UNIX STREAMS Generation
from a Formal Specification

Pawet Rychwalski and Jacek Wytrebowicz*

Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland

Abstract. This paper describes a new idea of rapid protocol implemen-
tation starting from its formal specification, namely to generate Unix
STREAMS modules. We have exercised this idea using Estelle formal
specification technique. The generator was written for Linux system.
The paper demonstrates how the semantic problems were resolved and
gives some conclusions from generations we have performed.

Keywords: automatic code generation, Unix STREAMS, formal de-
scription techniques, Estelle

1 Introduction

Using formal description techniques in engineering of telecommunication pro-
tocol is common. For example an IEEE document that standardize a protocol
contains SDL documentation in an annex. The most popular specification lan-
guages for protocol design are SDL, Estelle and Promella. All of them give an
extended finite state machine (EFSM) model of a protocol. This model suits
engineer demands for protocol validation, verification and test generation very
well. Rapid prototyping i.e., automatic code generation from a formal speci-
fication into a working program is required not only due to time to market
competition but also to obtain as correct implementation as the specification is.
A designer has the opportunity to automatically generate a code when he uses a
development environment for SDL or Estelle, like Tau SDL Suit from Telelogic
(www.telelogic.com) or Estelle Development Toolset from INT (http://www-
lor.int-evry.fr). These generators were not worked out to meet high efficiency or
to follow a specialized interface of an operating system used for protocol imple-
mentations.

On the other hand, D. Ritchie has proposed STREAMS - an efficient mech-
anism for protocol implementation for Unix at 1984, . This mechanism is
included in every commercially distributed Unix operating system, e.g., Sun
Solaris [E] Thus most protocol implementations for these systems are Unix
STREAMS modules. Designers of new protocol implementations have to de-
termine STREAMS mechanism for Unix systems.

* The research was partially supported by KBN grant No 7 T 11 C 013 20.

H. Kénig, M. Heiner, and A. Wolisz (Eds.): FORTE 2003, LNCS 2767, pp. 1-I[4] 2003.
© IFIP International Federation for Information Processing 2003

2 Pawet Rychwalski and Jacek Wytrgbowicz

Despite of the fact that both Unix STREAMS and formal description tech-
niques exist about 20 years, there were no attempts to lead out a STREAMS im-
plementation from a formal specification. Several existing works about protocol
implementations starting from its specification show, that generated implemen-
tation can be efficient. O.Catrina and A.Nogai B] have compared the efficiency
of a generated XTP implementation versus a hand-written one. J.Thees [@] and
J.Bredereke E] have analysed different heuristics, which could be applied during
generation. R.Gotzhein et al. ﬂa] analyzed how specification style can influence
the efficiency of generated code. P. Langendorfer and H. Konig ﬁ] proposed
an interesting extension to SDL called iSDL, which consists in providing some
annotation to control the way of code generation.

In [E] and MQ] authors propose a new mechanism called “activity threads”,
which passes messages by procedure calls. This mechanism is very interesting,
however it is not applicable to Unix STREAMS e.g., the STREAMS technique
is based on message passing via queues not by procedure calls.

Because a STREAMS implementation is efficient due to its concept and in-
tegration with operating system, we have decided to check the feasibility of a
STREAMS module generation from an EFSM specification. To carry out this
work, we have selected the Estelle specification language and Linux operating
system by the reason of easy access to related tools.

There is not enough place in this paper to give a complete explanation of
Estelle specification technique nor Unix STREAMS, hence we refer a reader who
is unfamiliar with them toqm] and [E] In this paper we compare the Estelle se-
mantics versus STREAMS semantics, we describe the selected translation model
and we give some insights into a generator we have developed for Linux. In
conclusions we present some results collected from efficiency tests of generated
modules.

2 Estelle Semantics versus Streams Semantics

We can use both Estelle and STREAMS to implement network protocols, so it
is obvious that there are some similarities between them. The main ones are:

Modules — In both models, a protocol instance is represented by a module.

Datagrams — Both Estelle and STREAMS modules exchange data in data-
grams.

Queues — The datagrams are queued at the entrance of a module.

