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Abstract. This paper is devoted to the study of watershed algorithms
behavior. Through the introduction of a concept of pass value, we show
that most classical watershed algorithms do not allow the retrieval of
some important topological features of the image (in particular, saddle
points are not correctly computed). An important consequence of this
result is that it is not possible to compute sound measures such as depth,
area or volume of basins using most classical watershed algorithms. Only
one watershed principle, called topological watershed, produces correct
watershed contours.
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1 Introduction

This paper is a first of a series dedicated to the notion of watershed contour
saliency. Using this concept, introduced in [1,2], we can sum up in one image all
the contour information that we can obtain by filtering the image by attribute
opening [3,4,5,6] for all values of the parameter and applying a watershed on
each of the filtered images. Several algorithms [2,7,8,9] for computing saliency
of watershed contours have been proposed. We expect to obtain the same result
either by thresholding the saliency image at a given level k, or by filtering the
original image using an attribute opening using k as parameter value and apply-
ing a watershed algorithm on the filtered image. None of the existing saliency
algorithms computes this expected result. The goal of the series is to show why it
is the case, and to propose a novel efficient algorithm that computes the expected
result.

This paper is devoted to the study of watershed algorithms behavior with re-
spect to what is needed to compute saliency of contours. For computing saliency,
one needs a map of watershed basins neighborhood, with the altitude of their
associated saddle points, and a valuation on each basin. A review of watershed
algorithms and their associated results can be found in [10]. This review does
not study algorithms from the point of view of the preservation of important
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topological features of the original image; for instance, it does not consider the
question: does the algorithm compute correct saddle points? We are going to
tackle the difficult notion of saddle point through the introduction of a concept
of “pass value”. We demonstrate that watershed algorithms that are the most
used in practice do not behave correctly with respect to the preservation of pass
values, and thus cannot be used in a saliency algorithm. We show that the ap-
proach called topological watershed [11] (which is not mentioned in [10]) provides
the only existing algorithm that produces a correct entry point for a saliency
algorithm.

2 Brief Description of Watershed Algorithms

2.1 Intuitive Notions for Watershed

The intuitive idea underlying the watershed notion comes from the field of topog-
raphy: a drop of water falling on a relief follows a descending path and eventually
reaches a minimum. Watershed lines are the divide lines of the domains of at-
traction of drops of water. This intuitive approach is not well suited to practical
implementations, and can yield biased results in some cases [12]. An alternative
approach is to imagine the surface being immersed in a lake, with holes pierced
in local minima. Water will fill up basins starting at these local minima, and, at
points where waters coming from different basins would meet, dams are built.
As a result, the surface is partitioned into regions or basins separated by dams,
called watershed lines.

2.2 What Is a Watershed Algorithm

This paper is not the place to describe in details the (large) family of watershed
algorithms. Nevertheless, it is worthwhile to give a brief description of the main
algorithms. Let E be a set of vertices (or points). Let P(E) denote the set of
all subsets of E. Let G = (E, Γ ) be a (symmetric) graph, where Γ is a mapping
from E into P(E), which associates to each point x of E, the set Γ (x) of points
adjacent to x.

Let X ⊆ E, and let x0, xn ∈ X. A path from x0 to xn in X is an ordered
family (x0, x1, . . . , xn) of points of X such that xi+1 ∈ Γ (xi), with i = 0 . . . n−1.
Let x, y ∈ X, we say that x is connected to y if there exists a path from x to
y in X. The relation “is connected to” is an equivalence relation. A connected
component of X is an equivalence class for the relation “is connected to”.

Let E = Z2. We denote by F(E) the set composed of all functions from
E to Z. Let F ∈ F(E). We denote by X the complement of X. We write
Fk = {x ∈ E; F (x) ≥ k} with k ∈ Z; Fk is called an upper (cross-) section of
F , and Fk is called a lower (cross-) section of F . A connected component of a
section Fk is called a (level k) lower-component of F . A level k lower-component
of F that does not contain a level (k − 1) lower-component of F is called a
(regional) minimum of F .
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Let us recall that a partition of a set S is a collection of non-empty disjoint
subsets of S whose union is S.

A watershed algorithm builds a partition of the space:

– it associates an influence zone B(M) called catchment basin, to each mini-
mum M of the image. The set B(M) is connected and contains M ;

– it may produce a set of watershed lines which separates those catchment
basins one from each other.

