
Formal Analysis of Some Timed Security

Properties in Wireless Protocols�

Roberto Gorrieri1, Fabio Martinelli2,
Marinella Petrocchi2, and Anna Vaccarelli2

1 Dipartimento di Scienze dell’Informazione, Università di Bologna
gorrieri@cs.unibo.it

2 Istituto di Informatica e Telematica – C.N.R.
{fabio.martinelli,marinella.petrocchi,anna.vaccarelli}@iit.cnr.it

Abstract. We show how a recent language for the description of cryp-
tographic protocols in a real time setting may be suitable to formally
verify security aspects of wireless protocols. We define also a composi-
tional proof rule for establishing security properties of such protocols.
The effectiveness of our approach is shown by defining and studying the
timed integrity property for µTESLA, a well-known protocol for wireless
sensor networks. We are able to deal with protocol specifications with
an arbitrary number of agents (senders as well as receivers) running the
protocol.

Keywords: Security, Wireless Communication, Formal Analysis, Sensor
Networks.

1 Introduction

Ambient intelligence is one of the main research issues in Europe. It imposes a
view of the world where objects may interact with each other by means of wire-
less communications. In our framework, we are interested in developing formal
analysis techniques for such scenarios. In particular, we aim at studying security
properties of wireless networks and we start with the analysis of a secure wireless
protocol for sensor networks where time plays an essential role.

Wireless systems consisting of mobile nodes self-organizing in temporary
routing topologies form wireless ad hoc networks. Wireless ad hoc networks may
cover various types of applications. Peculiarity in their usage is when wired in-
frastructure is not available at all (a typical example involves rescue operations in
remote areas or disaster recovery operations). Various issues in the world of the
ad hoc networks are greatly influenced by temporal relationships (e.g., whichever

� Work partially supported by MURST Project “Metodi Formali per la Sicurezza
ed il Tempo” (MEFISTO); by MIUR project COVER; by IST-FET project “De-
sign Environments for Global ApplicationS (DEGAS)”; by CNR project “Tecniche e
Strumenti Software per l’Analisi della Sicurezza delle Comunicazioni in Applicazioni
Telematiche di Interesse Economico e Sociale” and by a CSP grant for the project
“SeTAPS II”.

E. Najm, U. Nestmann, and P. Stevens (Eds.): FMOODS 2003, LNCS 2884, pp. 139–154, 2003.
c© IFIP International Federation for Information Processing 2003

140 Roberto Gorrieri et al.

the media access control protocol may be, real-time and temporal synchroniza-
tion constraints characterize the hosts’ communications). The reader can refer
to [14] for a full-detailed survey about real-time issues in ad hoc networks. Ac-
tually, we are mainly interested in time synchronization issues for a subclass of
ad hoc networks, i.e. wireless sensor networks. A wireless sensor network is typ-
ically composed of hundreds or thousands of sensors, (up to) cubic millimeters
devices provided with autonomous sensing, computation and communication.
The network is coordinated in a distributed mode in order to collect information
on their surroundings. Sensor networks applications are expected to range over
many fields, from home applications like automation and smart environments to
military uses (monitoring equipment and ammunitions, battlefield management,
etc.). Sensors may be used in a building for heating and air conditioning con-
trol as well as in a hospital for medical monitoring (e.g. drugs administration
or telemonitoring of physiological conditions of the patients), not to mention
environmental monitoring, such as the detection of possible fires in a forest.

Researchers have recently addressed the quest for securing wireless sensor
networks communication. Sensors already have to cope with severe constraints in
terms of power consumption, bandwidth, storage and may not have the resources
to perform cryptographic operations in their completeness. Standard solutions
developed for conventional computers cannot be applied, hence new schemes
have been proposed and surveys have been carried out (e.g. [10, 13]). Temporal
constraints occur in [13], where a time synchronization is required between a
base station and the sensors in the network.