While the idea of passing from an Estelle protocol specification to STREAMS
implementation seems to be quite natural, there are many difficulties to ap-
proach it to reality. The problem arises due to differences between Estelle formal
semantic and STREAMS operational semantics. The first difference is the range
of specification: in Estelle you specify a whole communication system, while one
STREAMS module handles just one protocol. However, the most important is
the possibility of communication with other modules: in Estelle, one module can

UNIX STREAMS Generation from a Formal Specification 3

communicate with any number of other modules, while in STREAMS one mod-
ule can exchange data with just two other entities: upper and lower layers of
protocol. The other differences include, but are not limited to:

Dynamism — Estelle modules can be dynamically created and removed by an-
other module, while a STREAMS module can only be pushed into and
popped from a stream by a user-level process, which is an external (from
module’s point of view) entity.

Message queues — Estelle allows interaction points to share a common queue,
while in a STREAMS module, each “interaction point” has its own queue.

Exported variables — This kind of communication between Estelle modules
cannot be represented as communication between STREAMS modules. The
only communication mechanism for STREAMS is message passing.

Module synchronization — There can be a synchronization between Estelle
modules defined in a specification by using module attributes (i.e., process,
systemprocess). There is no synchronization between STREAMS modules,
they work independently from one another.

Non-complete specification — In an early project stage or for documenta-
tion purposes it is useful to employ any-type, any-value or other similar
constructs. Of course it is impossible to derive any implementation from
them.

These aspects cannot be translated into STREAMS directly for all specifications.
That is why there should be some requirements on the input Estelle code, that
will allow it to be translated into semantically equivalent STREAMS module.
Chapter Bldescribes them shortly.

Queues

Both Estelle and STREAMS modules have queues, yet the queue models obvi-
ously differ from each other. Estelle queues are “logical” and unbounded, while
STREAMS ones are “physical” C structures with limited capacity.

The limit of a STREAMS module queue can be quite high. Furthermore, the
queue limit is not a size of a fixed array (in C-language sense), because queues
are implemented as dynamic lists. It means that a module can put any number
of messages into its own queue, even if it is over its high water mark. The only
situation when the queue limit is checked is during passing the message further
to another module (canputnezt()), and it is the target module’s queue that is
checked.

The overflow of a STREAMS queue can be avoided by slowing down the
sending module. It corresponds to the behavior of independent entities with no
assumptions about their processing speed in a specification. Thus Estelle system
modules and activity modules with unbounded queues have the same behavior
as STREAMS modules using the canputnezt() function to avoid message loss.

4 Pawet Rychwalski and Jacek Wytrgbowicz

EFSM Semantics

The semantics of STREAMS tells nothing of internal module behavior, that
is how it interprets and handles incoming messages, except for some standard
guidelines. In particular, there are no restrictions on handling messages of user-
defined structure.

All of Estelle EFSM elements can be easily translated, or rather implemented
in a STREAMS module. Internal variables of any type can be allocated in the
module. Such variable can store a message parameter, the current automaton
state, or any other internal data. Timers (for delay clauses) can be easily imple-
mented using the library timeout() functiod]. A transition can be implemented
by a simple C function. A module can select and execute one or many transi-
tions when it gets control, i.e., its put() or service() function is called or the
timer completes. The module returns from its put(), service() or timer callback
function when there is no ready transition to execute or when it must slow down
to avoid overflowing of a destination queue.

Specification languages allow to describe a non-deterministic behavior, be-
cause it is useful for documentation and for model analysis. An implementation
should work in a deterministic manner, thus any non-deterministic statement is
translated to a deterministic code, e.g., the Estelle delay(a,b) clause is imple-
mented by a timeout function that is set to the a value.

3 Translation Model

To make generation of STREAMS implementation from an Estelle specification
possible, we have to impose some restrictions on an input Estelle specification.
They are the following:

— The first and the most important one is the range of specification: STREAMS
module will be generated from just one Estelle module body definition.

— The second restriction is on the number of interaction points and their queue
disciplines. To match the semantics of a STREAMS module, Estelle module
definition must have exactly two external interaction points, with individual
queues.

— As the STREAMS module cannot “export” its variables to another module,
the input Estelle module body cannot have any exported variables.

— Input Estelle specification must be complete.

