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Abstract. The development and maintenance of large distributed software sys-
tems is intrinsically difficult and continues to worry generations of software
engineers in academia and industry. Several key approaches to mastering these
difficulties have been identified, including structuring and reuse. System struc-
turing is essential to controlling complexity, and is a prerequisite for the extrac-
tion of reuse artifacts. Reuse of solutions is crucial to controlling quality and
productivity. Previous work has addressed horizontal reuse, i.e., reuse within a
single development phase. In this paper, vertical reuse, i.e., reuse across devel-
opment phases, is introduced, focusing on the early development phases. For-
mal description techniques (FDTs) are applied to define reuse artifacts. Exam-
ples are drawn from the building automation domain.

1 Introduction

Reuse of solutions and experience for recurring software system development prob-

lems plays a key role for quality improvements and productivity increases. As a pre-

requisite, the problems and their solutions have to be in some sense “similar”. These

similarities should not be understood as purely syntactical, rather, semantical and

conceptual similarities should be considered as well, which requires precise domain

knowledge and conceptual thinking. Reuse has been studied thoroughly in software

engineering, which has led to the distinction of three main reuse concepts [15]:

e Components are often characterized as self-contained, ready-to-use building
blocks, which are selected from a component library and composed.

e A framework is the skeleton of a system, to be adapted by the system developer.

e Patterns describe generic solutions for recurring problems, which are to be cus-
tomized for a particular, embedding context.

It should be emphasized that these reuse concepts can be applied together, for in-

stance, by defining a component framework such as CORBA and adding components,

or by using patterns to define components used in a component framework.

! This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) as part of
Sonderforschungsbereich (SFB) 501, Development of Large Systems with Generic Methods.

H. Konig, M. Heiner, and A. Wolisz (Eds.): FORTE 2003, LNCS 2767, pp. 31-47, 2003.
© IFIP International Federation for Information Processing 2003



32 Reinhard Gotzhein

Each reuse concept is typically associated with a particular development phase.
For instance, components are usually applied in the implementation phase, and pat-
terns are related to the design phase. This, however, results from practical experience
rather than from existing limitations. There is, for instance, no reason why the pattern
idea can not be applied during requirements analysis. In [19], we have introduced the
notion of requirement patterns, and have applied them successfully in the area of
building automation systems [8,17]. Similar observations hold for frameworks and
components.

In previous work, we have addressed horizontal reuse, i.e., reuse within a single
development phase [4,19,10]. In this paper, vertical reuse, i.e., reuse across develop-
ment phases, is introduced. To achieve maximum benefits, we focus on the early de-
velopment phases and address vertical reuse from the requirements phase to the de-
sign phase. More specifically, we exploit the pattern idea: starting from a set of
FoReST requirement patterns, we develop corresponding SDL design patterns defin-
ing generic design solutions. Formal description techniques are applied to define re-
use artifacts. Examples are drawn from the building automation domain.

The paper is structured in the following way. In Section 2, we elaborate on struc-
turing large software systems in general, which is a prerequisite for achieving a sig-
nificant degree of reusability. Furthermore, we survey two reuse approaches that will
be used to establish vertical reuse. In Section 3, we describe vertical reuse of system
architecture specifications. Section 4 introduces vertical reuse of system behaviour
specifications. Section 5 presents conclusions.

2 Reuse in Distributed Systems Engineering

In this section, we first describe different ways of structuring distributed systems.
Structuring is important for controlling complexity on the one hand, and a prerequi-
site for extracting reuse artifacts on the other hand. We then survey two specific reuse
approaches that will be integrated and extended to provide vertical reuse, namely
FoReST requirement patterns and SDL design patterns.

