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Abstract. This paper will focus on a proposal to speed up Shape From
Shading (SFS) approaches based on energy minimization. To this end,
Graduated Non Convexity (GNC) algorithm has been adopted to mini-
mize this strongly non convex energy. Achieved results are very promising
and involve aspects both theoretical and practical. In fact, both a gen-
eralization of the original formulation of GNC and an effective discrete
shape recovery characterize our approach. Finally, a drastic reduction of
the computational time is reached in comparison with the other currently
available approaches.

1 Introduction

Shape From Shading (SFS) is a classical problem of Computer Vision and con-
sists of recovering 3-D shape of an object starting from its image [1,2]. In the
last few years a lot of research has been devoted to it. The approaches in liter-
ature can be coarsely classified in four groups: minimization, propagation, local
and linear.

Minimization based approaches try to achieve the solution via minimization
of an energy composed of some terms: each of them corresponds to a constraint
on the solution itself [3,4]. In the second class, introduced by Horn [3] and later
developed by Bruckstein [5], shape information is propagated along the strips
in the direction of intensity gradient. These latter are lines in the image where
both surface depth and orientation can be computed whether they are known at
the starting point . New approaches are based on Hamilton Jacobi equation and
viscosity solution, such as [6] and the one recently proposed in [7], where Eikonal
equation is solved using Fast Marching Method. Local approaches exploit some
“a priori” assumptions on the shape to be recovered (e.g. locally spherical as in
[8]). Finally, approaches belonging to the last class are based on linearization of
the SFS scheme to achieve the surface depth. Two examples are in [1,9].

Minimization approaches seem to achieve better results among the afore-
mentioned ones [2]. Their only drawback consists of a huge computing time
in reaching the solution. Then they are not suitable for real time applications.
This problem stems from the fact that involved energies are usually not convex
functions. Hence, their (global) minimum is hard to be found.

I. Nyström et al. (Eds.): DGCI 2003, LNCS 2886, pp. 504–513, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Speed Up of Shape from Shading Using Graduated Non-convexity 505

This paper focuses on a drastic reduction of the SFS computing time using
Graduated Non Convexity (GNC) approach [10]. The latter is a clever method
for minimizing discrete non convex energies. It consists of producing a sequence
of energy functions, by a gradual deconvexification of the original one. This way
allows us to reach a minimum close to the absolute one, in a moderate computing
time [10]. If on one hand GNC is a valid alternative to very expensive algoritms
like Simulated Annealing [10], on the other hand its main drawback consists of
“adapting” this strategy to the energy to be minimized. We outline that the
contribution of this paper is not a trivial application of GNC to SFS problem.
Starting from this kind of energy we have generalized the original formulation
of GNC, as it will be clearer in the following.

The outline of the paper is as follows. Next section will present some basic
concepts about SFS problem useful for understanding the rest of the paper.
Section 3 will firstly focus on a general presentation of GNC and then on its
application to the energy under study. Some experimental results will be shown
and discussed in Section 4.

2 Shape from Shading

The aim of Shape from Shading consists of recovering the 3-D shape of an object
from 2-D intensity data of an image. The simplest model for image formation is
the lambertian one [2,3]. The grey level intensity in correspondence to a given
pixel of the image under study can be considered proportional to both the light
source −→

L = (lx, ly, lz) and the surface normal −→
N intensities. Strictly speaking,

the Reflectance Map in the Lambertian model is:

R(p, q) = max{0, ρ
−→
N · −→

L } = max{0, ρ
lz − plx − qly√

1 + p2 + q2
} = max{0, ρ · cos(θ)} (1)

where (p, q) = (∂Z
∂x , ∂Z

∂y ) is the surface gradient, −→
N = (−p,−q,1)√

1+p2+q2
the surface

normal, ρ (albedo) is a positive constant including factors such as strength of
illumination and surface reflectivity, and θ is the angle between −→

N and −→
L .

As matter of fact, alternative image formation models have been proposed in
literature [11]. They try to overcome some intrinsic drawbacks of the lambertian
model. Nonetheless, the simplicity of this latter makes it more attractive and
effective in many cases.

Hypotheses of uniformity of albedo along with infinite distance between a
single light source and the object in the scene are usually made [11].