In [8] it was developed a compositional analysis technique able to deal with
multicast/broadcast protocols. Actually, in that first work we were not able to
manage protocols with time-dependent security properties. In this paper we aim
at enhancing that analysis technique in order to cope with wireless protocols
where a time synchronization is required, e.g. [13]. Among the properties we are
now able to check are timed secrecy and timed integrity. The former requires that
a message is kept secret only for a certain amount of time and the latter that a
message sent in a time interval has not been altered during the communication.
We use the approach based on non-interference developed in [5] as a method to
express security properties.

This paper improves the work in [8] as follows: 1) a formal framework for
modeling wireless communication protocols is outlined by means of a real-time
process algebra; 2) a new compositional proof rule is given for dealing with timed
security properties as timed secrecy and timed integrity; 3) a formal specification
of µTESLA (see [13]) is defined and analyzed; it is checked that such a proto-
col enjoys the timed integrity property; 4) the analysis of µTESLA is carried
out taking into consideration an arbitrary (but finite) number of senders and
receivers. The previous work on a related protocol (the TESLA protocol, [12]),
deals only with a fixed and small number of senders and receivers, [2].

This paper is organized as follows. Section 2 recalls the formal language we
are going to adopt for the description of µTESLA. Section 3 presents the compo-
sitional analysis techniques in a timed setting. Section 4 introduces the µTESLA

Formal Analysis of Some Timed Security Properties in Wireless Protocols 141

formal specifications. Section 5 shows how to apply the previous theories to the
analysis of µTESLA. Finally, Section 6 concludes the paper.

2 A Real-Time Language for Cryptographic Protocols

The real-time extension of the Cryptographic Security Process Algebra
(CryptoSPA for short) in [3, 5] has been proposed in [6]. The new language,
timedCryptoSPA (tCryptoSPA for short), is adopted for describing crypto-
graphic protocols where information about the concrete timing of events is nec-
essary. We remind the reader of the syntax, the operational semantics of the
language and some auxiliary notions.

The Syntax. The syntax of tCryptoSPA is based on a set I of input channels
(ranged over by c), a set O of output channels (ranged over by c), a set of
closed terms M (a set of closed terms of a term algebra which, at least, contains
encryption {m}k and pairing (m, m1) operations), Const of constants, ranged
over by A, and V ar of variables, ranged over by x. The set L of tCryptoSPA
processes is defined as:

P ::= 0| c(x).P | ce.P | τ.P | tick.P | P1 + P2 | P1 |P2 | P\L |

A(e1, . . . , en) | [〈e1, . . . , er〉 �rule x]P1; P2

where e, e1, . . . , er, en are messages or variables and L is a set of channels. Both
the operators c(x).P and [〈e1 . . . er〉 �rule x]P1; P2 bind the variable x in P, P1.

Let Def : Const −→ L be a set of defining equations of the form A(x1, . . . ,
xn) .= P , where P may contain no free variables except x1, . . . , xn, which must
be distinct. Constants permit us to define recursive processes, but we have to
be a bit careful in using them. A term P is closed w.r.t. Def if all the constants
occurring in P are defined in Def (and, recursively, for their defining terms). A
term P is guarded w.r.t. Def if all the constants occurring in P (and, recursively,
for their defining terms) occur in a prefix context [11].

The set Act of actions which may be performed by a system is defined as:
Act = {c(m), cm, τ, tick, | c ∈ I, c ∈ O, m ∈ M, m closed}. τ is the internal,
invisible action. tick is the special action used to model time elapsing. We let
l range over Act\{tick}. We call P the set of all the tCryptoSPA closed terms
(i.e., with no free variables) that are closed and guarded w.r.t. Def . We define
sort(P) to be the set of all the channels syntactically occurring in the term P .