2.1 Structuring of Distributed Systems

Large software systems exhibit a variety of structures, depending on the type of sys-
tem, the degree of abstraction, the development paradigm, and the developers’ view-
points. We can distinguish between structuring in the large, which focuses on system
architecture, and structuring in the small, where behaviour and data of system parts
are decomposed. Structuring principles include module structuring (e.g., agent mod-
ules, object modules, collaboration modules, functional modules), hierarchical struc-
turing (e.g., agent hierarchies, class hierarchies, state hierarchies), conceptual struc-
turing (e.g., reference architectures), dynamic structuring (e.g., creation and
termination of process modules, interaction relationships), and physical structuring
(e.g., nodes, resources, topology).
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In general, a software system can be structured from different perspectives and in
many different ways. To structure distributed systems, a particular type of software
systems that includes distributed applications and communication protocols, the fol-
lowing structuring principles are of specific interest:

e Agent modules. An agent is a system unit that exhibits a behaviour and interacts
with other systems agents. Agent modules are typically described in a self-
contained way, and can be composed by adding interaction channels.

e Functional modules. A functionality is a single aspect of internal system behavior
that may be distributed among a set of system agents, with causality relationships
between single events.

e Collaboration modules. A collaboration is a system unit that captures a distributed
functionality together with the required interaction behaviour. Collaboration mod-
ules can be composed by adding synchronisation and causality relationships.

e Hierarchical structuring. Large systems are often decomposed in subsequent steps,
leading to a hierarchical system structure. The external appearance of a system unit
is then obtained from the composition of its parts. On each level, a different mod-
ule structure may be chosen. For instance, once a system is decomposed into
agents, their behaviour may in turn be decomposed using state hierarchies as well
as compound statements.

Agent modules and collaboration modules can be seen as orthogonal structuring prin-
ciples, capturing different system views, possibly on the same level of abstraction. In
addition, hierarchical structuring can be applied. Agent modules and their composi-
tion can be specified, e.g., with UML statecharts [1] or SDL [13]. MSC [14], UML
sequence diagrams [1], and UML collaboration diagrams [1] support the description
of collaboration modules.

2.2 The FoReST Requirement Pattern Approach

The earlier in the development process reuse is achieved, the larger its positive impact
on the project. Following this observation, we have introduced FoReST, the Formal
Requirement Specification Technique, a component and pattern approach for horizon-
tal reuse in the requirements phase [17]. With FoReST, system requirements are
specified in an object- and property-oriented style, covering both the architecture and
the behaviour of a system.

The FoReST approach consists of a pattern-based requirements analysis process, a
template and rules for the definition of FoReST requirement patterns, a requirement
pattern pool, and language support. The approach has been successfully applied to
the formalization of problem descriptions in the building automation domain, e.g., a
light control [17] and a heating control with requirement specifications of 60 and 90
pages, respectively, and in the SILICON case study [9].

FoReST requirement patterns describe generic formalizations for recurring re-
quirements and capture experience gained in the requirements analysis of previous
system developments. In [8], a complete pattern discovery process for a non-trivial
requirement pattern is documented. In [17], the degree of reuse is increased by incor-
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porating object-oriented concepts (class definitions, specialization) and parameteriza-

tion. The FoReST-approach has been formalized in [18].

Application of FoReST requirement patterns means that they are selected from the
pattern pool, adapted and composed into a context specification. The pattern pool can
be seen as a repository of experience from previous projects that has been analyzed
and packaged. The FoReST requirement patterns we have identified so far can be
classified into three categories:

e Architecture patterns capture generic architectures and their refinements.

Example: ComposITION (Section 3.1). This pattern captures hierarchical architec-

tures, consisting of a composite and its constituents.

e Behaviour patterns capture the causal relationships between phenomena of active
system components.

Example: WEAKDELAYEDIMPLICATION [19]. This pattern captures timing constraints

between two phenomena stating that a causal relationship only exists with a speci-

fied delay, and that the defining phenomenon has to hold during this time span.

e Phenomena patterns capture the results of refining predicates and functions.
Example: LazvyReacTioN [8]. This pattern captures the result of refining a timed
predicate such that the satisfaction of the predicate depends on a number of tempo-
ral constraints.

It has become evident that pattern discovery is a time-consuming task and a major in-

vestment. “Good” requirement patterns are not just a by-product of specifying system

requirements, but the result of rigorous development and continuous improvement.

2.3 The SDL Design Pattern Approach

Design patterns [3] are a well-known approach for the reuse of design decisions. In
[4], another specialization of the design pattern concept for the development of dis-
tributed systems and communication protocols, called SDL design patterns, has been
introduced. SDL design patterns combine the traditional advantages of design pat-
terns — reduced development effort, quality improvements, and orthogonal documen-
tation — with the precision of a formal design language for pattern definition and pat-
tern application.