2.3 Vincent-Soille Watershed Algorithm [12]

For any set A and any set B ⊂ A made of several connected components Bi,
the geodesic influence zone izA(Bi) of Bi in A is the locus of the points of A
whose geodesic distance to Bi is strictly smaller than their geodesic distance to
any other component of B. We define the following recursion:

Xhmin+1 = Fhmin+1 = MINhmin (1)
Xh+1 = MINh ∪ IZFh+1

(Xh) (2)

where hmin is the lowest grey-value of F, where IZFh+1
(Xh) is the union of the

geodesic influence zones of the connected components of Xh in Fh+1, and where
MINh is the union of minima of F with grey-level equal to h. The watershed
lines are the complement of Xhmax+1.

As noted in [10], Vincent-Soille’s algorithm does not implement exactly this
recursion. Thanks to a fifo queue, it floods the catchment basins of the image, and
to build the watershed lines, it associates a special value WSHED to the pixels
where two different cacthment basins would merge. A point labelled WSHED
by the algorithm is not considered again in the following iteration, as it should
be the case. Furthermore, pixels labelled WSHED are propagated. This allows
the detection of special thick watershed zones, like those called buttonholes (see
fig. 2.a).

2.4 Meyer’s Watershed Algorithm [13]

Starting from a greyscale image F and a set M of markers with different labels
(in our case, these will be the minima of F ), it expands as much as possible the
set M , while preserving the number of connected components of M :

1. insert every neighbor x of every marked area in a hierarchical queue, with a
priority level corresponding to the grey level F (x). Note that a point cannot
be inserted twice in the queue;

2. extract a point x from the hierarchical queue, at the highest priority level,
that is, the lowest grey level. If the neighborhood Γ (x) of x contains only
points with the same label, then x is marked with this label, and its neighbors
that are not yet marked are put into the hierarchical queue;
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Step 2 must be repeated until the hierarchical queue is empty. The watershed
lines set is the complement of the set of labeled points. Let us note that this
algorithm does neither label nor propagate watershed pixels, which “stop” the
flooding. Thus, the watershed lines produced by Meyer’s algorithm are always
thinner than lines produced by other watershed algorithms.

2.5 Cost-Based Watershed

The principle is to define a distance or a cost for travelling between pixels, and
to define the influence zone of a minimum as the set of points which are strictly
closer to this minimum than to any other minimum. Various costs or distances
can be considered, the most popular ones being the topographical distance [14,15],
but other approaches exist [16] among which we can mention the max-arc path
cost.

The (so-called) topographical distance of an image F is a digital analogue to
dtF (x, y) = infπ∈Π(x,y)

∫
π

||∇F (π(s))||ds. Let us note that if we are on a line of
steepest slope between x and y, then dtF (x, y) = |F (x) − F (y)|. The catchment
basin of a minimum mi is defined as the set of pixels x for which F (mi) +
dtF (mi, x) < F (mj) + dtF (mj , x) for all minima mj �= mi. The watershed lines
set is the complementary of those catchment basins.

Another simple possible choice is the max-arc path cost [16] which assigns to
a path the maximum of F for each pixel on the path. In this case, dmF (x, y) =
infπ∈Π(x,y) maxi F (π(i)), and the catchment basin of a minimum mi is defined as
the set of pixels x for which dmF (mi, x) < dmF (mj , x) for all minima mj �= mi.
The watershed lines set is the complementary of those catchment basins.

2.6 Topological Watershed [11]

The idea is to define a transform that acts directly on the greyscale image,
by lowering some points in such a manner that the connectivity of each lower
cross-section Fk is preserved. The regional minima of the result, which have been
spread by this transform, can be interpreted as the catchment basins. The formal
definition relies on a particular notion of simple point:

Definition 1. Let G = (E, Γ ) be a graph, and let X ⊂ E.
The point x ∈ X is simple (for X) if the number of connected components of

X ∪ {x} equals the number of connected components of X. In other words, x is
simple (for X) if x is adjacent to exactly one connected component of X.

We can now define a notion of destructible point, and the topological watershed:

Definition 2. Let F ∈ F(E), x ∈ E, and k = F (x). The point x is destructible
(for F ) if x is simple for Fk.