Since STREAMS modules are independent and non synchronized entities, the
best equivalent of them in Estelle specification are system modules. Moreover,
system modules cannot have exported variables. That allows us to simplify the
requirements for semantically correct translation:

A STREAMS module can be generated from a single body definition
from a complete Estelle specification, when the body’s header is labeled

! The timeout() function is a request for STREAMS scheduler to call a (given in a

parameter) callback function in the module after a specified amount of time. See ﬂﬂ]

UNIX STREAMS Generation from a Formal Specification 5

system and it has exactly two non-array interaction points with individ-
ual queues.

When an Estelle module meets the above constraint, we can translate all
elements from its body definition into STREAMS module code. The following
subsections describe these elements and tell how they should be translated.

Dynamic Module Creation

Since there are no restrictions on the internals of a STREAMS module, it can
implement a model of dynamic hierarchy of Estelle modules. This means that
one STREAMS module can represent a whole subtree of Estelle modules. Usu-
ally, the more complex specification structure is, the less efficient implemen-
tation is. A dynamic structure causes some system overhead for memory allo-
cation/deallocation. That is why a dynamic module hierarchy should be very
carefully implemented in order to achieve desired efficiency.

Messages

The only module in the Estelle hierarchy that can communicate with “external
world” is a system module. It has two external interaction points, which will be
mapped into STREAMS queues. It means that a STREAMS message received
by the generated STREAMS module (called e-module further in this paper) will
be passed to EFSM engine of the system module. An interaction outputted via
an external interaction point of this module will be translated into STREAMS
message and sent into the stream. Such message will need to have a special, rec-
ognizable structure, so it can be understood by other e-modules. These messages
are called e-messages further in this paper.

Interactions that are exchanged between Estelle modules within the module
hierarchy will not be translated into STREAMS messages at any point. They
should be implemented as some C structures used only by the EFSM engine.
Thus possible Estelle “attachments” that join external interaction points be-
tween a child and his parent module should be implemented as C structures
without involving any STREAMS mechanisms.

EFSM

There should be some common EFSM engine code for all e-modules. Within
one e-module, the engine must have two versions: one for the topmost system
module, sending STREAMS messages, and one for the children modules that do
not communicate with external entities. The engine should keep track of current
states of all modules.

A STREAMS module, and thus the EFSM engine, can run only when it
receives a STREAMS message or a timeout() callback function has been called
by the STREAMS scheduler. While it is not a problem for the engine of the
system module, the engines of children modules can be triggered only when the

6 Pawet Rychwalski and Jacek Wytrgbowicz

system module gives them control. The following algorithm, which works the
same way for e-messages received from lower as from upper layers, is the best
way to solve this problem:

1. The topmost module receives an interaction in an e-message or a timeout()
callback is run (for delayed transition).

2. The topmost module runs its transitions until there is no fireable one, which
may include firing some spontaneous transitions. All messages are queued in
appropriate places: the messages to external modules in a special buffer, the
messages to children modules in their queues.

3. Other modules in the hierarchy run their transitions, until there is no fire-
able one left: all automatons wait for an interaction, or there are delayed
transitions.

4. STREAMS messages buffered earlier in the topmost module are sent into
the stream (via putnezt(), or putq()) and so the control is passed to another
STREAMS module.

All Pascal code elements, like type definitions, constants, functions, etc.
should be translated into appropriate C-language constructs. Module variables
should be stored in the e-module’s private data structure. There is a special
place for pointer to such a data in STREAMS module structures.

Module Attributes

An Estelle module that should be implemented as STREAMS module has to
be asynchronous to the others. Hence it should be attributed as system. If that
Estelle module has any children modules, they can be attributed without any
restriction. The EFSM engine of the parent module is responsible for a correct
synchronization of children’s EFSM engines.

Nondeterminism

Nondeterminism is used to define a class of acceptable behaviors, or to express
nondeterministic behavior of an actor or an environment external to designed
protocol. Thus we can remove nondeterminism during implementation. Any ef-
ficient deterministic behavior of an e-module satisfies the corresponding Estelle
specification.

Protocol Layers

It is virtue that a specification language can express many different kinds of
implementation or ideas. It is useful for documentation or analysis purposes.
Although, no one expects nor needs, that a given implementation technique
could be used to implement any abstract specification. Ritchie has conceived
STREAMS for efficient protocol implementation on the base of the OSI ISO
model. Thus a specification that respects this model can be easily translated
into STREAMS implementation.