The SDL design pattern approach [7,10] consists of a pattern-based design proc-
ess, a notation for the description of generic SDL fragments called PA-SDL (Pattern
Annotated SDL), a femplate and rules for the definition of SDL design patterns, and
an SDL design pattern pool. The approach has been applied successfully to the engi-
neering and reengineering of several distributed applications and communication pro-
tocols, including the SILICON case study [9], the Internet Stream Protocol ST2+, and
a quality-of-service management and application functionality for CAN (Controller
Area Network) [5]. Applications in industry, e.g., in UMTS Radio Network Control-
ler call processing development, are in progress [11].

An SDL design pattern [4,7] is a reusable software artifact that represents a generic
solution for a recurring design problem with SDL [13] as design language. Over a pe-
riod of more than 25 years, SDL (System Design Language) has matured from a sim-
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ple graphical notation for describing a set of asynchronously communicating finite
state machines to a sophisticated specification technique with graphical syntax, data
type constructs, structuring mechanisms, object-oriented features, support for reuse,
companion notations, tool environments, and a formal semantics. These language fea-
tures and the availability of excellent commercial tool environments are the primary
reasons why SDL is one of the few FDTs that are widely used in industry.

When SDL patterns are applied, they are selected from a pattern pool, adapted and
composed into an embedding context. The pattern pool can be seen as a repository of
experience from previous projects that has been analyzed and packaged. The SDL
patterns we have identified so far can be classified into five categories:

e Architecture patterns capture generic architectures and their refinements.

Example: CLIENTSERVER [11]. This pattern captures a client/server architecture of a

distributed system.

e [nteraction patterns capture the interaction among peers, e.g., a set of application
agents or service users.

Example: SyNCHRONOUSINQUIRY [10]. This pattern introduces a confirmed interac-

tion between two peers. After a trigger from the embedding context, an agent

sends an inquiry and is blocked until receiving a response from the second agent.

e Control patterns deal with the detection and handling of errors that may result
from loss, delay, or corruption of messages, or from agent failures.

Example: LossCoNTRoL [10]. This pattern provides a generic solution for the de-

tection and handling of message loss in the case of confirmed interactions, such as

synchronous inquiries. If a response does not arrive before the expiry of a timer,
the message is repeated (Positive Acknowledgement with Retransmission).

e Management patterns deal with local management issues, such as buffer creation
or message addressing?.

Example: BUFFERMANAGEMENT [12]. When a signal is passed between two local

processes, the signal parameters are stored into a buffer, and a buffer reference is

sent. This technique has an impact on implementation efficiency, it reduces mem-
ory consumption and copying overhead.

e [nterfacing patterns replace the interaction between peers by interaction through a
basic service provider. This may include segmentation and reassembly, lower layer
connection management, and routing.

Example: CoDex [2]. This pattern provides a generic solution for encoding service

data units (SDUs) and interface control information into protocol data units, the

exchange of PDUs among specific protocol entities, and the decoding of SDUs.

The definition of SDL design patterns supports their selection during the protocol de-

sign. As the result of the object-oriented analysis of requirements, an analysis model

consisting of a UML object diagram and MSC message scenarios are built. Compar-
ing the structure and the message scenarios of SDL design patterns against this analy-

2 It can be argued that these management patterns are rather low-level, as compared to the other
examples. However, they have been discovered in an industrial cooperation, and capture re-
alistic design decisions that lead to the generation of more efficient code. Furthermore, ap-
plication of these patterns signficantly reduces the number of design errors [12].
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sis model strongly supports the selection of suitable patterns [10]. As the number of
patterns in a typical pattern pool (see also [3]) is relatively small (10-30 patterns?),
and with additional information contained in the pattern pool, for instance, on coop-
erative usage, this should be sufficient for a proper selection.

3  Vertical Reuse of System Architecture

In this section, we introduce the pattern description templates used to define FoReST
requirement patterns and SDL design patterns, and instantiate them with architecture
patterns, i.e., patterns that capture generic architectures and their refinements. Fur-
thermore, we argue that the SDL design pattern solves the problem stated by the cor-
responding FoReST requirement pattern, which enables vertical reuse. The choice of
patterns in this section will be complemented by behaviour patterns in Section 4 such
that architecture and behaviour patterns can be applied to form a chain of related pat-
tern applications on different levels of abstraction. All patterns have been obtained
from analysing and packaging project experience [9].