The informal semantics of the tCryptoSPA processes is the following:

– 0 is the process that does nothing;
– c(x).P is the process that can receive a message m on channel c and then

behaves like P . The received message replaces the variable x;
– cm.P is the process that can send m on channel c, then behaving like P ;
– τ.P is the process that executes the internal, invisible action τ and then

behaves like P ;

142 Roberto Gorrieri et al.

– tick.P is a process willing to let one time unit pass and then behaving as P ;
– P1 + P2 (choice) represents the nondeterministic choice between the two

processes P1 and P2; with respect to tick actions, time passes when both P1

and P2 are able to perform a tick action – and in such a case by performing
tick a configuration where both the derivatives of the summands can still
be chosen is reached. When only one of the two processes can perform tick,
say P1, it could be either that P1 performs tick – and in such a case P2 is
discarded – or P2 performs its normal activity – and in such a case P1 is
discarded; moreover, τ prefixed summands have priority over tick prefixed
summands;

– P1 |P2 (parallel) is the parallel composition of processes that can proceed in
an asynchronous way but they must synchronize on complementary actions
to make a communication, represented by a τ . Both components must agree
on performing a tick action, and this can be done even if a communication
is possible (we do not have maximal progress assumption);

– P\L allows only visible actions whose channels are not in L;
– A(m1, . . . , mn) behaves like the respective defining term P where all the

variables x1, . . . , xn are replaced by the messages m1, . . . , mn;
– [〈e1, . . . , er〉 �rule x]P1; P2 is the process used to model message handling

and cryptography. The process [〈e1, . . . , er〉 �rule x]P1; P2 tries to deduce an
information z from the tuple of messages 〈e1, . . . , er〉 through the application
of rule �rule; if it succeeds then it behaves like P1[z/x], otherwise like P2.
The set of rules that can be applied is defined through an inference system
(e.g., see Figure 1).

Auxiliary Notions. The time model adopted in the language is known as the
fictitious clock approach of, e.g., [9]. A global clock is supposed to be updated
whenever all the processes agree on this, by globally synchronizing on the special
action tick, representing the passing of a time unit. All the other actions are
assumed to take no time.

In order to model message handling and cryptography we use a set of infer-
ence rules. Note that tCryptoSPA syntax, its semantics and the results obtained
are completely parametric with respect to the inference system used. We show
in Figure 1 a suitable inference system we are going to use in the following sec-
tions. This inference system can combine two messages obtaining a pair (rule
�pair); it can extract one message from a pair (rules �fst and �snd); it can apply
a one-way hash function F to message x and obtain digest F (x) (rule �hash)
and finally compute the message authentication code (MAC) of a message with
a key (rule �mac).

Given an inference system, we can define a deduction function D s.t. if φ is
a finite set of closed messages, then D(φ) is the set of closed messages that can
be deduced starting from φ by applying instances of the rules in the system.

Example 1. We do not explicitly define an equality check among messages in the
syntax. However, this can be implemented through the usage of the inference
construct. E.g., consider rule equal

.= x x
Equal(x, x) . Then [m = m′]A (with the

Formal Analysis of Some Timed Security Properties in Wireless Protocols 143

m m′

(m, m′)
(�pair)

(m,m′)
m

(�fst)
(m, m′)

m′ (�snd)

F x

F (x)
(�hash)

m k

mac(m, k)
(�mac)

Fig. 1. An example inference system.

expected semantics) may be equivalently expressed as [〈m m′〉 �equal y]A where
y does not occur in A.

The operational semantics of a tCryptoSPA term is described by means of the
labeled transition system (lts, for short) 〈P , Act, { a−→}a∈Act〉, where { a−→}a∈Act

is the least relation between tCryptoSPA processes induced by the axioms and
inference rules of Figure 2.

The expression P
a⇒ P ′ is a shorthand for P (τ−→)∗P1

a−→ P2(
τ−→)∗P ′, a �=

τ , where (τ−→)∗ denotes a (possibly empty) sequence of transitions labeled τ .
The expression P ⇒ P ′ is a shorthand for P (τ−→)∗P ′. Let γ = a1, . . . , an ∈
(Act\{τ})∗ be a sequence of actions; then P

γ⇒ P ′ iff there exist P1, . . . , Pn−1 ∈
P such that P

a1⇒ P1
a2⇒, . . . , Pn−1

an⇒ P ′. Let 0′ .= tick.0′.
For timed behavioural relations among tCryptoSPA processes, we will be

mainly interested in timed trace inclusions.

