
Surface Area Estimation of Digitized Planes
Using Weighted Local Configurations

Joakim Lindblad

Centre for Image Analysis, Uppsala University
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Abstract. We describe a method for estimating surface area of three-
dimensional binary objects. The method assigns a surface area weight to
each 2×2×2 configuration of voxels. The total surface area is given by a
summation of the local area contributions for a digital object. We derive
optimal area weights, in order to get an unbiased estimate with minimum
variance for randomly oriented planar surfaces. This gives a coefficient of
variation (CV) of 1.40% for planar regions. To verify the results and to
address the feasibility for area estimation of curved surfaces, the method
is tested on convex and non-convex synthetic test objects of increasing
size. The algorithm is appealingly simple and uses only a small local
neighbourhood. This allows efficient implementations in hardware and/or
in parallel architectures.
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1 Introduction

Surface area of three-dimensional (3D) objects is an important feature for image
analysis. In digital image analysis, we are given only a digitized version of the
original continuous object. Digital surface area measurements can therefore only
be estimates of the true surface area of the original object. Quantitative analysis
of digital images requires that such estimates are both accurate and precise, i.e.,
that the estimates agree well with the true measure on the continuous object
and that we get similar values for repeated measurements.

A good estimator should be unbiased, i.e., the expected value of the estimate
should be equal to the true value. To be precise, an estimator should also have
as small Mean Squared Error (MSE) as possible. For an unbiased estimator the
MSE is equal to the variance σ2.

From a theoretical point of view, multigrid convergence, is a very appealing
property of an estimator (see e.g. [6]). This ensures that the estimate converges
toward the true value, as the grid resolution increases. However, from a practical
viewpoint, grid resolution is rarely a parameter that can be easily increased.

A property that is attractive from a practical point of view, is locality. Local
techniques compute features using information only from a local part of the im-
age. Computation of different parts of the image are independent, and can thus
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be performed in parallel. Local algorithms are, in general, simple to implement
and efficient in terms of computing power. This together with their inherent
parallelism makes them most suitable for demanding real-time applications. Un-
fortunately, due to the limited distance that information is allowed to travel in
local algorithms, it is believed that they never can be made multigrid convergent
in a general sense.

This leads to a trade-off situation, between the desire for a local algorithm,
due to reasons of simplicity and speed, and the improved performance at higher
resolutions given by multigrid convergent estimators. The best estimator for one
particular situation may well differ from the best choice in another situation.

In this paper, we present a method to obtain accurate surface area estimates
with high precision, using only local computations and avoiding strong assump-
tions about the object of study. The estimator is based on assigning area weights
to local configurations of binary voxels. The weights for the different configu-
rations are optimized in order to give an unbiased estimate with minimal MSE
for an isotropic distribution of flat surfaces of infinite size. We verify the perfor-
mance of the estimator by applying it to synthetic test objects of increasing size
with randomized alignment in the digitization process.

2 Background

In 2D image analysis, the perimeter of a digital object can be estimated as the
cumulative distance from pixel centre to pixel centre along the border of the ob-
ject. This is straightforward to accomplish using the Freeman chain code [4], but
results in an incorrect estimate. The weights 1 for isothetic and

√
2 for diagonal

steps are not optimal when measuring digitized line segments. By assigning opti-
mized weights [8,12] to the steps, a more accurate perimeter estimate is obtained.
Weights for the 2D case have been optimized for infinitely long straight lines and
have then been proven to perform even better for curved contours [3]. In addition
to the above local type of estimators, different multigrid convergent perimeter
estimators exist, most of them based on finding straight line segments and per-
forming a polygonalization of the object. See e.g [2], for a compact overview.

A straightforward and simple approach to get a surface area estimate of a
3D object is to count the number of foreground voxels with a neighbour in the
background. This, however, results in a quite severe underestimate. Assigning a
weight to each border voxel of 1.2031 instead of 1, we get an unbiased estimate for
an isotropic distribution of planar surfaces [11]. The variance of that estimate
is however rather large, due to the fact that we do not differentiate between
different types of surface voxels.

Mullikin and Verbeek [11] propose a method where each voxel in the fore-
ground is classified depending on the number of six-connected neighbours it has
in the background. This gives a total of 9 different types of configurations of
boundary voxels. Three of these configurations, namely voxels with one, two,
and three neighbouring voxels in the background, occur for flat surfaces and are
also, the by far most commonly appearing for smooth objects sampled at rea-
sonable resolution. Mullikin and Verbeek derive optimal weights for these three
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cases, in order to get an unbiased estimate with minimal MSE for planar surfaces.
The weights are W1 = 0.8940, W2 = 1.3409, and W3 = 1.5879, respectively, in
sample grid units squared. This gives an unbiased estimate with a coefficient of
variation (CV=σ/µ) of 2.33% for planar surfaces.