SFS problem is ill-posed [12] since it consists of recovering the surface quotes
Z(x, y) satisfying the image irradiance equation: E(x, y) = R(p, q) with E(x, y)
image intensity at position (x, y). Then a smoothness constraint has to be added,
yielding the following energy:

E(p, q, Z) =
N∑

i,j=1

[
Ei,j − R(pi,j , qi,j)

]2

︸ ︷︷ ︸
Data−Closeness term E1

+λ

N−1∑

i,j=1

[
Φ( | ∇pi,j | ) + Φ( | ∇qi,j | )

]

︸ ︷︷ ︸
Regularization term E2

(2)
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where Ei,j i, j ∈ {1...N} is the input image, R(pi,j , qi,j) the lambertian re-

flectance map, while | ∇pi,j |=
√

(pi+1,j − pi,j)
2 + (pi,j+1 − pi,j)

2 is the gradient
of p and similarly for q. We selected the well-known function of regularization
Φ(k) = k2

1+δk2 with δ positive constant[2,3,10,13,14], which performs a selective
regularization with preservation of the salient parts of the shape to be recovered
[15,16]. λ is a positive constant balancing E1 and E2 in (2).

3 GNC for Shape from Shading

In the previous sections we have introduced GNC as an effective way to minimize
discrete non convex energies like the SFS one. Its effectiveness stems from its
ability in “avoiding the pitfall of sticking in local minima” (p. 46 of [10]) of a
given energy F . It is reached by building a finite sequence of energies F (p) with
1 ≥ p ≥ 0. The first element (F (1)) is built as a convex approximation of the
original energy and then has a unique (global) minimum. The last one (F (0))
is the original non convex energy. The intermediate elements of the energies
sequence correspond to gradual deconvexed versions of F (0). The main idea
of minimization step is very simple. The minimum of F (1) will represent the
starting point of minimization of the second element of the sequence and so on.
Unfortunately, in spite of a both simple and fast minimization the production
of the sequence is often not trivial.

The rest of this section will focus on it. Next subsection will deal with de-
convexification of the data-closeness term of (2). It represents a generalization
of the classical GNC proposed in [10]. In fact this term has always been convex
in all energies minimized so far by this algorithm. This fact will involve some
non trivial problems tied to it. On the contrary, the second subsection will focus
on the regularization term. Again, also in this case our proposal is more general
of that in [10]: it provides a direct solution of the second order energy usually
called thin plate.

In order to simplify the computation, in the following it is convenient to
consider the functional in (2) in terms of the only variable z. Moreover N × N
matrices zi,j will be considered as N2 × 1 arrays zk, with k = (i − 1)N + j to
make the formulation tractable.

3.1 Data-Closeness Term

The Reflectance Map is:

Rk =
lz − lxpk − lyqk√

1 + p2
k + q2

k

=
lz − lx(zk+N − zk) − ly(zk+1 − zk)
√

1 + (zk+N − zk)2 + (zk+1 − zk)2

where pk =
(

∂z
∂x

)
k

= (zk+N − zk) and qk =
(

∂z
∂y

)

k
= (zk+1 − zk).

In order to study the convexity of the first term of (2) we have to analyze
when its hessian

∂2E1

∂zi∂zj
= 2 ·

∑

k

∂Rk

∂zi

∂Rk

∂zj
− (Ek − Rk)

∂2Rk

∂zi∂zj
. (3)
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is positive definite. We introduce a positive constant γ ∈ [0, 1] to build a sequence
of reflectance maps whose first term is convex:

R̃k =
lz − lx [γzk+N − zk] − ly [γzk+1 − zk]
√

1 + γ [(zk+N − zk)2 + (zk+1 − zk)2]
. (4)

In fact, for γ = 0 the function (4) becomes:

R̃k = lz + zk(lx + ly)

and then
∂2E1

∂zi∂zj
= 2(lx + ly)2 ≥ 0.

On the contrary, for γ → 1, again, we obtain the original lambertian map.
Since for γ �= 0 ∂Rk

∂zi
�= 0 only for k ∈ {i, i − 1, i − N}, it follows:

∂

∂zi

∑

k

(Ek − Rk)2 =

− 2 ·
[
(Ei − Ri)

∂Ri

∂zi
+ (Ei−1 − Ri−1)

∂Ri−1

∂zi
+ (Ei−N − Ri−N )

∂Ri−N

∂zi

]
,

and then it is trivial to show that if we derive with respect to variable zj we
have:

∂2

∂zi∂zj

∑

k

(Ek − Rk)2 �= 0

only for the indices j ∈ {i, i − 1, i + 1, i − N, i + N, i − (N − 1), i + (N − 1)}.