UNIX STREAMS Generation from a Formal Specification 7

We know many Estelle specifications, which were written by our colleagues
by ourselves or by others. Frequently there are modules that do as an unreliable
medium, a protocol user, an observer. A designer writes them for validation
and verification purposes. For that reason we argue that the designer should
explicitly point which module represents a protocol to be implemented. We can
also notice that designers specify co-working protocols separately and analyze
them independently. The reason is simple - their conceptualization does not have
to go in the same time.

A single generator run should translate one Estelle module body defini-
tion into one STREAMS module. The generated module has a well-defined
STREAMS interface (e-messages), so it can exchange data with other modules
and applications, which should understand these messages.

Results of few subsequent generations (that can for example represent differ-
ent layers of protocol) can be put in a single stream. The source body definitions
may be defined in one Estelle file, but they don’t have to. A generator should
analyze just the indicated body definition and its contents, and should pay no
attention to the initializing code at higher level.

Figure [[] demonstrates how modules from a single Estelle specification can
be mapped into STREAMS modules. Note that there is no need to split the
specification before generating source code for STREAMS.

Estelle specification Stream
Application User space
User substitute
@ Stream head Kernel space
Protocol layer N > E-module N
[l T
@
Protocol layer N-1 E-module N-1
-t i
1 | I
1 1 I
1 | I
¢é A 4

Medium substitute Driver

Fig. 1. Translation of multiple protocol layers

8 Pawet Rychwalski and Jacek Wytrgbowicz
4 Generator for Linux

The target platform for our generator is the Linux system. We have selected it
due to the openness of its source code and the possibility to exercise on system
level. Unfortunately there is no STREAMS subsystem in Linux kernel. We have
selected a freeware Linux STREAMS library, which is not yet complete. ﬂ1__1|
We have based the generator on EDT - Estelle Development ToolSet b],
as it is the only environment for Estelle that has support and maintenance. We
have taken advantage from the EDT compiler - ec. Ec generates an intermediate
form ﬂﬁ] from Estelle text, which we use as input for the generator. Thanks to
it, we have neither to parse an Estelle text nor to check its syntactic correctness.
This chapter gives some insights into implementation of our generator.

4.1 Additional Constraints

To get first results, and to analyze the feasibility of the Estelle -> STREAMS
generation rather than focus on full implementation, we have added the following
constraints for input Estelle specification (in addition to these mentioned in
previous chapter):

1. The source module body definition cannot have any internal interaction
points nor children modules.

2. There are two restricted statements: any and forone

3. exist factor in expression is not accepted.

4. Nested Pascal functions are not accepted.

All of these constraints can be relaxed in the next version of the generator.
Translation of the above constructors into C code is laborious and time consum-
ing but feasible. For example the generator from EDT that uses BSD sockets
processes all of them. A collaboration with EDT providers would allow to reuse
the Estelle compiler code to rapidly relax the mentioned constraints.

4.2 STREAMS Interface

With the first condition met, there is no need to implement any internal engine
handling interaction-passing between children modules. Thus all of the interac-
tions sent and received by the Estelle module can be translated directly into
e-messages.

An e-message in our generator is a STREAMS message of M_PROT(type.
This message has normal priority. The first 4 bytes of its data block contain a
unique magic number, so it can be identified by other e-modules. The rest of the
data block contains e-message type and the interaction data: its name and its
parameters, as presented on Fig. Bl There are two e-message types: E_INTER for
interaction data, and E_ERROR for error notifications.

2 Messages carrying protocol control information.

UNIX STREAMS Generation from a Formal Specification 9

‘ OxlSefe92‘ E_INTER ‘ e_sender ‘ i_name_offset ‘ i_name_length ‘ i_param_offset‘ i_param_length ‘

| | |
X

NAME PARAMETERS

Fig. 2. E-message structure

The e-messages are recognized by their name. The designer has to keep that
in mind when joining e-modules generated from different Estelle specifications
into a single stream. He should make sure that Estelle modules that will be
connected with each other should have the same channel definitions.

The application (user-level process that uses the stream) should understand
e-messages of the topmost e-module in the stream, i.e., it should know interaction
names of the highest level protocol specification.

