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Laboratoire A2SI

2, boulevard Blaise Pascal, Cité DESCARTES, BP 99
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Abstract. Many applications require to extract the surface of an object
from a discrete set of valued points, applications in which the topological
soundness of the obtained surface is, in many case, of the utmost impor-
tance. In this paper, we introduce the notion of frontier order which
provides a discrete framework for defining frontiers of arbitrary objects.
A major result we obtained is a theorem which guarantees the topological
soundness of such frontiers in any dimension. Furthermore, we show how
frontier orders can be used to design topologically coherent “Marching
Cubes-like” algorithms.

1 Introduction

The Marching Cubes algorithm[1] provides an efficient way to extract a polygonal
surface from an object expressed as a subset of a digital image, or an isosurface
from a function. However, the polygonal mesh obtained by this algorithm is not
guaranteed to be a topological surface, since artefacts such as holes[2,3,4,5] might
appear. While small holes, though a nuisance, might not seem an overly impor-
tant issue for the visualization of large objects, they can have a dramatic impact
on collision detection and most calculations. Consequently, many researches have
been directed toward solving this problem[3,4,5,6,7,8].

The approach of J. O. Lachaud [8] is especially interesting: it guarantees the
topology of the extracted surface using the topology of the underlying discrete
object. Such guarantees are obtained using the framework of digital topology[9]
for the underlying object while defining continuous analogs of digital boundaries,
and the results hold true for Z

n, n ∈ N
�. In a former article[10], we introduced

the notion of frontier orders in 2D and 3D partially ordered sets, asserting the
possibility to define the frontiers of objects as symmetrical separating surfaces in
such spaces. The present article will encompass and extend our previous results:
frontier orders will be presented as a purely discrete framework, based on order
topology[11,12,13], which provides topological guarantees for a wide variety of
spaces of any dimension. The main result of this paper is a theorem establishing
that the frontier order of any subset of an n-surface[14] is a union of disjoint
(n − 1)-surfaces. This result allows us to design sound “Marching Cubes-like”
algorithms to extract frontiers of objects both in the Khalimsky grid and in Z

3

equipped with the digital topology.
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2 Definitions

Let us first introduce the notations we will use in this article. If X is a set
and S a subset of X, S denotes the complement of S in X. If λ is a binary
relation on X, i.e.: a subset of X × X, the inverse of λ is the binary relation
{(x, y) ∈ X × X; (y, x) ∈ λ}. For any binary relation λ, λ� is defined by λ� =
λ \ {(x, x); x ∈ X}. For each x of X, λ(x) denotes the set {y ∈ X; (x, y) ∈ λ}
and for any subset S of X, λ(S) denotes the set {y ∈ λ(s); s ∈ S}.

2.1 Orders

An order is a pair |X| = (X, αX) where X is a set and αX is a reflexive,
antisymmetric and transitive binary relation on X. The set αX(x) is called the
αX-adherence of x. We denote by βX the inverse of αX and by θX the union of
αX and βX . The set θX(x) is called the θX-neighborhood of x. A path from x0 to
xn in X in |X| is a sequence x0, . . . , xn of elements of X such that ∀i ∈ [1 . . . n],
xi−1 ∈ θX(xi). A connected component C of |X| is a maximal subset of X such
that for all x, y ∈ C, there exists a path from x to y in C.

The rank of an element x of X is 0 if α�
X(x) = ∅ and is equal to the maximal

rank of the elements of α�
X(x) plus 1 otherwise; the rank of an order is the

maximal rank of its elements. Any element of an order is called a point and it
is also called an n-element, n being the rank of this point.

An order |X| is countable if X is countable, it is locally finite if, for each
x ∈ X, θX(x) is a finite set. A CF-order is a countable locally finite order.

Let |X| and |Y | be two orders, |X| and |Y | are order isomorphic if there
exists a bijection f : X → Y such that, for all x1, x2 ∈ X, x1 ∈ αX(x2) ⇔
f(x1) ∈ αY (f(x2)).

If (X, αX) is an order and S is a subset of X, the sub-order of |X| relative to
S is the order (S, αS) with αS = αX ∩ (S × S)). When no confusion may arise,
we also write |S| = (S, αS).

2.2 Discrete Surfaces

We use the general definition for n-dimensional surfaces (or simply n-surfaces)
proposed by Evako, Kopperman and Mukhin[14]; such surfaces are also known
as Jordan n-surfaces[15]. This definition is both elegant and efficient:
Let |X| = (X, αX) be a non-empty CF-order.
• The order |X| is a 0-surface if X is composed of exactly two points x and y
such that y /∈ αX(x) and x /∈ αX(y).
• The order |X| is an n-surface, n > 0, if |X| is connected and if, for each x in
X, the order |θ�

X(x)| is an (n − 1)-surface.