3.2 Regularizing Term

In this section we will achieve a convex approximation of the regularization term:

E2 = λ
∑

i,j

(
Φ(| ∇p |) + Φ(| ∇q |)

)
(5)

where

| ∇p |=
√

p2
x + p2

y =
√

z2
xx + z2

xy , | ∇q |=
√

q2
x + q2

y =
√

z2
xy + z2

yy.

and

zxx(k) = zk+N − 2zk + zk−N

zxy(k) = zk+N+1 − zk+N − zk+1 + zk

zyy(k) = zk+1 − 2zk + zk−1.
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Considering the circulant matrices G1
k,l G2

k,l G3
k,l generated by

V 1 = (. . . 0, 0, 1︸︷︷︸
k−N

, 0, . . . , 0, −2︸︷︷︸
k

, 0, . . . , 0, 1︸︷︷︸
k+N

, 0, 0 . . .)

V 2 = (. . . 0, 0, 1︸︷︷︸
k

, −1︸︷︷︸
k+1

, 0, . . . , 0, −1︸︷︷︸
k+N

, 1︸︷︷︸
k+N+1

, 0, 0 . . .)

V 3 = (. . . 0, 0, 0, 0, 1︸︷︷︸
k−1

, −2︸︷︷︸
k

, 1︸︷︷︸
k+1

, 0, 0, 0, 0 . . .),

the k − th component of discretized derivative operators can be written as:

zxx(k) =
∑N2

l=1 G1
k,l · zl; zxy(k) =

∑N2

l=1 G2
k,l · zl; zyy(k) =

∑N2

l=1 G3
k,l · zl.

Then:

E2 =
λ

δ2

∑

k





Ψ



δ

√√
√√
( N2∑

l=1

G1
k,lzl

)2
+
( N2∑

l=1

G2
k,lzl

)2









+

+
λ

δ2

∑

k





Ψ



δ

√√√√
( N2∑

l=1

G2
k,lzl

)2
+
( N2∑

l=1

G3
k,lzl

)2









(6)

where
Φ(u) =

1
δ2 Ψ(δu).

Defining the variables:

tk =

√(∑N2

l=1 G1
k,lzl

)2
+
(∑N2

l=1 G2
k,lzl

)2

wk =

√(∑N2

l=1 G2
k,lzl

)2
+
(∑N2

l=1 G3
k,lzl

)2

(6) can be written as:

E2(z) =
λ

δ2

∑

k

{Ψ (δtk) + Ψ (δwk)} .

Its convexity derives from the sign of its Hessian ∂E2
∂zi∂zj

> 0.
As regards the first part Ψ (δtk) of the regularization term we have:

∂

∂zi∂zj

(
∑

k

Ψ (δtk)

)

=
∑

k

δ2Ψ
′′ · ∂tk

∂zi
· ∂tk
∂zj

+
∑

k

δΨ
′ · ∂2tk

∂zi∂zj
.

With Ak,i =
[(∑

l G1
k,lzl

)
G1

k,i +
(∑

l G2
k,lzl

)
G2

k,i

]
we have:

∂
∂zi∂zj

(
∑

k Ψ (δtk)) =
∑

k (Ak,iAk,j)
[
δ2 1

t2
k

Ψ
′′

(δtk) − δ 1
t3
k

Ψ
′
(δtk)

]

+
∑

k δ 1
tk

Ψ
′
(δtk)

[
G1

k,iG
1
k,j + G2

k,iG
2
k,j

]
.
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Then
[
δ2 1

t2k
Ψ

′′
(δtk) − δ

1
t3k

Ψ
′
(δtk)

]

(δtk=u)
= δ4

[
Ψ

′′
(u)

u2 − Ψ
′
(u)

u3

]

= δ4 −8
(1 + u2)2

(7)

bounded as follows −8δ4 ≤ −8δ4

(1+u2)2 ≤ 0 and

[

δ
Ψ

′
(δtk)
tk

]

(δtk=u)

= δ2 Ψ
′
(u)
u

= δ2 2
(1 + u2)2

(8)

with 0 ≤ 2δ2

(1+u2)2 ≤ 2δ2.
Functions (7), (8) can be lower bounded by their minima:

∂

∂zi∂zj

(
∑

k

Ψ (δtk)

)

≥ −8δ4
∑

k

(Ak,iAk,j) .

In order to consider the worst case, we analize the maximum of
∑

k (Ak,iAk,j) .
Exploiting eigenvalues for G1 e G2, we have:

G1z = γ1 z =⇒
∑

l

G1
k,lzl = (G1z)k = γ1 zk ≤ γ1

maxzk

and similarly for G2.
In [17] we proved

∑

k

Ak,iAk,j ≤ C2
z

(| γ1
max || γ̃1

max | + | γ2
max || γ̃2

max |)2

with γ1
max γ2

max and γ̃1
max γ̃2

max respectively the greatest eigenvalues for
G1 , G2 and G̃1

i,j =| G1
i,j | , G̃2

i,j =| G2
i,j | and supposing zk bounded: zk ≤ Cz.