Definition 1. For any P ∈ P the set T (P) of timed traces associated with P is
defined as follows T (P) = {γ ∈ (Act\{τ})∗ | ∃P ′.P

γ⇒ P ′ }. The timed trace pre-
order, denoted by ≤ttrace, is defined as follows: P ≤ttrace Q iff T (P) ⊆ T (Q).
P and Q are timed trace equivalent, denoted by P =ttrace Q, if T (P) = T (Q).

We define the concept of weak simulation as usual.

Definition 2. We say that a relation R among processes is a weak simulation,
if for every (P, Q) ∈ R we have:

– If P
a−→ P ′, a �= τ , then there exists Q′ s.t. Q

a=⇒ Q′ and (P ′, Q′) ∈ R.
– If P

τ−→ P ′ then there exists Q′ s.t. Q =⇒ Q′ and (P ′, Q′) ∈ R.

Let ≺ the union of all weak simulations among processes. Then, we have ≺⊆
≤ttrace.

3 tGNDC

A general schema for the definition of timed security properties, called timed
Generalized Non Deducibility on Compositions (tGNDC for short) has been
proposed in [6]: a system S is tGNDCα

� iff for every enemy X the composition
of the system with X satisfies the timed specification α(S). Basically, tGNDC
guarantees that the timed property α is satisfied, with respect to the � timed

144 Roberto Gorrieri et al.

(input)
m ∈ M

c(x).P
c(m)−→ P [m/x]

(output)
cm.P

cm−→ P
(internal)

τ.P
τ−→ P

(tick)
tick.P

tick−→ P
(|
1

)
P1

l−→ P ′
1

P1 |P2
l−→ P ′

1 |P2

(|
2

)
P1

c(x)−→ P ′
1 P2

cm−→ P ′
2

P1 |P2
τ−→ P ′

1 |P ′
2

(|
3

)
P1

tick−→ P ′
1 P2

tick−→ P ′
2

P1 |P2
tick−→ P ′

1 |P ′
2

(\L)
P

c(m)−→ P ′ c �∈ L

P\L c(m)−→ P ′\L
(+1)

P1
l−→ P ′

1

P1 + P2
l−→ P ′

1

(+2)
P1

tick−→ P ′
1 P2

tick−→ P ′
2

P1 + P2
tick−→ P ′

1 + P ′
2

(+3)
P1

tick−→ P ′
1 P2 � tick−→ P2 � τ−→

P1 + P2
tick−→ P ′

1

(Def)
P [m1/x1, . . . , mn/xn]

a−→ P ′ A(x1, . . . , xn)
.
= P

A(m1, . . . , mn)
a−→ P ′

(D)
〈m1, . . . , mr〉 �rule m P1[m/x]

a−→ P ′
1

[〈m1, . . . , mr〉 �rule x]P1; P2
a−→ P ′

1

(D)
� ∃m s.t. 〈m1, . . . , mr〉 �rule m P2

a−→ P ′
2

[〈m1, . . . , mr〉 �rule x]P1; P2
a−→ P ′

2

Fig. 2. Structured Operational Semantics for tCryptoSPA (symmetric rules for
+1, +3, |1, |2 and \L are omitted).

behavioural relation, even when the system is composed with any possible ad-
versary X .

