
Contour-Based Shape Representation
for Image Compression and Analysis

Ciro D’Elia1 and Giuseppe Scarpa2

1 University of Cassino,
Department of Automation Electromagnetism Information Eng.

and Industrial Mathematics DAEIMI, (FR) Italy
delia@unicas.it

http://webuser.unicas.it/delia
2 University Federico II of Naples,

Dept of Electronic and Telecommunication Eng., via Claudio 21, (NA) Italy

Abstract. With the rapid growth of computing power, many concepts
and tools of image analysis are becoming more and more popular in other
data processing fields, such as image and video compression. Image seg-
mentation, in particular, has a central role in the object-based video cod-
ing standard MPEG-4, as well as in various region-based coding schemes
used for remote-sensing imagery. A region-based image description, how-
ever, is only useful if it has a limited representation cost, which calls for
accurate and efficient tools for the description of region boundaries.
A very promising approach relies on the extended boundary concept, first
discussed in [6] and [7] and later used by Liow [5] to develop a con-
tour tracing algorithm. In this work, we extend Liow’s algorithm and
introduce the corresponding reconstruction technique needed for coding
purposes. In addition, we define an algebraic semi-group structure that
allows us to formally prove the algorithm properties, to extend it to other
boundary definitions, and to introduce a fast contour tracing algorithm
which only requires a raster scan of the image.

1 Introduction

Thanks to the increasing availability of computing resources, segmentation-based
compression algorithms, in which the classical transform coding scheme is pre-
ceded by a segmentation preprocessing, are becoming more and more popular.
A well-know example is the MPEG-4 video coding standard [8] [9] [10], but
segmentation-based compression is of interest for many other applications [4].
This approach guarantees two main results: on one hand, segmentation divides
the image in statistically homogeneous regions, so that image encoding can be
optimized locally for each region, with excellent encoding performance; on the
other hand, the end user is provided with an high-quality segmentation, obtained
on the original data, and embedded at no cost in the output stream. This by-
product can be extremely useful in many applicative fields, e.g., remote-sensing
and biomedicine, where such an “high level” image descriptions can be used

I. Nyström et al. (Eds.): DGCI 2003, LNCS 2886, pp. 204–213, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Contour-Based Shape Representation for Image Compression and Analysis 205

Fig. 1. Boundary Definitions: (a) Boundary in R2, (b) Trivial application of R2 defi-
nition to the space discrete space N 2, (c) Boundary lattice, (d) Extended Boundary.

for subsequent automated analysis, such as classification, object detection, au-
tomatic diagnosis, and data mining.

Obviously, the quality of the segmentation map is very important for this
scheme to succeed. It should be faithful to the image features, to enable an effi-
cient coding of the image regions but should also present smooth region bound-
aries, to limit the encoding cost of the map itself. Once obtained a smooth map,
a promising way to encode it is to extract the map contours and represent them
efficiently. To this aim it is necessary to choose a boundary definition that allows
for:

1. an efficient contour representation, i.e. a contour representation that is in-
trinsically suited for coding applications;

2. a memory efficient algorithm, considering that in some applications, like
remote sensing, images of 8000x8000 pixels and more are commonplace;

3. a simple contour tracing algorithm;
4. a lossless (namely, perfect) image reconstruction.

In figure 1 several definitions of boundaries are illustrated: in fig.1.a there is
the well known topological definition of boundary in the continuous (R2), where
a point x in a closed set R of R2 belongs to the boundary (∂R)1 if and only if in
each neighborhood of x there is at least an external point of R. However, since
our segmentation map is defined on the discrete set (N 2) we have to extend
this definition. In fig.1.b there is the application of the previous definition to the
discrete case N 2 with the neighborhood of fig.2. It is clear that this definition is
unable to provide a common boundary between two regions, namely, the bound-
ary of region R is different from the boundary of the complementary region R,
while in R2 ∂R ≡ ∂R. Therefore, this extension to discrete sets is not suitable
for coding purposes, because ∂R and ∂R should be both encoded although they
carry the same information. Furthermore, this definition contradicts the physical
meaning of boundary and makes it difficult to carry out a geometrical analysis
of the image. The definition of fig.1.c, where a Boolean lattice of boundaries
1 Where ∂R is the boundary of R.