Hence

∂

∂zi∂zj

(
∑

k

Ψ (δtk)

)

≥ −8C2
z δ4[(| γ1

max || γ̃1
max |)+(| γ2

max || γ̃2
max |)]2 .

Similar considerations can be made for the other term containing Ψ(δwk).
Then we obtain:

∂2E2

∂zi∂zj
≥ −8C2

zλδ2Γmax

with

Γmax=
(| γ1

max || γ̃1
max |+ | γ2

max || γ̃2
max |)2+(| γ2

max || γ̃2
max |+| γ3

max || γ̃3
max |)2.

Eigenvalues have been computed as in Appendix D of [10] with suitable
changes. The obtained constraints are general and can be applied to all energies
having the first term convex and the same regularization function.
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a) b)

Fig. 1. The 128 × 128 original discrete shape: a)gray-scale image, b) surface.

3.3 Implementation

From the data-closeness term of the energy E we have:

∂E1

∂zi∂zj
= 2(lx + ly)2.

The Hessian matrix is positive definite if the following condition is satisfied:

Γmax ≤ (lx + ly)2

4C2
zλδ2 .

Then under the above constraint, the functional (2) is convex.
Now we set

δ2
p =

(lx + ly)2

4pC2
zλΓmax

and γp =
1 − p

1 − p̄
(9)

with 1 ≥ p ≥ p̄, where p̄ = (lx+ly)2

4C2
zλδ2Γmax

.

Let us denote E(p) the energy in (2) corresponding to the values δp and γp.
The sequence of energies is such that E(1) is convex and E(p) changes towards E
as p approaches p̄. We first minimize the energy E(1) and then the parameter p
is gradually lowered in the interval 1 ↘ p̄.

4 Experimental Results and Discussion

We have applied our model on many shapes. In this paper we will show the
results on the shape depicted in Fig. 1 since simple but with evident discon-
tinuities. Fig.2 shows the surface recovered by our model in just 350 seconds
on a Risk work station Octane/SI R10000 175MHz/1Mb cache, considering a
multigrid speed up in the convex step. It can be noticed that our model is able
to catch discontinuities usually difficult to reach by SFS minimization models.
In other words our minimization model strongly decreases the energy achieving
good results. To better understand this point, we compared our performances
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Fig. 2. Row n. 64 of: original surface (top most), convex recovery (bottom most), GNC
(close to the convex one but with discontinuities), Gauss-Seidel (intermediate solution).
A zoom around a discontinuity point is also evidenced.

with the ones achieved by another well-known energy minimization: Gauss-Seidel
algoritm on Euler equations relative to p, q, Z. In order to make comparable the
performances of both models, we start from the same convex surface obtained
via the convex energy relative to (2), i.e. with Φ = t2. This choice accounts for
the same speed up in both minimizations in the respective convex steps via a
multigrid model [18]. Looking again at Fig. 2 we can understand the difference
between the behavior of the two minimizations. Our solution remains close to the
convex surface outperforming the discontinuity regions. The other one tries to
reach the original surface but it loses the discontinuity information in opposition
to non convex models aim.

0 500 1000 1500 2000 2500
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40
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rg
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Fig. 3. Energy decay behavior during minimization performed by Gauss-Seidel (top)
and GNC (bottom).

Fig. 3 emphasizes this fact showing the energy decay versus time of both
models. Although its closeness to the convex solution, our model makes a drastic
reduction of the global energy that entails a better recovering of the discontinuity
points. On the contrary, the other minimization shows a compensation between
a better surface (closer to the original one) and the lost of discontinuities. More-
over, our model achieves a good result in a few seconds against many minutes of
the other. Finally, in order to show the potentialities of our approach, in Fig. 4
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Fig. 4. An example of GNC performed on a 1-D case: on the left original (dashed) and
recovered (solid) reflectance map, on the right original and recovered surfaces (nearly
coincident).

we have shown the result obtained in 180 seconds on a 1-D version of the energy
in (2) where the original surface is now a cone overlapped on a spherical cap.
It turns out that paying a higher computational time, our approach can achieve
results close to absolute minimum. In order to maintain the time moderate a
further speed up on the non convex steps should be achieved. This is presently
an open problem and will be the topic of our future research.
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