We give here the set of admissible hostile environments for our timed set-
ting. For a certain enemy X , we call ID(X) the set of closed messages that
syntactically appears in X , all the messages initially known by X . Let φ0 be
the initial knowledge we would like to give to the enemy at the beginning of the
computation. We require that all the messages in ID(X) are deducible from φ0.
We consider as hostile processes only the ones belonging to the set tEφ0

C
1. They

can communicate on a subset of public channels C and have an initial knowledge
bound by φ0:

tEφ0
C = {X ∈ P | sort(X) ⊆ C and ID(X) ⊆ D(φ0)}

The property tGNDCα
� is defined as follows:

Definition 3. S is tGNDCα
� iff ∀X ∈ tEφ0

C : (S |X)\C � α(S) where � is
a timed behavioural relation between processes and α : P → P is a function
between processes defining the property specification for S as the process α(S).

1 Actually, there is another constraint that imposes that the enemy must eventually
let time pass. This is however not useful for safety properties we are going to study
in this paper and so it has been omitted for the sake of simplicity.

Formal Analysis of Some Timed Security Properties in Wireless Protocols 145

We may define several security properties through the tGNDC schema, e.g. see
[6]. For instance timed secrecy expresses that a certain message m is not known
by the intruder within a certain amount of time, say at least n units of time. A
specification αtSec dealing with timed secrecy could be the following:

pub(m) = public(m).0′ + tick.pub(m)
αtSec = tick1 . . . tickn.(pub(m))

where we assume public the unique not restricted channel. αtSec let n units of
time pass and then behaves like pub(m), i.e. it could either sends m over public
or it could let time pass and possibly sends m.

Note that the GNDC theory is now a well established approach for security
analysis and it was developed for non-deterministic, probabilistic, real time and
cryptographic frameworks, e.g. see [1, 4–7]. Here we present an extension of the
compositional analysis in a real-time setting within the GNDC theory.

3.1 Time-Dependent Stability and Compositional Results

A compositional principle gives sufficient conditions to conclude that the parallel
composition of two (or more) processes satisfies a certain property, provided
that the single processes by themselves satisfy the same property. Compositional
reasoning is often useful. An interesting application field is indeed the analysis
of systems with an arbitrary number of components.

Here, we give a new result about conditions for safe composition of digital
stream protocols where time plays an essential role. In order to achieve this
result, we should refine the concept of stability defined in [6] basically requires
that the intruder knowledge does not increase when composing the intruder
process with a process P . If so, we call P a stable process. In [6] it was also
noticed that if we assume that the intruder knowledge does not increase when
composing the intruder process with P (i.e. P |X) and with Q (i.e. Q |X) (using
the same communication channels) then the intruder knowledge does not increase
when composing the intruder itself with the process P |Q. Unfortunately, such
a form of stability is not time-dependent, i.e. it takes into account the same
knowledge during all the temporal execution of the processes at stake. This does
not make it feasible to check properties based on a timed notion of secrecy and,
consequently, to check protocols as µTESLA, whose security features exactly
depend on a form of timed secrecy. We give now a refined notion of stability,
called time-dependent stability, that allows us to cope with timed secrecy and
so also with security properties of protocols that rely on it.

We let γ be a sequence of actions (possibly empty) ranging over Act\{τ}.
Let #tick(γ) be the number of occurrences of tick actions in the sequence γ.

Definition 4. Let Xφ be the closed term in X belonging to the messages de-
ducible from φ. We say that a process P is time-dependent stable w.r.t. the
sequence {φi}i≥0 if, whenever (P |Xφ0)\C γ

=⇒ (P ′ |X ′
φ′)\C and #tick(γ) = i,

then D(φ′) = D(φi).

146 Roberto Gorrieri et al.

Basically, a process P is time-dependent stable if an enemy cannot increase
significantly its knowledge when P runs in the space of a time slot. The following
proposition holds:

Proposition 1. Given a sequence {φi}i≥0 and a set of public channels C, as-
sume Pr ∈ tGNDC

αr(Pr)
≤ttrace

with 1 ≤ r ≤ n. Assume also Pr t. d. stable w.r.t.