2.3 Simplicial Complexes

Let Λ be a set, any non-empty subset of Λ is called a simplex. A subset consti-
tuted of (n+1) of elements Λ is also called an n-simplex. Now, let C be a family
of simplexes of Λ, C is a simplicial complex if it is closed by inclusion, which
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a) b) c) d) e)

Fig. 1. Schema depicting our methodology. a) Our data is a set of points. b) Upon
this set of points is built a simplicial complex. c) Independently from this simplicial
complex, some of these points are labeled as object points, the others as background
points. d) This bi-partition of the point set induces a tri-partition of the simplicial
complex between an object complex [white], a background complex [black] and a fron-
tier complex [grey]. e) The frontier order [depicted by a discrete curve], isomorphic to
the frontier complex, is then defined.

means that, if s belongs to C, then any non-empty subset of s also belongs to C.
A (simplicial) n-complex is a simplicial complex in which maximal elements are
n-simplexes. The minimal subset ΛC of Λ such that any element of C is a subset
of ΛC is called the support of C. In this paper, simplicial complexes are also seen
as orders: any simplicial complex C will be interpreted as the order |C| = (C,⊆).
Consequently, C will be said to be an n-surface if |C| is an n-surface.

The simplicial complexes we just defined are often known as abstract simpli-
cial complexes, as opposed to other notions of complexes based upon an under-
lying Euclidean space.

2.4 Chains of an Order

Let |X| be an order, a chain of |X| is a fully ordered subset of X. An n-chain
is a chain of size n + 1. We denote by CX the set of all the chains of |X|, ie.:
CX = {S ⊆ X, S �= ∅,∀s1, s2 ∈ S, s1 ∈ θ�

X(s2)}. It should be noted that (CX ,⊆)
is an order and that CX is a simplicial complex, the support of which is X.
Moreover, the topology of (CX ,⊆) is strongly related to the topology of |X|, as
shown by the following proposition:

Proposition 1 Let |X| be an order. If |X| is an n-surface then the order |CX | =
(CX ,⊆) is an n-surface as well.

The proof of the above proposition is not included in this article due to space
restrictions: while not overly long nor difficult by itself, this proof would require
several lemmas. This holds true for the other properties introduced in this article.

3 Frontier Orders

If we consider a simplicial complex C (figure 1.b) and its support X (figure 1.a),
the partition of X between a set K, the object, and its complementary K, the
background, (figure 1.c) induces a partition of C into three sets (figure 1.d):
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• CK , the set of all the simplexes which are subsets of K
• CK , the set of all the simplexes which are subsets of K
• CK/K , the set of the simplexes being neither subset of K nor subset of K

Since a singleton (0-simplex) is either a subset of K or a subset of K, CK/K

is not closed for the inclusion and, consequently, is not a simplicial complex.
Nevertheless, |CK/K | = (CK/K ,⊆) is still the sub-order of |C| relative to CK/K .

It should be noted that, for any given C and K, |CK/K | is order isomorphic

to the frontier order |C̃K/K | (figure 1.e) defined as the couple (C̃K/K , αC̃) where

C̃K/K = {{A, B}, A ⊆ K, B ⊆ K,A �= ∅, B �= ∅, A∪B ∈ C} and αC̃ is the binary
relation such that, considering M = {A1, B1} and N = {A2, B2}, M ∈ αC̃(N)
is equivalent to A1 ⊆ A2 and B1 ⊆ B2.

By definition, CK/K is both symmetrical, since CK/K = CK/K , and sepa-
rating, since any path from x ∈ K to y ∈ K crosses CK/K . Consequently, the
frontier order, which is symmetrical, can be said to be separating. Furthermore,
the following theorem, the main result of this paper, guarantees that a frontier
order is a union of discrete surfaces:

Theorem 2 Let C be a simplicial complex with the property of being an n-
surface, n > 1, and let X be its support. Now, let K be a non-empty proper
subset of X. Then the frontier order C̃K/K is a union of disjoint (n−1)-surfaces.

As seen previously, to any order can be associated the simplicial complex com-
posed by its chains. So, as a consequence of proposition 1 and theorem 2, we
have:

Corollary 3 Let |X| = (X, αX) be an order and K a non-empty proper subset
of X. If |X| is an n-surface then the frontier order |C̃X

K/K | is a union of disjoint
(n − 1)-surfaces.

4 Marching Cubes and the Khalimsky Grid

The main feature of the Marching Cubes algorithm is a look-up table associating
a surface patch to each possible partition of the corners of a unit cube between
two sets of points, K and K. Given a map f : Z

3 → R and a value n, the
Marching Cube algorithm sets K = {x ∈ Z

3, f(x) > n} and K = Z
3 \ K. Then,

for each unit cube of the cubic grid Z
3, the algorithm finds the appropriate

surface patch in the look-up table and builds this patch, interpolated according
to the values of the eight corners of this unit cube. The union of all those patches
constitutes the approximated iso-surface.

