Shortest Route on Height Map
Using Gray-Level Distance Transforms

Leena Ikonen and Pekka Toivanen

Lappeenranta University of Technology
P.O.Box 20, 53851 Lappeenranta, Finland
leena.ikonen@lut.fi

Abstract. This article presents an algorithm for finding and visualizing
the shortest route between two points on a gray-level height map. The
route is computed using gray-level distance transforms, which are varia-
tions of the Distance Transform on Curved Space (DTOCS). The basic
Route DTOCS uses the chessboard kernel for calculating the distances
between neighboring pixels, but variations, which take into account the
larger distance between diagonal pixels, produce more accurate results,
particularly for smooth and simple image surfaces. The route opimiza-
tion algorithm is implemented using the Weighted Distance Transform
on Curved Space (WDTOCS), which computes the piecewise Euclidean
distance along the image surface, and the results are compared to the
original Route DTOCS. The implementation of the algorithm is very
simple, regardless of which distance definition is used.

1 Introduction

Finding the shortest path between two points on a three dimensional surface
is a common optimization problem in many practical applications, e.g. robotic
and terrain navigation, highway planning, and medical image analysis. By con-
sidering the digitized surface as a graph, variations of Dijkstra’s classical path
search algorithm become feasible (e.g. [4], [10]). A dynamic programming-based
algorithm for computing distances of fuzzy digital objects is presented in [9].

This article presents an algorithm for finding optimal routes, or so called
minimal geodesics, between two points on a gray-level height map. Other dis-
tance map approaches for path optimization include level sets propagation [3],
and morphological grassfire algorithms [5]. Our algorithm is based on the Dis-
tance Transform on Curved Space (DTOCS presented in [13]), which calculates
distances on a gray-level surface, when the gray-levels are understood as height
values of the image surface. The Route DTOCS, first presented in [2], is de-
veloped further by using distance definitions, which give more accurate values
for the global distances compared to the original chessboard distance transform.
Particularly the piecewise Euclidean distance calculated with the Weighted Dis-
tance Transform on Curved Space (WDTOCS [13]) produces reliably optimal
routes.

I. Nystrom et al. (Eds.): DGCI 2003, LNCS 2886, pp. 308-316, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Shortest Route on Height Map Using Gray-Level Distance Transforms 309

2 Definitions for Route DTOCS and WDTOCS

In the distance image produced by the DTOCS or the WDTOCS, every pixel
in the calculation area X has a value which corresponds to the distance of that
pixel to the nearest background pixel in X©. The definition of the DTOCS for
any calculation area X can be found in [13]. In the Route DTOCS the same
distance metrics apply, but the complement area X¢ is restricted to a single
point, and the distance can be calculated according to the following, slightly
simplified, definitions.

A discrete gray-level image is a function G : Z2 — N, where N is the set of
positive integers.

Definition 1. Let Ng(p) denote the set of all 8 neighbors of pizel p in Z2. Pizels
p and q are 8-connected if ¢ € Ns(p). Let Ny(p) denote the set of 4-connected
neighbors, and Ng(p) \ Nui(p) the set of diagonal neighbors. A discrete 8-path
from pizel p to pixel s is a sequence of pixels p = po,p1,-...,Pn = S, where every
pi is 8-connected to p;_1, i =1,2,....,n

Definition 2. Let W(xz,y) denote the set of all possible discrete 8-paths linking
points € X and y € X©. Let v € ¥(x,y) and let v have n pizels. Let p; and
i1 be two adjacent pizels in path . Let G(p;) denote the gray value of pixel p;.

The length of the path « is defined by A(y) = E?;ll d(pi, pit+1), where the
definition of d(p;, pi+1), i.e. the distance between neighbor pixels p; and p;i1
on the path, depends on the distance transform used. The Weigthed Distance
Transform on Curved Space (WDTOCS) uses the Euclidean distance calculated
with the Pythagoras’ theorem from the height difference and the horizontal
displacement of the two pixels:

d io Di \/|g pl pl+1)‘2 +1 s Dit1 € N4(pz) 1
(P Pis1) { VIG(i) = Gpis1)]? +2, pis1 € Ns(ps) \ Na(pi) (1)

In the chessboard DTOCS the distance is defined as the height (gray-level)
difference between the pixels, plus one for the horizontal displacement:

d(pi, pit1) = |1G(pi) — G(Pig1)| +1 (2)

The distance can also be defined using separate height and pixel-to-pixel
displacements as in DTOCS, but using the accurate horizontal distance between
diagonal neighbors:

o J1Gi) = Gpis1)| + 1, pig1 € Na(ps)
dpi, pivr) = { |G(pi) — G(Pit1)] + V2, pit1 € Ns(p:) \ Na(pi) (3)

Definition 3. The distance image F*(x) when X = {y} is

min(A ,reX
F) = {8@((7))7 xixc @

310 Leena Ikonen and Pekka Toivanen

The same distance image definition is used for the WDTOCS, the DTOCS
and for the distance transform using /2 as the horizontal displacement between
diagonal neighbors. The definition of neighbor-distances d(p;, p;+1) used in cal-
culating the path length A(7) determines which version of the distance transform
is produced by the algorithm.