206 Ciro D’Elia and Giuseppe Scarpa

between pixels is introduced, preserves the common boundary between regions
but requires this supplementary lattice, which could not be memory efficient
and, contrarily to the definition in the continuous2, ∂R is not included in N 2.
Finally the definition of fig.1.d, based on the concept of extended boundary of
the region R, preserves both the common boundary between regions and the
desirable property that ∂R belongs to N 2.

3 2 1
4 P 0
5 6 7

Fig. 2. Neighbors of point P and Freeman codes.

Contour Encoded Stream

Segmentation Map

�
Map Encoder

�

Contour Encoded Stream

Contour Tracer

Segmentation Map Contour

Segmentation Map

�

�

�

Contour Encoder

�

Fig. 3. “Map encoding” block scheme.

For these reasons, to develop our “Map encoding” algorithm (see fig.3), we
have chosen the extended boundary definition which meets our major requirement
about the efficiency of the contour representation. Of course, we have yet to
shown how this boundary definition leads to a simple contour tracing algorithm
and, above all, how the original segmentation map can be recovered, without
loss of information, starting from the contours. In other words, we must prove
that the extended boundary definition can be used to represent the map, and
that the contours have the same information content of the map itself. In Section
2 we will show how to trace the image contours using the previous definition,
while in the Section 3 we will show how to reconstruct the Image starting from
the Contours or the Shapes.

2 Contour and Shape Tracing

In the following, we will show how to trace the contours using the extended
boundary concept, how to organize them in shapes, for a multi label image
2 Where ∂R ⊆ R2.



Contour-Based Shape Representation for Image Compression and Analysis 207

Fig. 4. In this sample there are two regions dark gray R1 and light gray R2 together
with their extended boundary, depicted with ///. We can observe that the common
boundary between regions R1 and R2 is preserved, indeed for instance, Pixel (A) belong
either to SA (R2) and SC (R1), while Pixel (B) belong either to SA (R2) and SB (R1).

like our segmentation map, and how to reconstruct the image starting from the
shapes or contours.

First of all, we need a formal definition of extended boundary. Let Pi(P ) be
the i-th 8-connected neighbor of pixel P , with i given by the code of fig.2, and
let the following definitions hold:

1) LEFT(R) ≡ {P : P ∈ R and P4(P ) ∈\R} ;
2) UPPER(R) ≡ {P : P ∈ R and P2(P ) ∈\R} ;
3) RIGHT(R) ≡ {P : P ∈ R and P0(P ) ∈\R} ;
4) LOWER(R) ≡ {P : P ∈ R and P6(P ) ∈\R} ;

Then, the extended boundary of region R is the union of the sets:

SA (R) = {P : P ∈ LEFT(R) or P ∈ UPPER(R)} ;
SB (R) = {P6(P ) : P ∈ LOWER(R) or P ∈ LEFT(R)} ;
SC (R) = {P0(P ), P7(P ) : P ∈ RIGHT(R)} ;

Looking at the definition, we can observe that SA (R) contains boundary points
that are all internal to R, while SB (R) and SC (R) add essentially external
points3. Indeed for example, SB (R) is composed by points that are “under” in-
ternal points of R. More important, note that points in SB (R) and SC (R), that
are external boundary points for R, are internal points for R, and in fact belong
to the set SA

(
R

)
. That is the reason why this boundary definition preserves the

common boundary between regions (a sample is provided in fig.4).

2.1 Single Region Contour Tracing

To trace the boundary ∂R of a region R, it is sufficient to select a starting point
x0 ∈ ∂R, and to follow the contour step by step using some suitable rules (for
instance like in fig.7). Indeed during the contour tracing algorithm the boundary
3 Note that SB (R) contains also same points already included in SA (R).