Since their method is dependent on what is defined to be foreground and
background in the image, the estimate will change if applied to the complemen-
tary image. The true area of the surface between a continuous object and the
background does not change if we interchange what is object and what is back-
ground, and a desired property of a surface area estimator is, therefore, that it
gives the same result on the complementary image. Mullikin and Verbeek sug-
gest to use the average of the estimate for the original and the complementary
image, to achieve a symmetric estimate. Note that this property of symmetry
with respect to foreground and background is slightly dependent on the chosen
digitization method. We have in this paper used Gauss centre point digitization,
where the digitized object is defined to be the set of all grid points (voxel centres)
contained in the continuous set.

Recent publications [5,7,1] have studied multigrid convergent surface area
estimators with promising results. Klette et al. [7] use global polyhedrization
techniques to arrive at a surface area estimate, whereas Coeurjolly et al. [1]
present an efficient algorithm based on discrete normal vector field integration,
where the problem of surface area estimation is transformed into a problem of
normal vector estimation.

3 Surface Area Estimation

The method proposed in this paper has similarities to the one described in [11].
Both methods count the occurrence of a set of local configurations of binary
valued voxels. Each configuration is assigned an area contribution and the total
area is calculated as the sum of the local area contributions over the surface of the
object. Where Mullikin and Verbeek use the six-connected neighbourhood, we
use a 2 × 2 × 2 neighbourhood. This gives a total of 13 different types of surface
configuration, five of them appearing for flat surfaces. The increased number
of cases gives a better discrimination between different normal directions, and
therefore an improved surface estimate is achieved. In addition, since the 2×2×2
neighbourhood is symmetric with respect to foreground and background, the
estimate does not change if we apply it to the complementary image.

The use of the 2 × 2 × 2 neighbourhood makes the configurations appearing
in the method similar to the ones of the Marching Cubes algorithm [10]. In fact,
assigning a surface area to each configuration equal to the surface area of the
triangles of the Marching Cubes algorithm, is not a bad idea. This leads to
an overestimate of 8%. If we divide the result with the factor 1.08, we get an
unbiased estimate with a remaining CV of 2.25%. In [9], empirical optimization
when varying the weight of one of the configurations (case 5) was studied with
promising results. Note that the optimization that we perform in this paper is
based only on the binary voxel configurations, and we do not care about possible
triangulations of the actual surface.
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3.1 m-Cubes

An m-cube (short for Marching Cube), is the cube bounded by the eight voxels
in a 2 × 2 × 2 neighbourhood. Hence, each corner of the m-cube corresponds to
a voxel. In a binary image, the possible number of configurations of the eight
voxels is 256. Using symmetry, the 256 configurations can be grouped into 14
(or 15) cases [10], see Fig. 1. We number the cases according to [10], except for
the mirrored cases 11 and 14, which we group into one, case 11.

10 2 3 4

98765

10 11 12 13

Fig. 1. m-cubes of 2 × 2 × 2 voxels. Voxels denoted by a • are inside the object. The
complementary cases are classified to be the same as the original cases. Only cases 1,
2, 5, 8, and 9, (emphasized) appear for planar surfaces.

Surface area weights, Ai, are assigned to the different cases. One of the con-
figurations, case 0, does not represent a boundary situation, and therefore has
zero area contribution. The sum of the area weights for all surface m-cubes of an
object gives an estimate of the total surface area of that object. The histogram
presenting the cardinality, Ni, of each of the 13 surface configurations (skipping
case 0) is computed for each digitized object. The surface area estimate of the
particular object is then calculated as

Â =
13∑

i=1

AiNi . (1)

3.2 Planar Surfaces

We optimize the weights, Ai, in order to get an unbiased estimate with minimal
MSE for planar surfaces of isotropic orientation. This can be justified by the
fact that the surface of an object becomes locally planar as the sampling den-
sity increases if the maximum spatial frequency is kept constant. Furthermore,
planar surfaces of distinct orientation represents the worst case objects for the
estimation method. Since all other objects have a more isotropic distribution of
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Fig. 2. The surface between object and background, z = z′
xx + z′

yy + w, here shown
for w = 0.

normal directions, the variance of the estimated surface area of any reasonably
shaped object should be lower than that of planar objects. This is verified on
the synthetic test objects in Sect. 4.