3 The Distance Transformation Algorithms

The two-pass algorithm (see [13]) for calculating the DTOCS or the WDTOCS
image F*(x) is a sequential local operation (see [7]). The algorithm requires
two images: the original gray-level image G(x) and a binary image F(x), which
determines the region(s) in which the transformation is performed. The calcula-
tion area X in F(x) is initialized to mazx (the maximal representative number
of memory) and the complement area X to 0.

The first computation pass proceeds using the mask M1 = {pnw, Dn, Pnes Pw
in figure Ml rowwise from the top left corner of the image, substituting the middle
point F(p.) with the distance value

Fi(pe) = min[F(pe), min (A(p) + 77 (p))] ()

The distance A(p) between pixels p. and p is calculated according to the
definition of the distance transformation that is used:

pcl2+1 P € Na(pe) (6)

WDTOCS: A(p) {\/|g

V16 G(pe)l>+2, pe Ns(pe) \ Na(pe)
DTOCS: A(p) = [G(p) — G(pe)| + 1 (7)
, _[16() = G(pc)|+1 , p€ Na(pe)
V2DTOCS: Alp) = { G(0) — G + V2 p € Nalpo)\ Nape)

The backward pass uses the mask My = {pe, Psw, Ps, Dse | in figure [[Jreplacing
the distance value F;(p.) calculated by the forward pass with the new value

F(pe) = min[F7 (pc), min (Alp) + 7 (p))] 9)

If the original gray-level map is complex, the two calculation passes may
have to be repeated several times to get the perfect distance map (see [I1]).
The distance image F*(z) is used instead of the binary image F(x) for the next
computation pass repeatedly until the DTOCS algorithm has converged to the
globally optimal distances.

4 The Shortest Route Algorithm

The shortest route algorithm is based on calculating two distance maps, one
for each endpoint of the desired route. Assuming we have a gray-level map G(x)

Shortest Route on Height Map Using Gray-Level Distance Transforms 311

Pnw|Pn |Pne
Pw_|(Pe) (pe)| pe
Psw| Ps|Pse

Fig. 1. The masks for calculating the DTOCS. The left mask M is used in the forward
calculation pass, and the right mask M3 in the backward pass.

and want to find an optimal route from point a with gray-level value (i.e. height)
G(a) to point b with value G(b), we initialize the binary images F,(x) and Fp(x)
with X = {a} and X = {b} respectively. Using these two images, we calculate
the distance images F(x) and F;(x) with one of the distance transformation
algorithms. In the resulting distance maps each value corresponds to the distance
between point x and point a (or b respectively) along an 8-connected path that
is optimal according to the distance definition of the used algorithm, WDTOCS,
DTOCS or v/2-DTOCS. It can be noted that F(b) as well as F; (a) equals the
length of the shortest route between points a and b, but the route itself can not
be seen in the separate maps. Using the two maps we define the route distance:

Dr(x) = Fo(x) + Fy (x) (10)

For each point x the value Dx () is the length of the shortest path from point
a to b that passes through point z. The value F(x) is the shortest distance from
a to x, and F; (x) is the shortest distance from « to b, and these optimal subpaths
form an optimal path (see [6]). The equal distance propagation curves in [3] are
combined similarly to form minimal geodesics. Now the optimal route from «a
to b is the set of points, for which the route distance is minimal. We define the
route:
R(a,b) ={z|Dr(zx) = mgnDR(a:)} (11)

There can be several optimal paths, and the set R(a,b) contains all points
that are on any optimal path, so this method does not provide an analytical
description of a distinct route (e.g. a sequence of pixels). However, the routes
can be visualized by marking the set of pixels R(a,b) on the original image.
In WDTOCS and v/2-DTOCS real values are used in the calculations, but the
route distance Dg(z) is rounded up to nearest integer before finding the points
with the minimal distance. To summarize, the shortest route algorithm is:

. Calculate the distance image F.(x) from source point a

. Calculate the distance image F;(x) from destination point b

. Calculate the route distance Dg(z) = F,(z) + F; (x)

. Mark points with Dg(z) = HEHDR(.Z') as points on optimal route R(a, b)

=N

5 Experiments and Results

This section demonstrates how the shortest route algorithm works, and com-
pares the results of implementations with different distance definitions. Figure