{φi}. It follows that (P1 |P2 | . . . |Pn) ∈ tGNDC
α1(P1) |α2(P2) |... |αn(Pn)
≤ttrace

and
(P1 |P2 | . . . |Pn) is t. d. stable w.r.t. {φi}.
Example 2. The process P = tick.ck.0′ enjoys the secrecy of k for one time unit.
In the more complex process Q = (c(x).[x = k]cm) + tick.0′ the secrecy of k in
the first time unit is crucial to get the secrecy of m. Indeed, either Q is willing
to receive the key k only in the first time unit (if so, it releases m) or it starts
to idle. We have that P and Q are t.d. stable w.r.t. φ0 = {∅}, φi = D({k}) for
i ≥ 1. Then, P |Q is t.d. stable w.r.t. {φi}i≥0 (by Proposition 1) and so m will
never belong to the knowledge of the intruder (whose initial knowledge is ∅).

4 The µTESLA Protocol

In [13], Perrig et al. presented µTESLA (“micro” Timed Efficient Stream Loss-
tolerant Authentication), a protocol to provide authenticated broadcast in wire-
less sensor networks environments. [13] considers a scenario where sensors com-
municate with a base-station connected to the external world. The base station
may broadcast to all nodes messages for routing updates, reprogramming, reset
requests. The protocol is an extension of the TESLA stream authentication pro-
tocol developed in [12] and it was intentionally developed for providing authen-
ticated broadcast for the limited computing environments that are encountered
in sensor networks.

In the original TESLA schema, a single sender broadcasts a continuous
stream of packets. Receivers may use information in later packets to authenticate
earlier packets. Each packet contains a message authentication code (MAC), i.e.
a value computed by applying a public algorithm and a secret encryption key to
the packet itself. Given a message m and an encryption key k, we call mac(m,
k) the message authentication code of m. The algorithm is known by all the
receivers, while the encryption keys are disclosed by the sender after a certain
amount of time. When a receiver receives a key Ki it can use it to compute
the MAC from the related packet Pi and compare the computed MAC with that
previously received. If the two MACs match, the receiver can consider the packet
Pi authentic. To avoid the event that an intruder could use a disclosed key Ki

to fake the packet Pi a time synchronization protocol between the sender and
the receivers is needed. Then, each receiver will not accept the packet Pi if the
sender might have already sent the key Ki.

Bootstrapping authentication of the whole scheme is achieved in TESLA by
signing the first packet with a regular digital signature scheme. Nevertheless,
computation, communication and storage overhead make the use of asymmet-
ric cryptography unfeasible for the net of sensors under investigation. Thus,

Formal Analysis of Some Timed Security Properties in Wireless Protocols 147

µTESLA has been proposed as an optimized extension for sensor networks. It
just makes use of MACs. The base-station randomly generates the last MAC
key to be used, Klast, and derives a key chain by repeatedly applying a pub-
licly known one-way function F to that key, such that Ki = F (Ki+1). Given
the non-reversibility property (at least with high probability) of function F, the
disclosure of key Ki should not lead to any knowledge of Ki+1 and subsequent
keys.

Receivers’ requirements for correctly joining and executing the protocol are:
i) they are time synchronized with the base station; ii) they know the disclosure
schedule of the MAC keys; iii) they know at least one authenticated key of the
key chain, serving as a commitment to the entire chain. A protocol providing
time synchronization and one authenticated key has been proposed in [13]. Ba-
sically, the base-station shares with each sensor a symmetric secret key KSM

and establishes a secure channel over which the exchange of a commitment to
the key chain, K0, and a set of temporal parameters, sett, takes place2. More
formally, the initial step of µTESLA is the following:

Packet P0 c0 S → {Rn} : K0, sett, mac(K0, sett, KSM)

where c0 ∈ {ci}i∈N, i.e. the set of communication channels, S is the identifier
of the sender3 (i.e. the base station) and {Rn} is the set of receivers (i.e. the
sensors).