The driver (lowest module in a stream) should understand e-messages from
the lowest layer of protocol. However, this is rather not the case, because drivers
cannot be generated directly from Estelle specifications and usually have their
own interfaces. Because of this, we need a special “translating” module, which
will accept e-messages and output driver-interface messages on its write side,
and do the opposite on its read sidd]. In our generator, such a module translates
e-messages into DLPI M], which is used by the Linux STREAMS [Iﬂ] driver,
ldl.

4.3 Generated Module Structure

A STREAMS module generated from an Estelle specification consists of three
parts:

The module skeleton contains all standard STREAMS module code (put(),
service() functions, M_FLUSH message handling, etc.). The module entry
points (put and service) call the functions from the other parts of the module.
The skeleton is common for all e-modules. The only thing that changes in it
is the module’s name.

Automaton engine is common for all e-modules and is included in their code.
This set of functions is responsible for detecting, processing and sending e-
messages. It also handles delay clauses from Estelle transitions and of course
keeps track of current automaton state.

3 The “write” side of a STREAMS module sends messages downstream, from appli-
cation to the driver, while the “read” side sends messages upstream, from the driver
to the application. See E]

10 Pawet Rychwalski and Jacek Wytrgbowicz

Automaton body is a set of C functions that contain translated Estelle code
from input file: functions and procedures, type and constant definitions, tran-
sition bodies. It also includes some data structures describing the e-module.

The following steps describe the way an e-module works. Algorithm is the
same for messages going up and down the stream.

1. A STREAMS message is received.

2. The message’s magic number is checked. If it’s not an e-message, it’s pro-
cessed by the module skeleton code as a standard STREAMS message (usu-
ally passed further).

3. The interaction name is checked. If it’s not known by the current module,
an error notification message is generated upstream, to the application.

4. The interaction’s parameters are validated. If they are not valid, an error
message is generated.

5. On a base of a transition select table it is chosen a transition to be fired.

6. The transition’s body is run. All generated interactions are translated into
STREAMS messages and stored in a temporary buffer.

7. A check is made for spontaneous transitions going out from current state -
recursion to point

8. A check is made for delayed transitions going out from current state. If there
are any, STREAMS timeout() call is issued.

9. All messages in temporary buffer are sent into the stream.

The automaton data contains a structure called transition select table. It is
a two-dimensional C array, where the first dimension is the current automaton
state, and the second dimension is the interaction number, determined by an
interaction name. A special interaction number is defined for no interaction, i.e.
for spontaneous transitions. Each element of the array is a list of transitions,
sorted by priority (descending). Upon receiving an interaction, an appropriate
list is searched, from highest to lowest priority. The first transition that has its
provided clause met is being run. In this way we lose the non-determinism of the
Estelle semantics, but still we assure that the transition with highest priority is
fired.

Delay clauses are implemented with the use of STREAMS timeout() function,
as described in chapter Bl If the automaton’s state changes before the timeout
callback is done, the timeout is canceled.

5 Efficiency Tests

We have performed some efficiency tests to see how generated STREAMS mod-
ules work. First test was made on Linux system, and its aim was to see how the
number of modules in the stream (in other words, number of protocol layers)
influences the overall performance of an application. Because its results were not
as good as we have expected, we have carried on our tests on Solaris operating
system, where STREAMS are an internal part of the kernel. These tests were
aimed at comparing the efficiency of a generated module to the efficiency of a
hand-written module with the same functionality.

UNIX STREAMS Generation from a Formal Specification 11

Table 1. Measured transfer rate in KB/s - Linux

HStream structure [loopback Ethernet“
ldl, simple application 875 852
ldl-e21dlmod, simple application 760 844
ldl-e2ldlmod-namesrv, simple application 665 616
ldl-e2ldlmod-namesrv, complex application 525 383
ldl-e2ldlmod-namesrv-resp, simple application 576 186
ldl-e2ldlmod-namesrv-resp, complex application| 490 158

5.1 Linux Tests

On Linux system, we have measured average transfer rate of datagrams, each of
100 bytes size, using loopback and 10Mbit Ethernet link between 2 computers.
The first one with Pentium III 550 MHz, 128 MB RAM, works under Linux
RedHat 8.0. The second with Pentium 166 MHz, 64 MB RAM, with Linux
RedHat 7.1.