3.1 FoReST Architecture Patterns

To define FoReST requirement patterns, we use the tabular format shown in Table 1,
called FoReST requirement pattern description template. Instantiations of this tem-
plate are termed FoReST requirement patterns, which, itself instantiated, form frag-
ments of a requirement specification. The entries of the template are explained in Ta-
ble 1.

In Table 2, the FoReST requirement pattern COMPOSITION is defined. COMPOSITION
classifies as an architectural pattern, i.e., a pattern that captures a generic architecture
and/or its refinement. In this particular case, hierarchical architectures, consisting of a
composite and its constituents, are described in a generic way. Though this pattern is
very simple, it fits nicely with the subsequent, more complex patterns in that they can
be applied to form a chain of related pattern applications on different levels of ab-
straction. The pattern definition is given in tabular format, following the FoReST re-
quirement pattern description template of Table 1.

The syntactical part of the solution is shown in entry Def inition, represented
in the syntax of FoReST class definitions. With FoReST, classes are defined in a
tabular format by specifying a unique class name, a signature, and a behaviour, using
appropriate keywords to distinguish specification items:

3 These figures result from practical experience. They differ substantially from the size of typi-
cal component repositories with 100s of elements. The relatively small number can be ex-
plained by the generic nature of patterns. Also, as the definition of “good” patterns is a sub-
stantial investment, only those patterns that are frequently applied should be included in the
pattern pool.
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Table 1. FoReST requirement pattern description template
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FoReST Requirement Pattern <PATTERNNAME>

Intention An informal description of the kind of problems addressed by
this pattern.

Definition A formal definition of the generic solution. Based on the formal
definition and accompanying information, the pattern is
selected, adapted, and composed into a context specification.

Natural A uniform translation of the formal definition to natural lan-

Language guage.

Illustration An illustration of the generic solution, supporting its intelligibility.

Example An example from the application area illustrating the purpose
and the usage of the pattern.

Semantic Properties that have been formally proven from the formal defi-

properties nition. By instantiating these properties in the same way as the

formal definition, proofs can be reused.

Table 2. FoReST requirement pattern COMPOSITION (excerpt)

FoReST Requirement Pattern COMPOSITION

Intention Composition is defined in a generic way.
Definition

Class Composite

Signature

(Object c: Component)*
Natural Elements of class Composite are defined to
Language consist of objects c; , of classes

Component; ,, respectively.
Illustration

[ I

[ Component; | [ Component, | ..

Example

Class Room

Signature

Object md: MotionDetector
Object la: LightActuator
Object ts: TemperatureSensor
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e The signature of a class is a sequence of attribute declarations, where each declara-
tion consists of the attribute name, a classification and an intention. Attributes
may, for instance, be classified as predicates, functions, or objects (see Table 2).
Furthermore, predicates and functions may be static or dynamic (timed), stating
whether their values may vary over time. Also, specialization and inheritance are
supported [17].

e The behaviour of a class is specified by a set of properties. According to the prod-
uct reference model in [16], we distinguish between different kinds of behaviour
statements, namely domain, requirement and machine statements. A domain
statement describes pre-installed devices and/or existing environment behaviour. A
requirement statement addresses the desired system behaviour. Finally, a machine
statement characterizes behaviour of the machine, i.e., the part that is to be com-
bined with the environment to achieve the desired system behaviour. As a general
rule, domain statements and machine statements, taken together, have to imply the
requirement statements. All statements are specified using tRTTL, the tailored Real
Time Temporal Logic [8].

Composition is directly supported by the concept of composite classes: in FoReST, a
composite class is defined by specifying, for each constituent, an attribute that is clas-
sified as object, and is associated with a class (see Table 2). Creation of a composite
object always implies the instantiation of its constituents. This situation is graphically
captured using UML notation in entry I1lustration. Finally, an excerpt of the
class definition Room, where the pattern has been applied, is shown.