312 Leena Ikonen and Pekka Toivanen

presents a step by step application of the algorithm. Figure 2 a) is the origi-
nal gray-level image. Figures 21b) and 2l ¢) show the DTOCS-images F.f(x) and
Fi(z) calculated from the endpoints a and b (marked with 'x’). As the distance
function is symmetrical, it does not matter which endpoint corresponds to a
and which to b. Figure 21 d) shows the route distance image, i.e. the sum of the
DTOCS-images. Images 21 b)—d) are scaled to gray-levels, but original distance
values, which can be beyond 255, are used in the calculation of Dg (z). Figure
e) presents the final result, i.e. the points in set R(a, b). Figure Blf) presents the
same route calculated with the WDTOCS. It can be seen that for the complex
image surface representing varying terrain the route is very similar, but sharper
than the route by the DTOCS.

d) e)

Fig. 2. a) Original image, b) distance from source point, ¢) distance from destination
point, d) sum of distance images, e) route by DTOCS, f) route by WDTOCS.

A sample application, where the shortest route idea is used to solve a
labyrinth, was presented in [2]. Figure[3 a) shows the route through a labyrinth
produced by the original Route DTOCS. The algorithm needs a threshold seg-
mented image, where labyrinth paths get value zero and walls get a very high
value. Then the shortest path from the entrance to the exit of the labyrinth is the
route through the labyrinth. It can be seen in figure[J a) that the route makes
seemingly extra 90° corners when calculated with the chessboard DTOCS.

The explanation to this problem is visualized in figure @l The route from point
A to B that passes through point x is just as short as as the intuitively optimal
straight route, as there are as many pixel-to-pixel displacements on both routes.
Consequently, there are several optimal discrete 8-connected paths through the
labyrinth, and as the route is defined as the set of all points that are on any

Shortest Route on Height Map Using Gray-Level Distance Transforms 313

optimal path, the visualized route becomes wide. Figure Bl b) shows how the
route width decreases when the longer distance between diagonal pixels is taken
into account according to equation [3.

b) b=

Fig. 3. a) Route through labyrinth by DTOCS b) Route through labyrinth by DTOCS
with V2 diagonal distances.

Fig. 4. Two of several possible routes from point A to B on a flat image surface
according to the chessboard distance definition. The DTOCS distance is the same
along the route through point x as along the straight line, as there are as many pixels
on both routes (each square represents a pixel).

Tests with a gray-scale-ball image show similar results. The routes between
the endpoints of the horizontal diameter of the half-sphere are too wide, when
calculated with the basic Route DTOCS (figure Bl a), but introducing the v/2-
factor to the diagonal neighbor distances makes the routes as optimal as can
be expected of discrete 8-connected paths (figure [} b). Using the Euclidean
neighbor distances of the WDTOCS changes the result dramatically, i.e. the
algorithm finds the route across the half-sphere rather than around it (figure
¢). The differing route lengths are partly a result of the digitization of the sphere
function. Figure [0 shows a cross-section and a horizontal projection of a digital
ball with few pixels. The digitization error is smaller but still present when

314 Leena Ikonen and Pekka Toivanen

using a higher resolution ball image. Another big factor is that the variation in
surface height increases the WDTOCS-distances less than the distances of the
transforms that add the height difference to the horizontal displacement. The
DTOCS-distance across the ball along the route the WDTOCS algorithm finds
optimal (as in figure[H ¢) would be clearly longer than the WDTOCS-distance,
as each neighbor-distance v/d% + 1 is replaced with d + 1, where d is the height
difference of the neighbor pixels.

When gray-level variations, i.e. height differences are large, the effect the
horizontal displacements have on the distance value decreases in WDTOCS,
whereas it stays constant in DTOCS and +/2-DTOCS. The application deter-
mines which approach is better. If the transformation is used to approximate
actual distances along a real surface, using the piecewise Euclidean distance of
WDTOCS is justified. If the gray-level differences represent a different type of
cost than the horizontal displacements, the transformations adding horizontal
and vertical distances may work better and be more easily scalable. To modify
the effect the height differences have on the distance transform, the original im-
age can be scaled before applying the transformation. Alternatively, a weighting
factor can be added to the height difference in equations [T 2l and Bl

a) c)

Fig. 5. a) Route by DTOCS, b) Route by DTOCS with /2 diagonal distance, ¢) Route
by WDTOCS.

6 Discussion

In previous work, the DTOCS algorithm has mostly been used to calculate local
distances. For example in image compression (see e.g. [12]) distance values are
used to measure the variation of the image surface. More control points need to
be stored from image areas, where local distances are high, i.e where gray-level
values change rapidly. In such applications the chessboard distance transform
works well enough, and the use of integer approximations of distance values is
justified to save computation time and space. However, the route optimization
algorithm computes global distances across the whole image, and the approx-
imation error of the chessboard distance accumulates. Particularly on smooth
and simple image surfaces, the chessboard Route DTOCS performs poorly, and
using the WDTOCS produces more reliable optimal routes.

