchant of failure of delivery of messages. The merchant could then take
appropriate action. For example the undelivered message could be resent or the
goods invalidated. The main problem with this is that in the case of a timeout
event the notification of delivery failure may be several days later. It might be
too late to invalidate the goods at this point, for example if the goods were
access to web content which might have alrady taken place.

8 Conclusions

We saw how mobile telephones can be used to acquire goods where the pay-
ment of these goods is made via the users telephone bill these transactions were
modeled using a views model. We expressed important safety properties, namely
goods and money atomicity. and showed that these properties hold in our model
of a simple transaction. Our model produces a labeled transition system so we
could have made use of the many excellent model checking tools available [7][2].
We extended the model for arbitrary numbers of phone processes and we verified
properties in these much larger systems using a technique to reduce the size of
the resulting transition system. Reverting back to our initial model with a sin-
gle phone process we enriched it to include multiple charging messages. In this
model goods atomicity fails.

110 Tim Kempster and Colin Stirling

Although our techniques are applicable for many different types of protocols,
the mobile commerce example in this paper provided us with novel subject mat-
ter. Due to it’s infancy using it in specific ways exhibits some early defects which
we were able to highlight. Our views model provides a rules based operational
semantics with a flavour of knowledge-based reasoning. This allowed us to retain
the advantages of automated model checking techniques with an ability to model
and reason about knowledge. It also allowed us to develop techniques to combat
the well known state explosion problem when model checking.

In the future we intend to investigate further methods for reducing state
spaces in a more general model. In particular we believe by providing a formal
syntax for our protocol and environment rules we will be able to derive general
results for models of arbitrary numbers of processes.

The authors would like to thank Cormac Long, SMPP Protocol Specialist
http://www.smsforum.net for his help and advice when writing this paper.

References

1. E. Clarke, E. Emerson, and A.Sistla. Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Transactions on Program-
ming Languages and Systems, 8(2):244–263, 1986.

2. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
3. D.E.Comer. Internetworking with TCP/IP. Prentice–Hall, Upper Saddle River,

NJ 07458, 1995. Volume 1.
4. John Ellson, Emden Gansner, Eleftherios Koutsofios, and Stephen North.

Graphviz. http://www.research.att.com/sw/tools/graphviz.
5. Joseph Y. Halpern and Lenore D. Zuck. A little knowledge goes a long way:

Knowledge-based derivations and correctness proofs for a family of protocols. Jour-
nal of the ACM, 39(3):449–478, July 1992.

6. N. Heintze, J. D. Tygar, J. Wing, and H. C. Wong. Model checking electronic com-
merce protocols. In Proceedings of the Second USENIX Workshop on Electronic
Commerce, pages 147–164, November 1996.

7. Gerard J. Holzmann. The Spin model checker. IEEE Transactions on Software
Engineering, 23(5):279–95, May 1997.

8. J.D.Day and H. Zimmermann. The OSI reference model. In Proceedings of the
IEEE, volume 71, pages 1334–1340. IEEE Comput. Soc. Press, December 1983.

9. Tim Kempster, Colin Stirling, and Peter Thanisch. A more committed quorum-
based three phase commit protocol. In International Symposium on Distributed
Computing, pages 246–257, 1998.

10. Nancy A. Lynch. Distributed Algorithms. Morgan-Kaufmann, San Francisco, CA,
1993. chapter 8.

11. D. Peled. Ten years of partial order reduction. Lecture Notes in Computer Science,
1427, 1998.

12. Freek Stulp and Rineke Verbrugge. A knowledge-based algorithm for the internet
transmission control protocol (tcp). In G. Bonanno and W. van der Hoek, editors,
Proceedings 4rd Conference on Logic and the Foundations of Game and Descision
Theory (LOFT 4), 2000.

	Modeling and Model Checking Mobile Phone Payment Systems
	1 Introduction
	2 Simple Mobile Transactions
	3 The Views Model
	3.1 Processes, Local State and Views
	3.2 Protocol Rules
	3.3 Environment Rules
	3.4 Message Exchange in Our Protocols
	3.5 Global State and Executions

	4 Modeling a Simple Transaction
	4.1 An Execution

	5 Goods and Money Atomicity
	6 Systems of Arbitrary Numbers of Phone Processes
	6.1 Goods and Money Atomicity for Multiple Phones

	7 Multiple Charging Messages
	8 Conclusions
	References