To optimize the surface area weights, we need to study the different types
of configurations that appear when a volume of voxels is divided by a randomly
oriented and positioned plane. We can, without loss of generality, restrict the
analysis to planes with a reduced set of normal directions, due to the symmetry
of the sampling grid. We have chosen, in spherical coordinates, the region

−π ≤ φ < − 3π
4 , 0 ≤ θ < π

2 + arctan(cos(φ)) , (2)

where the transformation from spherical to Cartesian coordinates of the normal
vector is given by n = (cos φ sin θ, sin φ sin θ, cos θ). The reason for choosing this
set of normal directions is that it allows us to represent the surface plane as a
function of x and y,

z(x, y) = z′
xx + z′

yy + w , 0 ≤ z′
y ≤ z′

x < 1 , (3)

where voxels with a centre on, or below, the plane are included in the object.
Figure 2 shows two such surfaces of different slopes.

Depending on if z′
x + z′

y is less or greater than 1, we get two different sets
of configurations appearing, as we vary the offset term w. This is illustrated in
Figs. 3 and 4. We keep track of the intersection between the surface and all
m-cubes. For example, in Fig. 3(b) the lower m-cube is a case 5 and the upper
one is a case 1. Note that only five of the 13 possible surface configurations
appear for planar surfaces.

Since the offset term for randomly aligned planes is uniformly distributed,
we can calculate the probability, P (ci), that an intersected m-cube is of type i,
given a specific normal direction n, directly from Fig. 3 for z′

x + z′
y ≤ 1,
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(a) Case 8
0 ≤ w < 1−z′

x−z′
y

(b) Case 5+1
1−z′

x−z′
y ≤w< 1−z′

x

(c) Case 2+2
1−z′

x ≤ w < 1−z′
y

(d) Case 1+5
1−z′

y ≤ w < 1

Fig. 3. The different cases appearing for z′
x + z′

y ≤ 1 as w is varied are shown.

P (c1|n) = 2z′
y/ztot , (4a)

P (c2|n) = 2(z′
x − z′

y)/ztot , (4b)
P (c5|n) = 2z′

y/ztot , (4c)
P (c8|n) = (1 − z′

x − z′
y)/ztot , (4d)

and from Fig. 4 for z′
x + z′

y > 1,

P (c1|n) = 2z′
y/ztot , (5a)

P (c2|n) = 2(z′
x − z′

y)/ztot , (5b)
P (c5|n) = 2(1 − z′

x)/ztot , (5c)
P (c9|n) = (z′

x + z′
y − 1)/ztot , (5d)

where ztot = 1 + z′
x + z′

y.
The total number of intersected m-cubes for a plane of area A and normal

direction n is

Ntot(n) = 1+z′
x+z′

y√
1+z′

x
2+z′

y
2 A . (6)

The cardinality of a specific configuration, i, is

Ni(n) = P (ci|n)Ntot(n) , i = 1 . . . 13 (7)

and the total estimated surface area is given by

Â(n) =
13∑

i=1

AiNi(n) . (8)
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(a) Case 5+1
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(b) Case 2+2
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x ≤ w < 1−z′
y
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2−z′
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Fig. 4. The different cases appearing for z′
x + z′

y > 1 as w is varied are shown.

3.3 Optimization

We wish to optimize (8) over all normal directions, in order to get an unbiased
estimate with minimal MSE. However, since the cardinality of cases 1, 5, and 9,
are linearly dependent,1 N1 = N5 + 2N9, the solution becomes non-unique.

By grouping the cases that co-appear, we can still get a unique solution. That
is, instead of assigning a surface area to each individual m-cube, we assign an area
to the different situations shown in Figs. 3 and 4. Optimizing area contributions,
using standard methods, to this new set of cases, leads to the following grouped
set of area contributions, in sample grid units squared.

A1 + A5 = 1.1897, 2A2 = 1.3380, A8 = 0.9270, 2A1 + A9 = 1.6942. (9)

This gives an unbiased area estimate with a CV of 1.40% for planar surfaces.
For non-planar objects the relation between cases 1, 5, and 9, no longer holds.

Therefore, we need area contributions for the individual m-cubes. Since the
Marching Cubes triangulation of cases 1 and 9 together represent a well behaved
and flat surface (Fig. 5), we have used the ratio given by the corresponding
triangle areas, i.e., A1

A9
= 1

6 . Inserting this into (9) we get the following set of
area contributions.