µTESLA is parameterized by the schedule time at which MAC keys are
disclosed. For the description of further steps in the protocol we consider a basic
formalization, Fig. 3, where we suppose that the sender discloses a MAC key
with a delay δ = 1, assumed to fall in the interval after that key has been used
to compute the MAC. Further, we suppose the sender sends one packet per time
interval. Basically, in each time slot a packet and a key packet will be sent,
Fig. 3. First of all, each receiver should check the integrity of the received key,
say Ki, by verifying it w.r.t. an authenticated commitment (e.g. by checking
K0 = F i(Ki)), then the verified key will be used to verify the integrity of the
packet received in the previous time slot.

Packet Pi ci S → {Rn} : mi, mac(mi, Ki) i ≥ 1

Packet Pi consists of a meaningful payload mi plus the message authentication
code computed on mi with key Ki. We assume that KSM cannot be deduced
from the sets {mi}, {Ki}.
2 There are as many symmetric keys as the number of sensors and the communication

over channel c0 is supposed to be a point to point communication. Nevertheless,
to simplify our formalization, we assume a unique key and a unique communica-
tion. This means to implicitly assume that possible adversaries are not in the set of
receivers.

3 To assure freshness when executing multiple runs of the same sender, one can simply
insert nonces in the message authentication code of packet P0.

Fig. 3. A µTESLA instantiation.

Upon receiving the packet, the sensor stores the packet until its MAC can
be verified, i.e. until the sender broadcasts packet disclosing Ki:

Key-Packet KPi ci+1 S → {Rn} : Ki

The integrity of key Ki can be checked by verifying K0 = F i(Ki) (or, equiva-
lently, Ki−1 = F (Ki)). Packets may be lost in transit from the base station to
the sensors. In particular µTESLA is tolerant to packet loss in the sense that
receivers may still be able to authenticate all the received packets Pi even when
the corresponding keys’ disclosure packets are lost. Suppose Kj is lost, then a
receiver is not able to verify MAC packet Pj . The following key the receiver
recovers, let it be Kj+1, can be verified w.r.t. a previous authenticated key (e.g.
K0 = F j+1(Kj+1)) and is used to derive Kj , i.e. Kj = F (Kj+1).

4.1 The tCryptoSPA Specifications of the µTESLA Protocol
We present the tCryptoSPA specifications of the basic µTESLA instantiation
in Fig. 3. The fundamental requirement of a time synchronization between a
base-station and each sensor in µTESLA is naturally captured in tCryptoSPA
by its time modeling action tick, upon which sender and receivers’ processes may
synchronize (this allows us to avoid the explicit presence of sett in packet P0).

We consider a sender machine with ample resources. It can be parallelized
or split into n senders, each of them possibly sending different streams,
{mj

i}i≥1,1≤j≤n. We first present the generic sender process Sj , parameterized
by a sequence of MAC keys (tied together by means of a key chain)4. We as-
sume the symmetric key KSM , the keys belonging to the key chain and the
streams of packets to be different for each process Sj , 1 ≤ j ≤ n5.

Sj
0(K

j
SM , Kj

0 , K
j
1 , . . .) .=

[Kj
0 Kj

SM �mac y] Compute MAC
[Kj

0 y �pair P0] Create packet P0

Bj
0(P0) Start to broadcast P0

4 Actually, we consider constants with an arbitrary number of parameters. We could
avoid this by considering, for modeling purposes, a special function fun, not available
to possible adversaries, that may be used to represent the keys as a sequence.

5 We remind the reader that the whole formalization we are going to give is based on
choices of the authors since some details are not explicitly given in [13]. In particular,
the mechanism through which a receiver possibly identifies each sender process (and
consequently each stream) is not defined in [13], since the original construction is
described with a single sender.