We say that W ∈ F(E) is a topological watershed of F if W may be derived
from F by iteratively lowering destructible points by one until stability (that is,
until all points of E be non-destructible for W ).
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The catchment basins of the topological watershed W are the minima of W ,
and the watershed lines are the non-minima of W .

As a consequence of this definition, a topological watershed W of a function F is
a function which has the same number of regional minima as F . Furthermore, the
connectivity of any lower cross-section is preserved during this transformation.

Let us note that, in this case, and contrary to other watershed principles,
the watershed lines are part of the definition: it does not exist a variation of this
notion that does not build those lines. An efficient algorithm to compute the
topological watershed has been proposed in [11].

Let us emphasize the essential difference between this notion of topolog-
ical watershed and the notion of homotopic greyscale skeleton, pioneered by
Goetcherian [17] and extensively studied in [18,19]. With the topological water-
shed, only the connected components of the lower cross-sections of the function
are preserved, while the homotopic greyscale skeleton preserves both these com-
ponents and the components of the upper cross-sections. As a consequence, an
homotopic greyscale skeleton may be computed by using a purely local criterion
for testing whether a point may be lowered or not, while computing a topological
watershed requires the use of a global data structure [11].

3 Watershed Algorithms Comparison

Intuitively, for application to image analysis, the watershed lines represent the
location of pixels which best separate the dark objects (regional minima), in
terms of grey level difference (contrast). In order to evaluate the effectiveness of
this separation, we have to consider the values of pixels along watershed lines.
This motivates the following definition.

Definition 3. The watershed contours of F is a grayscale image W such that
W (x) = 0 for any x in a catchment basin, and W (x) = F (x) elsewhere.

Let us note that such a definition is not necessary for the topological watershed,
which produces a function, and not a binary result.

3.1 Saddle Point, Pass Value and the Dynamics

To formalize the notion of contrast between two minima, we need to characterize
first-contact points between basins. In the continuous framework, such points
are called saddle points, but this notion is difficult to transfer to the digital
grid. Furthemore, such a notion is not fundamental for contrast criteria. More
precisely, for each couple of neighboring basins, we only need the altitude of the
lowest contact point between them. This is the motivation for defining the pass
value, a natural concept already used by several authors.

Definition 4. Let M(F ) be the set of all minima of F . We define the pass value
F (m1, m2) between two minima m1 and m2 in M(F ) as

F (m1, m2) = min
π∈Π(m1,m2)

max
i

F (π(i)) (3)
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where Π(m1, m2) is the set of all paths linking m1 to m2.

For applications to image analysis like filtering, and especially for saliency,
we want to compute

– all pass values; we would like watershed contours to have the same pass
values as the original image;

– and a measure of contrast or importance of each basin (minima) of the
original image; such a measure should correspond to measure taken on lower
cross-sections of the original image.

Various contrast measures can be computed, among which we can mention depth
(dynamics [20]), area and volume [3]. We are going to examine more particularly
the case of the dynamics.

We first recall the basic definitions introduced by Grimaud [20] (in fact these
definitions were proposed for 2D images, we extend them for arbitrary graphs).
Let F ∈ F(E) and let X be a minimum for F . The attraction domain of X is
the set composed of all point x such that there exist a descending path from x
to X. The attraction domain of a minimum X is denoted by K(X).
Let π be a path. The dynamics of π (for F ) is the value Dyn(π) = Max{|F (x)−
F (y)|; for all x, y in π}.
Let x, y be two points. The dynamics between x and y (for F ) is the value
Dyn(x, y) = Min{Dyn(π); for all π ∈ Π(x, y)}.
Let X and Y be two subsets of E. The dynamics between X and Y (for F ) is
the value Dyn(X, Y ) = Min{Dyn(x, y); for all x ∈ X, y ∈ Y }.

Definition 5. Let X ∈ M(F ). The dynamics of X (for F ) is the number
Dyn(X) such that:

– If F (X) = Min{F (Y ); Y ∈ M(F )}, then Dyn(X) = ∞;
– Otherwise, Dyn(X) = Min{Dyn[X, K(Y )]; ∀Y ∈ M(F ), F (Y ) < F (X)}.

3.2 The Case of the Topological Watershed

We can prove [21] that the topological watershed preserves the pass values.