Shortest Route on Height Map Using Gray-Level Distance Transforms 315

a) b)

Fig. 6. a) Cross section of digititized ball with the WDTOCS route across the ball.
The height of the bars corresponds to gray-level values. b) flat projection of digitized
ball with the v/2-DTOCS route around the ball, and the shape of the WDTOCS-route
marked with dashed line for comparison. Each square represents a pixel.

The distance transform using v/2 as the diagonal pixel-to-pixel displacement
is an interesting hybrid of chessboard and Euclidean distance definitions, as the
locally Euclidean distance is used as the horizontal pixel-to-pixel displacement,
but the height difference is calculated just as in the chessboard DTOCS. The
theoretical basis for this hybrid distance transform may not be as solid as for
the DTOCS and the WDTOCS, but in route optimization it can give some
interesting results. For example in the labyrinth application the horizontal dis-
placements form the desired route, and the values of the gray-level differences
are not significant, as long as distances along low paths are clearly shorter than
distances over high walls. Other obstacle avoidance problems can be solved us-
ing the route optimization algorithm, and treating the horizontal and vertical
displacements differently can be practical.

Using the piecewise Euclidean distances of WDTOCS gives the most accu-
rate approximations for distances along the image surface. If the slightly heavier
computation of floating point values instead of integers is not a problem, the
WDTOCS algorithm should be used to get the best results in route optimiza-
tion. A question for future research is whether we can define integer kernel
distances, which approximate the Euclidean distance more accurately than the
DTOCS. Borgefors [1]] showed that using local distances 3 and 4 for square and
diagonal neighbors in binary images actually gives a better approximation of
Euclidean distance along the horizontal image plane than the distances 1 and
V2 used here. Extending the ideas to gray-level images requires further inves-
tigation into how the height differences affect, and how they should affect the
distance transformation.

References

1. Borgefors, G.: Distance Transformations in Digital Images. Computer vision,
Graphics, and Image Processing, 34 (1986) 344-371

2. Tkonen, L., Toivanen, P., Tuominen, J.: Shortest Route on Gray-Level Map using
Distance Transform on Curved Space. Proc. of Scandinavian Conference on Image
Analysis (2003) 305-310

3. Kimmel, R., Amir, A. and Bruckstein A.: Finding Shortest Paths on Surfaces Us-
ing Level Sets Propagation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol 17, no. 6 (1995) 635-640

316

10.

11.

12.

13.

Leena Ikonen and Pekka Toivanen

Kimmel, R. and Kiryati, N.: Finding Shortest Paths on Surfaces by Fast Global
Approximation and Precise Local Refinement. International Journal of Pattern
Recognition and Artificial Intelligence, vol 10 (1996) 643-656

Lin P., Chang S.: A Shortest Path Algorithm for a Nonrotating Object Among
Obstacles of Arbitrary Shapes. IEEE Transactions on Systems, Man, and Cyber-
netics, vol 23, no 3 (1993) 825-833

Piper J., Granum E.: Computing Distance Transformations in Convex and Non-
Convex Domains. Pattern Recognition, vol 20, no 6 (1987) 599-615

Rosenfeld A., Pfaltz, J. L.: Sequential Operations in Digital Picture Processing.
Journal of the Association for Computing Machinery, vol 13, no 4 (1966) 471-494
Rosin, P., West, G.: Salience Distance Transforms. Graphical Models and Image
Processing, vol 56, no 6 (1995) 483-521

Saha P. K., Wehrli F. W., Gomberg B. R.: Fuzzy Distance Transform: Theory, Al-
gorithms and Applications. Computer Vision and Image Understanding 86 (2002)
171-190

Saab, Y. and VanPutte M.: Shortest Path Planning on Topographical Maps. IEEE
Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans,
vol 29, no 1 (1999) 139-150

Toivanen, P. J.: Convergence properties of the Distance Transform on Curved
Space (DTOCS). Proc. of Finnish Signal Processing Symposium (1995) 75-79
Toivanen, P. J.: Image Compression by Selecting Control Points Using Distance
Function on Curved Space, Pattern Recognition Letters 14 (1993) 475-482
Toivanen, P.: New geodesic distance transforms for gray-scale images. Pattern
Recognition Letters, 17 (1996) 437450

	1 Introduction
	2 Definitions for Route DTOCS and WDTOCS
	3 The Distance Transformation Algorithms
	4 The Shortest Route Algorithm
	5 Experiments and Results
	6 Discussion
	References