208 Ciro D’Elia and Giuseppe Scarpa

is described by a sequence of boundaries steps represented with the codes of fig.2
(Freeman Codes). In Section 2.2 we will show how to select the starting point x0,
while here we derive the rules to follow the contours. To this end, we first define
the rules for an elementary region, and then show how to combine them in order
to trace the contours of more complex regions. In fig.5.a a single-pixel region is
shown (in gray), together with its extended boundary, depicted with ///, and
its visiting order, indicated by the vector arrows. Fig.5.c shows the same items
for a two-pixel region. In fig.5.b, instead, we can see how the boundary and
visiting order of the two-pixel region can be obtained by combining the visiting
orders of each component pixel. In fact, by considering the visiting order of each
pixel and adding (and hence, erasing) overlapping vectors, we obtain exactly the
result of figure 5.c. By using this composition rule, it is possible to derive the
visiting order of an arbitrary region by adding one pixel at time. Furthermore,
the same rule can be used not only to the so called 4-connected boundary of
fig.1.d, but also for the 6-connected boundary of fig.1.c, as is evident in figure
6. With reference to this figure, the composition rule can be easily defined in
form of an internal addition “+” operation over the set of the contours C4. To
define this operation in C, for 4- or 6-connected contours, we need to define in
turn the boundaries cliques as the subsets of the boundary in which each pair of
pixels are connected. In fig6.a, for example, one such clique is shown with ///.
We can note that for the 6-connected boundary definition the cliques comprise
4 elements, while for the 4-connected elements they comprise just 2 elements.

With the notion of boundary clique it is easy to define the addition of the
boundaries of two disjoint regions R1 and R2.

Definition 1. Let ∂R1 and ∂R2 be the oriented boundaries of the two generic
disjoint5 regions R1 and R2, respectively: the operation (∂R1 + ∂R2) is defined
as the vectorial sum of the boundaries steps in each common boundary clique of
R1 and R2.

To gain insight on this simple definition we can apply it to the 6-connected
example of fig.6.a, where R1 and R2 are two single-pixel regions. We have already
observed that ∂R1 and ∂R2 have two cliques in common, and for each one of
these we have to add vectorially the “boundaries steps” as depicted in fig.6.b.
Note that this addition operation allows us to define also the Abelian semi-group
C(C, +)6, which allows us to derive the contour tracing rules of fig.7 (as presented
in [5]) by applying the previous operation to the depicted configurations. In
particular, to decide about the next boundary step, it is sufficient to observe the
value of the current point P and of P2(P ), P3(P ) and P4(P ) (see fig.2), because
only these points can affect the clique for the next boundary step. This is also
true for 6-connected boundary definition, and hence a similar look-up table can
be derived for this case.
4 This sets contains the oriented contours of all the subsets of the image.
5 If R1 and R2 are not disjoint we can consider R′

1 = R1 −
(
R1

⋂
R2

)
instead of R1.

6 It is also interesting to note that the semi-group is generated by the singleton regions.
Trivially any region and hence any contour can be obtained by combining single-pixel
regions (singleton).



Contour-Based Shape Representation for Image Compression and Analysis 209

Fig. 5. Contour Tracing Composition Rule.

Fig. 6. 6 connected contour definition. (a) boundary cliques, (b) Composition Rule
(dashed arrows are summed in continous line arrows).

In conclusion, using the rules of fig.7, we can move step by step along the
boundary starting from a generic point; therefore, to implement the contour
tracer, we can store this look-up table or else compute the next step using the
C operations on P, P2(P ), P3(P ), P4(P ).

In addition, the properties of C(C, +) can be also used to implement the
contour tracing of a region R with a single raster scan. In fact, during the raster
scan, it is possible to update the contour of the object adding pixel by pixel.
This can be convenient when dealing with a very large image that exceeds the
available memory resources, or also to have a more local algorithm on the data to
speed up the contour tracing procedure, and finally also to implement a parallel
version of the contour tracing algorithm, if needed.