3.2 SDL Architecture Patterns

To define SDL design patterns, we use the format shown in Table 3, called SDL de-
sign pattern description template. Instantiations of this template are termed SDL de-
sign patterns, which, itself instantiated, form fragments of a design specification. The
entries of the template are explained in Table 3.

In Figure 1, the SDL fragment of the SDL design pattern BUILDINGCOMPOSITION is
shown. BUILDINGCOMPOSITION classifies as an architectural pattern, i.e., a pattern that
captures a generic architecture and/or its refinement. In this particular case, a building
domain specific hierarchical architecture, consisting of a component, its constituents,
a control cell, interaction points between the control cell and all constituents, and the
required connection structure, is described in a generic way.

To define the SDL fragment, the pattern definition language PA-SDL (Pattern An-
notated SDL), a pattern-specific extension of SDL, is used. With PA-SDL, the con-
text where the pattern may be applied, the permitted adaptations, and the embedding
into the context specification can be described. For instance, the pattern
BuILDINGCOMPOSITION introduces new design elements that are added to the context
specification as the result of the pattern application. SBU (Structural Block Unit) de-
notes a structural SDL unit, a system or a block, SU (Structural Unit) allows for proc-
esses and services. These choices are further constrained by the syntax of SDL.
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Table 3. SDL design pattern description template

<PATTERNNAME>
[Each pattern is identified by a pattern name, which serves as a handle to
describe a design problem, its solution, and its consequences.]

Intention [provides an informal description of the design problem and its solution.]
Motivation [gives an example for the pattern usage without relying on the pattern
definition.]

Structure [is a graphical representation of the involved design components and
their relations. Structural aspects before and after the application of the pattern
are covered. ]

Message Scenarios [illustrate typical behaviour related to this pattern and thus
complement the structural aspects.]

SDL Fragment [describes the syntactical part of the design solution, which is
adapted and composed when the pattern is applied. The notation used here is
called PA-SDL (Pattern Annotated SDL). It defines the context in which the
pattern is applicable, the permitted adaptations, and the embedding into the
context specification.]

Syntactical Embedding Rules [constrain the application of the pattern such that
certain desirable properties are added or preserved.]

Semantic Properties [resulting from the correct application of the pattern.]
Refinement [states rules for further redefining an applied pattern.]

Cooperative usage [describes the usage together with other patterns of the pool.]
Known Uses [documents where the pattern has been applied so far.]

SBU Composite

+ | SU c: Component | | SU controlCell
=
]
A | SU ipC |

Fig. 1. SDL design pattern BuILDINGCOMPOSITION (SDL fragment, excerpt)

The shaded part called border symbol is an annotation denoting replications and
consists of two parts. The left part defines replication parameters: the number of rep-
lications is specified by the multiplicity (e.g., +), the direction of is given by the ar-
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row (e.g., horizontal, i.e., = ), and the reference (e.g., A) is used to add further syn-
tactical embedding rules (see Table 3). The right part defines the SDL fragment to be
replicated, defined in PA-SDL (for a complete treatment, see [7]). Further annotations
(e.g., italics) are used to constrain renaming. As a general rule, names may be
changed, however, names in italics must be fresh.

The SDL fragment shown in Figure 1 defines SDL structures consisting of a single
controlCell and one or more components ¢ with an associated interaction point ipC.
Furthermore, SDL channels are introduced as shown. Components can exchange
messages with controlCell via their interaction points. Furthermore, controlCell can in-
teract with the environment of structuring unit Composite.

3.3 Vertical Reuse

The architectural patterns defined in Sections 3.1 and 3.2 support horizontal reuse,
i.e., reuse within a single development phase. For instance, if a hierarchical architec-
ture is derived from the problem description, application of the COMPOSITION require-
ment pattern yields a suitable formalization. In a similar way, if a hierarchical build-
ing topology is designed, application of the BUILDINGCOMPOSITION pattern leads to a
suitable SDL design. This means that FoReST requirement patterns as well as SDL
design patterns can be used “stand alone”.