This algorithm is often used to extract the surface of an object in a grey-
level image, in which case n is interpreted as a threshold. In the case of a binary
image, it is sufficient to apply the look-up table without any interpolation.

While the original Marching Cubes algorithm[1] did not consider the topol-
ogy of the underlying image, and did not guarantee the topology of the extracted
surface, we will now explain how to generate a Marching Cube algorithm coher-
ent with the topology of the Khalimsky grid.



240 Xavier Daragon, Michel Couprie, and Gilles Bertrand

Fig. 2. A unit cube ({n, n + 1} × {m, m + 1} × {l, l + 1} and its closure) of H3, one
of the 8 unit cubes of Z

3 of which it is made, and the tetrahedra (chains of |H3|) it
contains.

4.1 Khalimsky Grid and Embedded Frontier Order

Let us first introduce now the Khalimsky grids as the family of orders |Hn| =
(Hn,⊆), defined by:

H1
0 = {{a}, a ∈ Z} ; H1

1 = {{a, a + 1}, a ∈ Z}
H1 = H1

0 ∪ H1
1

Hn = {h1 × . . . × hn,∀i ∈ [1, n], hi ∈ H1}

It is important to note that |Hn| is an n-surface for all n ∈ N
∗ as proved by V.

A. Evako and al.[14]. This implies, by corollary 3, that the frontier defined for
any subset of an order Hn is a union of disjoint (n − 1)-surfaces.

A natural encoding of the set Hn into the corresponding discrete space Z
n is

defined as follows[11]: to every element h1 × . . .×hn of Hn is assigned the vertex
of coordinates (z1, . . . , zn) in Z

n, such that ∀i ∈ [1 . . . n], zi = 2vi if hi = {vi}
and zi = 2vi + 1 if hi = {vi, vi + 1}. Figure 2 depicts the cube of H3 constituted
by {n, n + 1} × {m, m + 1} × {l, l + 1} and its subsets, which contains 8 unit
cubes of Z

3, each of which is itself constituted by 6 tetrahedra, images of the
chains of H3.

This encoding of Hn induces an embedding of the frontier orders based upon
it: to each 0-element {{A}, {B}} of the frontier order we assign the vertex of
coordinates (a+b)/2 where a (resp. b) is the vertex assigned to A (resp. B). Then,
to each 1-element we assign the segment joining the vertices associated to the
0-elements of its θ-neighborhood, to each 2-element we assign the corresponding
polygon (which is in fact either a triangle or a parallelogram); and so on.

4.2 Marching Cubes-Like Algorithm in Dimension 3

The look-up table obtained for the possible configurations of a unit cube of
H3 is depicted in figure 3. Unlike both the original Marching Cubes algorithm
and its correction by Lachaud in the framework of digital topology, our surface
generation process is not translation invariant, since the Khalimsky grid itself
is not. In practice, it is sufficient to rotate the configuration according to the
coordinates of the upper-left-front (or any other) corner of the unit cube. The
configurations given figure 3 being based upon chains (tetrahedra) rather than
upon cubes, they are more facetized than those of the original Marching-Cubes
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Fig. 3. Configurations obtained for the look-up table of the Marching Cubes-like al-
gorithm in the H3 case. Whenever several configurations are identical up to rotations
and symmetries, only one is presented here. While the original Marching-Cube Algo-
rithm generates from 1 to 4 triangles for each configuration, the count here ranges
from 2 to 12 triangles (2 to 6 frontier orders elements, some of them correspond to
parallelograms).

algorithm. It is possible to simplify these configurations, with the guarantee to
preserve the overall topology, and the guarantee that the surface still separates
the object from the background. The simplification process is as follows: the
configurations of figure 3 are first triangulated, then anti-stellar and bi-stellar
moves[16] are applied to reduce the number of faces. In order to ensure the
coherency of the frontier between adjacent unit cubes, we systematicaly replace
any point located on a face but not an edge of a cubic cell by the segment
connecting its two nearest neighbors in this face as depicted in figure 5. We
thereby obtain the configuration table depicted figure 4.

5 Frontier Orders and Digital Topology

In the framework of digital topology[9], a digital image built upon Z
3 can be

seen as a quadruple (Z3, m, n, K), where K ⊆ Z
3 is the set of the object points

(or object), where K is the set of the background points (or background) and
where (m, n) ∈ {(6, 26), (6, 18), (26, 6), (18, 6)}, m being the adjacency of the
object and n the adjacency of the background. More precisely, any two points
belonging to the object are connected if:

• both belong to a unit edge.
• both belong to a unit face and either m = 18 or m = 26.
• both belong to a unit cube and m = 26.