Property 1 Let W be a topological watershed of F . For all (m1, m2) ∈ M(F )2,
and for the corresponding minima (m′

1, m
′
2) ∈ M(W )2, we have

F (m1, m2) = W (m′
1, m

′
2)

In the sequel of the paper, we are going to show that this property is neither
true for the Vincent-Soille’s algorithm, nor for Meyer’s algorithm. An important
consequence of this property is that measures (such as depth (dynamics [20]),
area or volume [3]) computed on the basins obtained by either Vincent-Soille’s
algorithm or Meyer’s algorithm do not correspond to measures of connected
components of lower-cross sections of the image. On the contrary, the topolog-
ical watershed does allow such computations. In particular, in the case of the
dynamics, a consequence of property 1 is the following result.
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2 3 6 2
3 6 3 6

255 7 6 4
2 255 7 6
1 2 255 5

(a)

A A 6 B
A 6 C 6

255 7 6 D
E E 7 6
E E 255 F

(b)

A A 6 B
A 6 C 6

255 E 6 D
E E E 6
E E 255 F

(c)

A A 6 B
A 6 C 6

255 7 6 D
E 255 7 6
E E 255 F

(d)

Fig. 1. Counter-example to pass-values preservation. A greyscale image (a) and some
results of watershed algorithms: (b) Vincent-Soille (c) Meyer and (d) Cost-based and
Topological watershed. One can see that the pass value between E and any other basin
is 6 in (c) and is 7 in (b). Both the cost-based and the topological watershed (d) do
preserve the correct pass value of 255

Property 2 Let F ∈ F(E) and let W be a topological watershed of F . Then
the dynamics of a minimum for F is equal to the dynamics of the corresponding
minimum for W .

We can also prove that, for suitable cost functions, cost based watersheds
of an image F preserve the pass values of F . But, as we will see, cost based
watershed produces very thick contours that prevent it to be used for a saliency
algorithm.

3.3 Comparison and Counter Examples
for Other Watershed Algorithms

We are going to examine the behavior of watershed algorithms on several ex-
amples. In the sequel, the watershed examples are computed in 4-connectivity.
In particular, regional minima are 4-connected subsets of ZZ2. On all the pic-
tures, the basins are labeled with letters, and the watershed pixels are given
with their corresponding value in the original image. Similar configurations can
be found for other connectivities. Let us emphasize that configurations similar
to the examples presented in this paper were found in real images.

Neither Vincent-Soille’s nor Meyer’s algorithm do preserve the pass values.
A counter-example that illustrates this behavior is given in Figure 1. Figure 1.a
presents a high contour at altitude 255. This contour is run over by the flooding
principle of both Meyer and Vincent-Soille. This is especially visible on Meyer’s
algorithm, as in figure 1.c, the pass value between E and any other minima is 6
instead of 255. Vincent-Soille’s algorithm, while having the same kind of problem,
tries to detect special pixel configurations called buttonholes, and thus produces
thick lines. But in this case, the Vincent-Soille’s watershed is not thick enough,
and the pass value between E and any other basin is 7 for the watershed contours,
while it is 255 for the original image. The only correct result is produced both
by the topological watershed and the cost based watershed, and is presented in
figure 1.d.

Vincent-Soille’s watershed algorithm aims at detecting watershed areas such
as buttonholes. These areas are such that one cannot decide towards which
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2 2 2 2 2 2 2
2 20 20 20 20 20 2
2 20 10 10 10 20 2
30 30 10 10 10 30 30
1 30 10 10 10 30 0
1 30 30 10 30 30 0
1 1 1 10 0 0 0

(a)

A A A A A A A
A A A A A A A
A A A A A A A
30 A A A A A 30
B 30 A A A 30 C
B B 30 A 30 C C
B B B 10 C C C

(b)
A A A A A A A
A A A A A A A
A A 10 10 10 A A
30 A 10 10 10 A 30
B 30 10 10 10 30 C
B B B 10 C C C
B B B 10 C C C

(c)

A A A A A A A
A 20 20 20 20 20 A
A 20 10 10 10 20 A
30 30 10 10 10 30 30
B 30 10 10 10 30 C
B 30 30 10 30 30 C
B B B 10 C C C

(d)

A A A A A A A
A A 20 20 20 A A
A 20 B 10 C 20 A
30 B B 10 C C 30
B B B 10 C C C
B B B 10 C C C
B B B 10 C C C

(e)