In order to further enhance the benefits of pattern-based reuse, both approaches
can be coupled, leading to vertical reuse, i.e., reuse across development phases. More
specifically, starting from a FoReST requirement pattern, we can develop correspond-
ing SDL design patterns defining generic design solutions. Obviously, the BUILDING-
ComposITION pattern has been defined with this objective in mind: it defines one do-
main-specific design solution for the COMPOSITION requirement pattern. This means
that for each application of the COMPOSITION pattern in the building automation do-
main, a suitable design solution can directly be derived from its instantiation and its
specification context.

The architecture defined by the BuILDINGCOMPOSITION pattern prepares the distrib-
uted implementation of properties associated with instances of the class Composite.
While all components introduced by COMPOSITION are represented as structural SDL
units (with identical names to enhance traceability), further design components are
added. In particular, a control cell that coordinates the behaviour of the components
such that the properties of Composite are satisfied is added. Furthermore, interac-
tion points between the control cell and all constituents and the required connection
structure including a channel to the context of Composite (the pattern may be ap-
plied recursively) are introduced. Thus, while being on a lower level of abstraction,
the design preserves the structural properties of the requirement level, which supports
traceability.

Note that the BuiLDINGCOMPOSITION pattern respects the hierarchical structure estab-
lished by ComposiTioN. This is a deliberate choice at this stage that needs reconsidera-
tion when the implementation design is derived. In fact, the structure is later trans-
formed into a layered architecture, consisting of an application layer, a communi-
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cation middleware and basic technology. Interestingly, this transformation can be
achieved without modifying the behaviour of active system components.

The BUILDINGCOMPOSITION pattern is the result of analysing and packaging experi-
ence gained in the SILICON case study [9], where a distributed interactive light con-
trol for a building model has been developed from scratch. Application of this pattern
in conjunction with the COMPOSITION pattern improves traceability between develop-
ment phases, and documents design decisions.

4  Vertical Reuse of System Behaviour

In this section, we introduce patterns capturing the behaviour of system components.
Again, we argue that the SDL design pattern solves the problem stated by the corre-
sponding FoReST requirement pattern, which enables vertical reuse.

4.1 FoReST Behaviour Patterns

In Table 4, the FoReST requirement pattern WEAKDELAYEDIMPLICATION that classifies
as a behaviour pattern is defined. The pattern definition is given in tabular format,
following the FoReST requirement pattern description template of Table 1.
WEAKDELAYEDIMPLICATION addresses situations where a causal relationship between
phenomena that is subject to certain timing constraints is given. These timing con-
straints are formally expressed in the definition, which uses the operator = , (delayed
implication), a tailored operator of tRTTL [8].

The pattern is applicable in all cases where a controlled phenomenon is required to
hold only after a precondition holds for a certain amount of time, and thereafter only
as long as the precondition continues to hold. In the example in Table 4, for instance,
whenever a room is used for at least 2 seconds, the light is switched on within this
time span and remains on at least as long the room is used. This avoids “fluttering” of
the controlled phenomenon, as illustrated in the pattern definition. Also note that the
phenomena may be associated with different system components. In the example,
roomUsed and on are attributes of components md and 1a, respectively (cf. Exam-
ple in Table 2).

Interestingly, the WEAKDELAYEDIMPLICATION pattern also supports distributed im-
plementations in several ways. Firstly, it is sufficient to sample the phenomenon at
discrete points in time, so continuous observation is not necessary. Secondly, there is
time for reaction concerning the controlled phenomenon, which may be exploited in
associating priorities to phenomena that are used for configuring an underlying com-
munication system.

The WEAKDELAYEDIMPLICATION pattern has been applied many times in our projects
in order to formalize statements of the problem description, and, among the patterns
of our requirement pattern pool, has turned out to be the most useful one. Note that
the fact that a pattern has been applied to formalize a statement is not obvious from
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Table 4. FoReST requirement pattern WEAKDELAYEDIMPLICATION (excerpt)

FoReST Requirement Pattern WEAKDELAYEDIMPLICATION

Intention :  Phenomena may be in a causal relationship that
only exists with a specified delay, where the
the defining phenomenon has to hold during
this time span (hence weak) .

Definition ¢ U(o™c,vp)
Natural : Whenever ¢ holds for at least t, y is true
Language within this t and then remains true at least

as long as .