2.2 Multi-label Map Contour Tracing

The last problem to solve, for the contour tracing, is the selection of a suitable
starting point x0 for each connected region in the map. In [5], Liow suggests to
select x0 as the first point, during the raster scan, that meets the the conditions:

a) P has the selected label;
b) P2(P ) �= P and P4(P ) �= P ;

So for each label we have just one starting point, and hence one region traced.
In classification applications, however, the same label can be used for a large



210 Ciro D’Elia and Giuseppe Scarpa

Fig. 7. Contour Tracing Rule: The circle is the traced region, X is any other region,
small circle is don’t care, while Big Circle is the contour point that is being traced.
Observing the figure it is clear that, knowing the incoming direction, the outgoing
direction of the current boundary point depends at most on the configuration of P ,
P2(P ), P3(P ) and P4(P ) because the other are don’t care.

number of non-connected regions. By selecting all the points that meet condition
(b) we end up with too many starting points, and each region could be traced
twice. To solve this problems we can use two solutions, one memory efficient
and the other computationally efficient. The first solution detects a starting
points using condition (b) and then, while the region is traced, a list of forbidden
starting point is filled with the other points of the traced region that also respect
condition (b). This solution is memory efficient but, for large images could be
quite slow, because once detected a candidate starting point we have to search
in a possibly large list if it is forbidden or not. The other solution, that we use,
requires a boolean bitmap in which each forbidden point is marked, so that it is
straightforward to see whether a candidate is forbidden or not.

Up to now, the presented algorithm detects one starting point per connected
region and then, using the rule of fig.7, traces the contours of each region of
the map. The map is then represented by a list of region contours (shapes). In
this way, however, no information is retained on the region adjacency, which
could turn out to be useful both for the map compression and for subsequent
applications based on image analysis. Therefore, the implemented algorithm is
slightly different: when the region is traced, like in [5], the contour is cut in
chains, contour segments shared by only two regions, connected by vertices (see
fig.8), contour points shared by three or more regions. So, after the contour
tracing algorithm, the image is represented by a list of vertices and a list of
chains7. The shape-based image representation can be derived easily by building
a list of shapes and grouping, for each shape, all the chains that belong to it. The
shape-based representation is quite convenient because only one label per shape
must be saved (rather than two labels per chain), and because coding together

7 As will clear in the paragraph 3, to have a lossless image representation it is also
necessary to store the internal and external label for each chain.



Contour-Based Shape Representation for Image Compression and Analysis 211

statistically homogeneous chains is usually more efficient. In addition, with the
organization in shapes, it is quite easy to build the region adjacency graph, to
compute geometrical features like the region perimeter and, more in general, any
feature obtained as an integral along the shape boundary.

We can, finally, summarize the entire shape extraction algorithm with the
following steps:

1) detection of the region starting point;
2) extraction of the contour segments for each region (like in [5]), following the

rule of fig.7 (contour image representation);
3) grouping of contour-segments in shapes (shape image representation);
4) building of the region adjacency graph using both contour and shape repre-

sentation.

3 Image Reconstruction from Shapes

In this section we will describe how to recover a segmentation map from its
contour or shape representation without any loss of information.

First of all, we have to prove that it is indeed possible to recover the original
map from its extended boundaries. As a matter of fact, by simple inspection of
fig.1.d or fig.4 it is clear that the the extended boundary does not contain by
itself all the information needed to recover the image, because it is not possible
to understand whether a point is internal or external to the region, observing,
for instance, the light gray region (R2) of fig.4 we can argue that there are same
boundary pixel that are internal and same other that are external, so it is not
possible to reconstruct the boundary label value. This is the main problem to
solve, because once the right label has been assigned to the boundary points it
is quite simple to reconstruct the whole image by using, for instance, a flood fill
procedure.

Even if the extended boundary itself does not contain the required informa-
tion, by observing fig.7 we can argue that, except for the case of fig.7.a8 the
oriented extended boundary tells us directly if a point is internal or not. For
instance, in the case of fig.7.b, we can say that the current point is external if
we enter and leave both from the left, while in the case of fig.7.c, we can say
that it is internal if we enter from the left and leave on the bottom.

Hence, the reconstruction procedure can be summarized as follow

1) reconstruction of the boundaries chain by chain, i.e. painting with original
labels the boundaries (wire-frame image);

2) reconstruction of the internal points (original map);

It is worth underlining that we can exploit the extended boundary properties also
to implement the reconstruction of internal points. Indeed, we can argue that,
moving from left to right and top to bottom of the image, the label change only
8 This case have to be treated in a special way, anyway it is possible reconstruct the

right value also in this case.