Fig. 2. Another counter-example to pass values preservation. (a): Original “button-
hole” image, (b): Meyer’s watershed contours, (c): Vincent-Soille’s watershed contours,
(d): cost-based watershed contours, (e): Topological watershed contours. One can note
that the contour at altitude 20 is neither kept by Vincent-Soille’s algorithm, nor by
Meyer’s algorithm. One can also note that both the cost-based and the topological wa-
tersheds preserve the pass values of the buttonhole (a), but the topological watershed
(e) is thinner than the cost-based watershed (d)

minimum a drop falling on them will slide. Figure 2.a exhibits a particular case
of buttonhole. Clearly, the pixels at altitude 20 are essential since they carry the
pass value between the minimum A (level 2) and the minima B and C (level 1
and 0). We can observe on figures 2.b and 2.c that both Meyer’s algorithm and
Vincent-Soille’s remove the contour at altitude 20; in fact, Meyer’s algorithm
does not “see” at all this buttonhole. In both cases, pass value between A and
B or C is at an altitude of 10 instead of 20 for the watershed contours.

In order to preserve pass values on the buttonhole, we have two possibilitites:

– either keeping in the watershed lines all the pixels of the buttonhole: that is
what is done by the cost-based watershed (Fig. 2.d), which produces contours
that cover the whole buttonhole;

– or making a careful (but arbitrary) choice between all the contours possible
in the buttonhole, the choice being such that it preserves the pass values.
This is what is done by the topological watershed (Fig. 2.e).

On real images, both cost based and Vincent-Soille’s watershed are very
sensitive to buttonholes and the resulting watershed lines can cover a large part
of the image [example not shown due to space constraint]. Meyer’s algorithm and
the topological watershed compute thinner lines.

Furthermore, cost-based watersheds produce very thick lines even in the ab-
sence of buttonhole, as noted in [10], and tend to isolate basins. Figure 3 illus-
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0 4 5 6 0
0 3 4 5 6
0 2 3 4 5
0 1 2 3 4
1 0 0 0 0

(a)

A 4 5 6 B
A 3 4 5 6
A 2 3 4 5
A 1 2 3 4
1 C C C C

(b)

A A A 6 B
A A A 5 6
A A 3 C C
A 1 C C C
1 C C C C

(c)

Fig. 3. A greyscale image (a) and some results of watershed algorithms:(b) cost-based
watershed and (c) result according to Vincent-Soille, Meyer or Topological watershed.
Basin B is isolated in (b)

trates this problem. Indeed, those algorithms have been designed to compute
basins, and not lines. Thus, they cannot be used as an entry for a saliency
algorithm.

Let us note that all watershed algorithms can produce thick watershed lines
in some configurations (for instance, think of 4 lines crossing at one point).

4 Consequences and Conclusion

In this paper, we have shown that

– Meyer’s and Vincent-Soille’s algorithms do not preserve important topolog-
ical features of the image; in particular, pass values are not correct. Only
cost-based and topological watersheds are correct from this point of view;

– furthermore, cost-based watershed and Vincent-Soille’s algorithm can pro-
duce very thick watershed lines.

Thus, only one watershed notion, the topological watershed, is suited to our
task: the associated algorithm is the only one that produces a correct basin
neighborhood map and correct pass values.

For computing saliency, we need a measure of contrast of the watershed
basins, such as depth (dynamics [20]), area or volume [3]. An important con-
sequence of the results of this paper is that measures computed on the basins
obtained by either Vincent-Soille’s algorithm or Meyer’s algorithm do not cor-
respond to measures of connected components of lower-cross sections of the
image. On the contrary, we have seen that the topological watershed allows
such computations. Thus, it is not possible to use the propagation mechanism
of the line-building versions of Meyer’s or Vincent-Soille’s algorithms to com-
pute “on-the-fly” such a measure. Such a mechanism was implemented in the
Najman-Schmitt’s saliency algorithm [1,2], and has also been proposed in [22],
leading to non-correct results.

We could think that we can correct past saliency algorithms by replacing
their watershed operator by the topological watershed. Unfortunately, this is
not enough. In future papers of the series, we are going to review past saliency
algorithms, to show what hypothesis they rely on are wrong, and propose a novel
efficient saliency algorithm.



Watershed Algorithms and Contrast Preservation 71

References
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