Illustration : The diagram below shows a possible scenario
for phenomena ¢ and Y. In the shaded areas,
the value of y is constrained by ¢.

e __fULIUy S
4 : f l_
) t : )
Example : U (md.roomUsed @ ,, la.on )

Whenever a room is used for at least 2 seconds,
the light is on within this time span and
remains on at least as long as the room is used.

Semantic Q@ =c,0) & Q9> 00, W o)
properties U (9 2 02) AU (2 < 93) = Q9 Dy 93)
(0 < 0) AL (1<, 93) > (91 %<, (92 A 03))

the specification itself. The knowledge that a particular pattern has been applied is a
link to the additional documentation in the pattern definition.

4.2 SDL Behaviour Patterns

In Figure 2, an excerpt of the SDL fragment of the SDL design pattern
DisTRIBUTEDCONTROL is shown. DISTRIBUTEDCONTROL classifies as an interaction pat-
tern, i.e., a pattern capturing interaction between active system components. In this
particular pattern, a specific behaviour establishing a delayed causal relationship be-
tween two phenomena in a distributed environment is defined.

The SDL fragment defines three active design elements, represented as extended
finite state machines (EFSMs): phiSource, psiSink, and controlCell. They have to be
part of the context specification before the pattern can be applied, which is expressed
by the dashed frame symbols in the SDL fragment. In general, dashed symbols are
annotations of PA-SDL denoting design elements (e.g., structural units, triggers, ac-
tions) that are part of the context, while solid symbols denote design elements that are
added as a result of the pattern application. The effect of a pattern application can be
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SIGNAL phiNotify(Boolean,Time);
SIGNAL psiNotify;

r— - - - — - - — — — — — — — 1ar T — — — — m
EFSM phiSource EFSM psiSink |
DCL phi Boolean := falsei I

p-specializes source | p-specializes sink |

o D () @)

I

I

I

. I

M <notpLN> <é> |
I

. . |

I

I

psiNotify

I
I
/* reaction */ !
I
I
I

philNotify

) 2 pva— R PV phiNotify
(phi,;now) i
- (phi,now) ol=
notPhi
-~ (notPhi) (m ) (- )
L - - - - - - - — — _

-
EFSM controlCell
p-specializes ctriCell

TIMER psiTimer;
DCL ¢t Duration := ...;
DCL psiDelay Duration := ...;

/* t > psiDelay */
DCL phi Boolean := false;
DCL phiValue Boolean;
DCL phiTime Time;

phiNotify
(phiValue;
phiTime)

psiTimer
S=
false psilNotify

= 5

psiNotify

RESET (psiTimer)

+ (t - psiDelay);

Fig. 2. SDL design pattern DISTRIBUTEDCONTROL (SDL fragment, excerpt)

characterized as a pattern-specific specialization (p-specialization, see [6]), where the
context specification is extended and/or redefined.

Further annotations apply to names. As a general rule, names may be changed.
However, names in italics must be fresh, and if underlined, renamed in a unique way
when adapting the pattern. For instance, phiNotify declared in the text symbol and
then used in several input and output symbols is a new signal.

In the pattern definition, some further annotations of PA-SDL are used. The ge-
neric trigger symbol may be adapted to an input, priority input, or spontaneous input
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symbol, a continuous signal, or an enabling condition. Scissor symbols indicate the

possibility of refinements, for instance, by adding further actions to a transition, with-

out disrupting the control flow.

By applying the DISTRIBUTEDCONTROL pattern, the behaviour of the active design
elements is extended such that phiSource communicates state changes of a phenome-
non phi to controlCell, which in turn decides whether and when to notify psiSink and
thus to trigger a certain reaction:

e When phiSource detects a state change, it sends a signal phiNotify that carries the
current value of phi as well as a time stamp.

¢ On receipt of this message, controlCell determines whether appropriate action has
to be taken.

e Depending on the urgency of the action, which is determined on the basis of the
time stamp and a maximum delay psiDelay, a timer psiTimer may be set such that
after its expiry, there is sufficient time for exchanging a signal psiNotify with psiS-
ink, and for the following reaction.

e Depending on the state changes of phi, the timer may also be reset before expiry.