The same goes for the background, with n instead of m.
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Fig. 4. Simplified configurations obtained for look-up table of the Marching Cubes-like
algorithm in the H3 case, from the configurations presented in figure 3. One should note
that some originaly different frontiers have identical simplifications, up to rotations.
Most simplified configurations are equivalent to the corresponding configuration of the
original Marching-Cubes algorithm; in the sense that they have the same number of
triangles, the same intersection with the cube boundary and are stellar equivalent. Nev-
ertheless some new configurations appear whenever two points located on the opposite
corner of a face or cube are adjacent according to |H3| topology; and one of the original
algorithm configurations, assuming four non-adjacent corners, has no equivalent here.

Fig. 5. a) Is an original configuration. b) Is a triangulation of a). c) Is obtained from
b) by the anti-stellar move replacing the vertex A by the 1-simplex {B, C}, this same
move being applied to all points located on the centers of the faces (observe that this
move has effects not only on this cube but on the neighboring ones as well). d) and e)
are then obtained by consecutive bi-stellar moves.

In this framework, Lachaud[7,8] has provided a topologically sound Marching
Cubes algorithm using continuous analogs of digital boundaries, we will show
how the same result can be reached using purely discrete means: frontier orders.

Since Z
3 equipped with digital topology is not an order, we first need to build

a simplicial complex C upon it. However, would C be built using only Z
3 as its

support, it would be unable to emulate the various adjacency relations used by
digital topology; two points x and y of K located on the opposite corners of a
face, for example, would be considered to be adjacent if {x, y} ∈ C, whatever
the adjacency. In order to take into account the adjacency, we need to introduce
two types of intermediary points: face points, which are located in the center of
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Fig. 6. a) Triangulation of a unit cube, with intermediary (smaller) points. b) One
of the 24 identical tetrahedra of this triangulation is outlined in grey. c) Let now
assume that one corner point (black) belongs to the object, and all the others (white)
to the background. d) Result of the affectation strategy, assuming that the object is
26-connected (which implies that the background is 6-connected). e) Generation of the
frontier complex. f) Simplified frontier.

a face, and cube points, which are located in the center of a cube. Then, refering
to the previous example, two points of K located on the opposite corners of a
face will be considered adjacent if, and only if, the face point associated to this
face also belongs to K, which will depend on the adjacency (and, maybe, the
other corners of the face). No points are introduced for edges since two points of
K located on the same edge are always adjacent. As a result, each cube (figure
6.a) is triangulated into 24 identical tetrahedra defined by 2 points of Z

3, a face
point and a cube point (figure 6.b). It should be noted that C is then a 3-surface,
which can be easily verified by an exhaustive checking of every existing simplex
configuration, thus the hypotheses of theorem 2 are satisfied.

Since the entries of the look-up table are to be entirely determined by the
points of Z

3 and the adjacency, the belonging of an intermediary point to either
K or K is entirely determined by an affectation strategy (figure 6.d) defined as
follows:

• 6/26-adjacency and 26/6-adjacency (let K be the 26-adjacent set)
• a face point belongs to K iff at least one corner of this face does
• a cube point belongs to K iff at least one corner of this cube does

• 6/18-adjacency and 18/6-adjacency (let K be the 18-adjacent set)
• a face point belongs to K iff at least one corner of this face does
• a cube point belongs to K iff at least three corners of this cube do

The simplified results, which can be found on figure 7, are obtained from the
initial ones by stellar and bi-stellar moves, as in the |H3| case, and are equivalent
to the results obtained by Lachaud for the same configurations.

6 Conclusion

We have introduced frontier orders which allow to define the frontier of a discrete
object. We have established that frontier orders are surfaces, which appears as
a necessary property for the design of topologically sound Marching Cubes-like
algorithms.

An extended version of this paper[17] will provide proofs for the properties
stated in this article, as well as other important properties which, due to space
limitation, have not been included. In particular we proved that any simplicial
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1)

2)

Fig. 7. 1) Simplified configurations, according to the adjacency of the set of black
points. As previously (in the H3 case) the initial configurations are the direct em-
bedding of the frontier order (induced by the subdivision into 24 tetrahedra and the
affectation strategy appropriate for the adjacency) into R

3 while the simplified config-
urations are obtained from the initial ones through stellar and bi-stellar moves. 2) As
it can be seen, it may happen that depending on the chosen adjacency, the same vertex
configuration produces different frontier order (initial) configurations, which in turn
produce the same simplified configuration.

a) b)

Fig. 8. Results for a segmented cortex (in |H3|), a) using initial configurations b) using
simplified configurations.

complex which is an n-surface is an n-pseudomanifold. We will also show the
link between frontier orders and regular neighborhoods[18].

The frontier order associated to a cortex segmentation is depicted on figure
8 and those interested in further images may find some at the following address:

“http://www.esiee.fr/˜info/xavier/MC03_res.html”.
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