A1 = 0.2118, A2 = 0.6690, A5 = 0.9779, A8 = 0.9270, A9 = 1.2706. (10)

This specific choice, of how to distribute the area between cases 1, 5, and 9,
is not indisputable. Since the optimization for planar surfaces does not supply
enough information to give a unique solution, further optimization on some other
type of objects is required. Note, however, that the distribution of area between
cases 1, 5, and 9, affects neither the CV nor the maximum error for planar
surfaces, as long as (9) holds. The maximum absolute error is reached for planes
1 Easily verified by observing Figs. 3 and 4. For cases 5 and 9, the neighbouring voxel

(voxels for case 9) will always contain a complementary case 1.
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Fig. 5. Possible
triangulation of
cases 1 and 9.

Fig. 6. Estimated surface area divided by true
surface area, for different values of z′

x and z′
y.

The maximum error is reached for z′
x = z′

y = 0.

Fig. 7. Digitized
spherical cap of
radius 40 pixels.

aligned with the digitization grid, and the error is then 1−A8 = 0.0730. Figure 6
shows the estimate divided by the true area as a function of the normal direction.

4 Simulations

To verify the results and to address the feasibility for area estimation of curved
and non-convex surfaces, the method is tested on synthetic objects of known
surface area. The used test objects are balls of radii 0–80, cubes of side length 0–
160, cylinders of height = 2 ·radius, and, to get a concave object, thick spherical
caps (see Fig 7) where radiuscavity = 1

2 · radiuscap. The objects are generated in
the continuous space and then digitized using Gauss centre point digitization in
different sizes, and with random rotation and position in the digitization grid.

Since our test objects are not only planar surfaces, some additional m-cube
cases will be present. To calculate a total area for our test objects we need
to assign an area contribution also to those additional cases. Since these cases
constitute not more than 0.2% of the total number of surface m-cubes of the
test objects, this area contribution will have a very small impact on the overall
result. We have assigned the triangle area of a Marching Cubes triangulation to
these additional cases.

5 Results

Surface area estimates and average relative errors for digitized objects of increas-
ing resolution can be seen in Fig. 8. Surface area estimates for 10,000 digitized
balls of radius 70 pixels, 20,000 cubes of side length 140, 10,000 cylinders of
radius 70 and height 140, and 10,000 spherical caps of radius 70 pixels, are sum-
marized in Table 1. The results are (on average) a slight underestimate of the
true surface area. This is due to the cutting of corners and edges [13]. For large
objects this effect can be neglected, though.

The surface of a large ball is a good sampling of planes in all directions and
should thus exhibit very low variance. This is verified by the simulations, where
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(a) (b)

Fig. 8. (a) Surface area estimates divided by true surface area for 150,000 digitizations
of objects of increasing size. (b) Log plot of relative error for the different objects.

Table 1. Performance on synthetic test objects of radius 70 / side length 140.

Object mean(Â)/A CV mean(|Â − A|/A) max(|Â − A|/A)

Ball 0.9999 0.015% 0.012% 0.082%
Cube 0.9963 0.89% 0.68% 7.14%
Cylinder 0.9975 0.63% 0.45% 3.36%
Spherical Cap 0.9965 0.32% 0.36% 1.99%

superlinear convergence O(r−α) , α ≈ 1.5, is observed. The cube have planar
surfaces which are aligned so that it represents a worst case situation for the cubic
digitization grid, accordingly it shows the worst performance in the simulations.

6 Discussion and Conclusions

We have presented a method for estimating surface area of binary 3D objects
using local computations. The algorithm is appealingly simple and uses only a
very small local neighbourhood, allowing efficient implementations in hardware
and/or in parallel architectures. The estimated surface area is computed as a
sum of local area contributions. We have derived optimal area weights for the
2 × 2 × 2 configuration of voxels that appear on digital planar surfaces. The
method gives an unbiased estimate with minimum variance for randomly ori-
ented planar surfaces. Theoretic worst case CV for the suggested surface area
estimator is 1.40%, and the maximum absolute error is 7.30%. The maximum
error is reached for planar surfaces aligned with the digitization grid. The perfor-
mance of the surface area estimator is verified on more than 200,000 convex and
non-convex digitized synthetic objects. Due to the local nature of the method,
it cannot be made multigrid convergent. However, for objects of size less than
a few hundred voxels in diameter, it is competitive in terms of precision with
existing multigrid convergent methods. A more detailed comparison is of inter-
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est. Further work on finding an optimal and unique distribution of surface area
between cases 1, 5, and 9 will follow.
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