The aim of the tests was to see how including a module into a stream in-
fluences the transfer rate, assuming that only the communication mechanism is
considered, not any significant protocol processing. Thus we have written two
simple Estelle specifications. The first (lower layer) was a “name service” pro-
tocol, translating LLC network addresses into logical addresses, and the upper
layer was responsible for responding to received packets. To take measures we
have built six configurations of a stream, and have run the test for loopback and
Ethernet connection. Table [[] contains acquired results. In every configuration
we have used the default LiS network driver, Ildl. Between the driver and the
lower e-module we have inserted a translation module, e2ldlmod. This separate
STREAMS module translates e-messages into DLPI and vice-versa. It comes
with the generator package, and cannot be integrated with generated modules
in current version of the generator.

To control the stream, we have used two kinds of applications. The first was
a simple single-threaded program that sent and/or received e-messages in a loop.
The second one was multi-threaded and provided a handy API for handling the
e-messages.

The transfer rates are low (compared to possible Ethernet transfer) because
of the small packet size. The results show that the loss of efficiency from adding a
new STREAMS module is about 10-20%. Lower efficiency of complex application
was caused by the need of rewriting the data and storing it in temporary buffers
to provide the required API.

5.2 Solaris Tests

For tests on Solaris, we have used two machines:

1. AMD Athlon 2,0 GHz, 392 MB of 333 MHz DDR RAM, 2.5 GB Samsung
IDE Hard Drive, Realtek 8139 based 10/100Mbit Network Adapter

12 Pawet Rychwalski and Jacek Wytrgbowicz

2. AMD K5-2 350 MHz, 64 MB PC100 RAM, 2,1 GB Samsung IDE Hard
Drive, Realtek 8139 based 10/100Mbit Network Adapter

For networking we have used Fast Ethernet with 10/100Mb switch (Surecom
EP-805X-R, 5 port).

The tested specification was a simple echo protocol, serving as both echo
client and echo server: packets incoming from upper layer were flagged as “echo
request” and sent to lower layer, while packets coming from lower layer and
flagged as “echo request” were sent back with the flag changed to “echo re-
sponse”. Packets coming from lower layer and flagged as “echo response” were
forwarded (with removal of the flag) to the upper layer.

As we have already mentioned, tests were performed on an automatically
generated e-module and on a hand-written module with the same functionality.
The generated e-module had to have the translating module, e2ldimod, inserted
into the stream as well. The purpose of this module was explained earlier for
Linux tests.

The result of the test was an average file transfer rate between two machines.
All results are presented in Table 2] Tests were made for two hardware configu-
rations and with 3 different data packet sizes.

Presented results show the difference between manual and automated imple-
mentation. It is dependant on the packet size: the bigger the packet, the smaller
relative performance loss. For 100-byte packet the generated module was about
20% slower than the manually written one, while for 800-byte packet it was only
10% slower. The difference between both implementations is shown on Fig.
Further increasing of the packet size may reduce the loss of performance even
more.

The generated echo protocol consisted of two modules, one that performs the
protocol (generated from Estelle specification) and one for translating messages
from one STREAMS interface to another. Future versions of the generator may
avoid this by integrating the translating functionality into the generated module,
which should improve the performance of generated modules.

Table 2. Measured transfer rate in KB/s - Solaris

Data transfer rate (kB/s)
Hardware configuration [Echo module 100B packet[200B packet[800B packet

Machine 1 -> Machine 2|Generated 1085 1771 3197
Machine 1 -> Machine 2{Manually written 1446 2210 3630
Machine 2 -> Machine 1|Generated 806 1377 2722
Machine 2 -> Machine 1{Manually written 1028 1725 3032
Average Generated 945 1574 2960
Average Manually written 1237 1968 3331

UNIX STREAMS Generation from a Formal Specification 13

Average data transfer rate of generated and manually
written modules as a function of the packet size

o 4000
s
8 3000 Q
g v = ,
S @ —e— Seriel
T 2000)
= @ —— Serie2
T X
g 1000 -
©
§ 0
< 100 200 800

——e—— Seriel 945 1574 2960

—— Serie2 1237 1968 3331

Packet size [bytes]

Fig. 3. Difference in transfer rate between generated (Serie 1) and manually-written
(Serie 2) modules

6 Conclusions

The usual problem with automatic generation is the effectiveness of the out-
put code. Most of existing generators produce programs that are significantly
less effective than hand-written code. Moreover STREAMS implementations,
that are the most commonly used technique in commercial Unix systems, are
not addressed by these generators. This fact greatly reduces the usage of exist-
ing generators, and formal specification is mostly used only for documentation
and validation purposes. The main idea of our work was to check the feasibil-
ity of STREAMS module generation. The obvious advantage of the Estelle —>
STREAMS generator is the simplification in design of rapid and correct imple-
mentation, taking advantage from formal specification and validation techniques.