4.3 Vertical Reuse

The behaviour patterns defined in Sections 4.1 and 4.2 support horizontal reuse, i.e.,

reuse within a single development phase. As already stated, this means that FoOReST

requirement patterns as well as SDL design patterns can be used “stand alone”. How-

ever, both approaches can be coupled, leading to vertical reuse. Here, starting from a

FoReST requirement pattern, we can develop corresponding SDL design patterns de-

fining generic design solutions. Following this idea, the DISTRIBUTEDCONTROL design

pattern defines a domain-specific design solution for the WEAKDELAYEDIMPLICATION re-
quirement pattern. This means that for each application of the WEAK-

DELAYEDIMPLICATION pattern in the building automation domain, a suitable design solu-

tion can directly be derived from its instantiation and its specification context.

As observed in Section 4.1, the WEAKDELAYEDIMPLICATION pattern supports distrib-
uted implementations. In particular, a reaction on state changes of the phenomenon @
is not required to be immediate, but may occur with a specified delay, and may de-
pend on the “continuity” of ¢@. This observation is exploited in the generic design so-
lution*:

e The generic design solution identifies cooperating active components and adds lo-
cal functionality and collaborations such that the tRTTL property is satisfied.

e The controlling component receives all updates about the phenomenon phi and de-
cides about further measures. A reaction concerning the phenomenon phi is de-
layed until the latest possible point in time, to avoid “fluttering”.

e The components phiSource and psiSink, which can be viewed as a sensor (e.g., a
motion detector) and an actuator (e.g., a light group), remain independent, which is
a good design choice in general.

4 Strictly speaking, a generic design solution is intended to define a generic model that satis-
fies the requirement pattern.
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The generic design solution introduced by DISTRIBUTEDCONTROL is based on the archi-
tecture defined by BUILDINGCOMPOSITION: phiSource and psiSink are among the set of
components ¢ and coordinated through controlCell. Thus, the chain of pattern applica-
tions in the requirements analysis has a counterpart in the design phase.

The reader may have noted that the real time expressiveness of FoReST and SDL
is different. While it is possible to state maximum reaction times in tRTTL, only
bounded omissions can be expressed with SDL. Strictly speaking, the design solution
is therefore not precise. We therefore require the SDL timer mechanism be used with
an expiry time that is derived from a worst-case estimate.

The DisTRIBUTEDCONTROL pattern is the result of analysing and packaging experi-
ence gained in the SILICON case study, where a distributed interactive light control
for a building model has been developed from scratch [9]. Application of this pattern
in conjunction with the WEAKDELAYEDIMPLICATION pattern improves traceability be-
tween development phases, and documents design decisions.

5 Conclusions

We have presented pattern-based reuse approaches for the requirements and the de-
sign phase, and have shown how they can be integrated to support vertical reuse, i.e.,
reuse across development phases. To enable vertical reuse, for each FoReST require-
ment pattern, one or more domain-specific SDL design patterns representing generic
design solutions are specified. This way, for each application of a FoReST require-
ment pattern, a suitable design solution can be directly obtained by applying the cor-
responding SDL design pattern. We have exemplified these ideas by two pairs of re-
lated patterns to capture system architecture and system behaviour, respectively.

All patterns shown in this paper have been obtained from analysing and packaging
project experience. They have been chosen from different categories in order to illus-
trate both architectural and behavioural aspects. Also, they have been chosen to form
a chain of related pattern applications on different levels of abstraction.

To define patterns, we have applied formal description techniques, which has the
advantage of making the pattern selection, adaptation, and composition more precise,
and of improving traceability between documents of different development phases.
However, although both FoReST and SDL have a formal semantics, there is no for-
malized relationship between corresponding requirement and design patterns. While it
may be feasible to establish such a relationship between complete FoReST and SDL
specifications, it is extremely difficult to define it between incomplete specification
fragments, which in fact is the situation for related patterns. We are not aware of any
research in this direction.

Our choice of FDTs - FoReST and SDL - has been influenced by the structure and
style of the problem description as well as by our intention to develop distributed so-
lutions. While FoReST is very close to the customer requirements, SDL is an appro-
priate language for distributed systems design and widely used in industry. Also, the
SDL application design has turned out to be a good starting point for the development
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of a customized communication system. Of course, the principles of horizontal and
vertical reuse are not restricted to these languages.
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