212 Ciro D’Elia and Giuseppe Scarpa

Fig. 8. Vertexes condition (a) Vertexes of 4 regions (b) Vertexes of 3 regions.

on the boundary points, and the internal points on the right of the boundary
have the same label of its boundary. This property makes possible to implement
step (2) of the reconstruction algorithm during the raster scan, when the inter-
nal points are filled with the value of the current brush, and the brush changes
value on the boundaries. The procedure described above reconstructs the image
from a representation in terms of vertices, chains, and their internal and external
labels. To improve the encoding efficiency, of particular importance in compres-
sion applications, we can switch to a representation of the image in terms of
shapes, so that just one label per shape is needed rather two labels per each
chain of the shape. On the other hand, the reconstruction procedure from the
shape representation is more complex, because we know only the internal label
for the chains of each shape and the missing information (external label) must
be recovered in some way. This can be accomplished, however, by observing that
the external points are internal to other shapes. There are two possible cases,
because an external point of a shape belongs either to an adjacent shape or to a
surrounding shape. In the first case, the boundary label is painted with the right
value when we reconstruct the adjacent shape, while in the case of a surrounding
shape we have to retrieve same way the the its label. This can be accomplished
during step (2), using a stack of brushes for each image line instead of a single
brush. Indeed in each line, we can build, during the paint step, the stack of the
labels of the surrounding regions in a such a way that it is extremely easy to
access the needed information.

4 Conclusions

The proposed representation is based on the extended boundary concept first
discussed in [6] and [7] and then used for a Contour tracing algorithm in [5].
This work extends the contour tracing algorithm proposed in [5] and introduces
a reconstruction algorithm needed for coding purpose. Furthermore it has been
defined an algebraic semi-group structure that allow the formal demonstration
of the algorithm [5], his extension to other definition of boundaries, and the
introduction of a raster contour tracing algorithm.



Contour-Based Shape Representation for Image Compression and Analysis 213

Acknowledgements

The Authors are grateful to Prof. Francesco Tortorella for his precious sugges-
tions and encouragements.

References

1. Giacinto Gelli, Giovanni Poggi: “Compression of Multispectral images by Spectal
Classification and Transform Coding”, IEEE Transaction on Image Processing ,
volume.8, numero.4, pp.476-489, April 1999.

2. Gelli, G.; Poggi,G.; Ragozini, A.R.P.: “Multispectral-image compression based on
tree-structured Markov random field segmentation and transform coding”, Geo-
science and Remote Sensing Symposium, 1999. IGARSS ’99 Proceedings. IEEE 1999
International, Volume: 2 , 1999 Page(s): 1167 -1170 vol.2

3. D’Elia, Poggi, Scarpa: “An Adaptive MRF model for boundary preserving segmen-
tation of multispectral images”, Eusipco 2002, Sept 2002.

4. C.D’elia, G.Poggi, G.Scarpa: “Advances in segmentation and compression of multi-
spectral images”, Proc. IEEE IGARSS 01, vol.*, pp.*, Sidney, July 2001.

5. Yuh-Tay Liow: “A contour tracng algorithm that preserves common boundaries be-
tween regions”, Image Understanding , volume.3, numero.3, pp.313-321, May 1991.

6. H.F. Feng and T. Pavlidis: “The generation of polynomial outlines of objects from
gray level pictures”, IEEE Trans. on Circuit and Systems, CAS-22, pp.427-439,
1975.

7. T. Pavlidis: “Structure Pattern Recongnition”, Springer-Verlang, Berlin, New York,
1977.

8. A. Puri and T. Chen: “Multimedia Systems, Standards, and Networks”, Signal
Processing and Communications Series, Marcel Dekker Inc., March 2000.

9. MPEG-4 System Group: “Coding of audio-visual objects: video”, ISO/IEC
JTC1/SC29/WG11 N2202, March 1998.

10. A.K. Katsaggelos, L.P. Kondi, F.W. Meier, J.Ostermann, and G.M. Schuster:
“MPEG-4 and rate-distorsion-based shape-coding techniques”, Proc. IEEE 86,
pp.1029-1051, 1998.


	1 Introduction
	2 Contour and Shape Tracing
	2.1 Single Region Contour Tracing
	2.2 Multi-label Map Contour Tracing

	3 Image Reconstruction from Shapes
	4 Conclusions
	References