The created tool demonstrates that the automatic STREAMS module gen-
eration from an EFSM description is possible. However a designer has to keep in
mind this kind of implementation during the development of the specification.
We have defined constraints that he should preserve.

The results of the performed tests demonstrate that further work should
be done to obtain desired functionality and efficiency. First of all the assumed
constraints (defined in chapter 4.1) should be relaxed. Secondly our tool should
be optimized and enhanced. The enhancements could provide some guidance
about cooperation with existing and STREAMS modules.

14

Pawet Rychwalski and Jacek Wytrgbowicz

Whenever automatic generation of a STREAMS module is performed or not

we argue that modeling and verification of the module functionality has to be
performed in order to build a correct communication system.

Acknowledgment

We would like to thank Mr Marek J6zwik for his help in realization of efficiency
tests, especially those performed on Solaris platform.

References

10.

11.
12.

13.

14.

. Ritchie, D.: A stream input-output system. AT&T Bell Laboratories Technical

Journal (1984) 63, 8 Part 2, s.1897-1910.

. Sun Microsystems, Inc.: Solaris AnswerBook: STREAMS Programming guide.

(1998)

O. Catrina, A.: On the improvement of the estelle based automatic implemen-
tations. (1998) in: S. Budkowski, A, Cavalli, E. Najm (Edts.), Formal Descrip-
tion Techniques (XI) and Protocol Specification, Testing and Verification (XVIII)
[FORTE / PSTV], Kluwer Academic Publishers, Paris - France, pp 371-386.
Thees, J.: Protocol implementation with estelle - from prototype to efficient
implementations. (1998) in: S. Budkowski, S. Fischer, R. Gotzhein: Proc. of
the 1st International Workshop of the Formal Description Technique Estelle
(ESTELLE’98), Evry, France,.

Bredereke, J.: Specification style and efficiency in estelle. (1998) in: S. Budkowski,
S. Fischer, R. Gotzhein: Proc. of the 1st International Workshop of the Formal
Description Technique Estelle (ESTELLE’98), Evry, France,.

Gotzhein, R., et al.: Improving the efficiency of automated protocol implemen-
tation using estelle. Interner bericht nr 274/1995 (1995) Fachbereich Informatik,
Univeristat Kaiserscautern.

Langendorfer, P., Konig, H.: Improving the efficiency of automatically generated
code by using implementation-specific annotations. (1997) Participants proceed-
ings of the 3rd International Workshop on High Performance Protocol Architec-
tures. HIPPARCH’97, Sweden.

R. Henke, H. Konig, A.M.T.: Derivation of efficient implementations from sdl
specifications employing data referencing, integrated packet framing and activity
threads. (1998) in: proceedings of Eighth SDL Forum, North-Holland.

Henke, R., Mitschele-Thiel, A., Kénig, H.: On the influence of semantic constraints
on the code generation from estelle specifications. FORTE/PSTV Osaka (1997)
ISO/TC97/SC21: Estelle: A Formal Description Techinque Based on an Extended
State Transition Model. (1997) ISO 9074.

Geom, Inc.: Linux STREAMS home page. (2002) jhttp://www.gcom.com/LiS;.
S.Budkowski, et al.: The Estelle Development Toolset. Institut National des
Telecommunications, Evry, France. (1998) jhttp://www-lor.int-evry.fr/edt;.
Moraly, R.: Intermediate form utilization principles. INT. (1998) Document is
available to download on the EDT distribution page.

Unix International: Data Link Provider Interface version 2.0.0. (1991)

	UNIX STREAMS Generation from a Formal Specification
	1 Introduction
	2 Estelle Semantics versus Streams Semantics
	3 Translation Model
	4 Generator for Linux
	4.1 Additional Constraints
	4.2 STREAMS Interface
	4.3 Generated Module Structure

	5 Efficiency Tests
	5.1 Linux Tests
	5.2 Solaris Tests

	6 Conclusions
	References