148 Roberto Gorrieri et al.

�
Time

� �

Pi−1

mi−1

mac(mi−1,
Ki−1)

Key Packet

Ki−2

Pi

mi

mac(mi,
Ki)

Key Packet

Ki−1

Pi+1

mi+1

mac(mi+1,
Ki+1)

Key Packet

Ki

F (Ki−2) = Ki−3 F (Ki−1) = Ki−2 F (Ki) = Ki−1

Formal Analysis of Some Timed Security Properties in Wireless Protocols 149

Sj
1(K

j
0 , Kj

1 , . . .)
.=

[mj
1 Kj

1 �mac x] Compute MAC
[mj

1 x �pair P1] Create packet P1

Bj
1(P1) Start to broadcast P1

Sj
i (Kj

i−1, K
j
i , . . .) .=

[mj
i Kj

i �mac x] Compute MAC
[mj

i x �pair Pi] Create packet Pi

Bj
i (Pi, K

j
i−1) Start to broadcast Pi and disclose key Ki−1

Bj
i (Pi)

.= ciPi.B
j
i (Pi) + tick.Sj

i+1(K
j
i , . . .) i = 0, 1

Bj
i (Pi, K

j
i−1)

.= ciPi.ciK
j
i−1.B

j
i (Pi, K

j
i−1) + tick.Sj

i+1(K
j
i , . . .) i ≥ 2

Construct Bj
i (. . .) is responsible for potentially sending packets (and keys) an

unbounded number of times, in order to simulate a one-to-all sending typical
of broadcast sessions. Sender Sj remains in the same state repeatedly sending
messages unless the non-deterministic choice is resolved by choosing the deriva-
tive of the second summand in Bj

i ; this causes a time unit to pass (a tick action
is performed). The construction models the behaviour of a wireless antenna
making signals available only in a particular time interval. The presence of a
non-deterministic choice in the construct makes it possible the passage to the
following time interval without performing any (eventually zero) communication.
This may implicitly model the unreliability of the wireless transmission and the
occurrence of packet loss.

Among the receivers’ set, each process behaves in the same way. The generic
receiver process at step i is parameterized by a commitment to the key chain
(let it be Kj

0) and by the packets it should still authenticate. We assume the
receiver’s set is divided into subgroups, each of them sharing a particular KSM

with one sender process. Sender Sj and receivers belonging to subgroup number
j share Kj

SM . Kj
SM may denote a particular service each element in subgroup j is

devoted to. Let us consider pay per view-based applications: among the receivers’
set, the subgroup knowing Kj

SM may consist of all the paying spectators for
movie number j. For environments closer to those depicted for µ-TESLA, let us
consider a scenario in which sensors are used to periodically transmit readings
regarding heating and air conditioning control in a building (and consequently
receive broadcasted messages for routing updates or reprogramming): sensors in
subgroup j may be all the sensors devoted to carry out the service for room
number j. (Sj being the base station responsible for room number j.).

Below, we refer to Rj,q
i to indicate the q-th receiver process belonging to

subgroup j and acting at step i.

Rj,q
0 (null) .=
c0(x). Receive first packet
[x �fst xK0] Extract commitment to the key chain
[xK0 Kj

SM �mac z] Compute MAC

150 Roberto Gorrieri et al.

[x �snd xmac] Extract MAC
[z = xmac] Verify MAC: if verified:
tick.Rj,q

1 (xK0); Allow a time unit to pass and go to next state
Rj,q

0 (null) Wait for key

Upon receiving a value x on channel c0, the receiver verifies the correctness of the
commitment to the key chain, xK0 : it computes mac(xK0 , K

j
SM) and compares

it with the message authentication code in the received packet. If the two MACs
match, a time unit passes and the receiver goes to the next state, otherwise the
receiver remains in the same state waiting for the right key Kj

SM . Throughout
the formalization, null means an empty field.

Rj,q
1 (xK0)

.=
(c1(y). Receive packet
tick.Rj,q

2 (y, xK0) Allow a time unit to pass and go to next state
) + tick.Rj,q

2 (null, xK0) Go to next state after a time unit

Rj,q
1 is willing to accept any arbitrary packet, because it cannot perform any

verification yet. If nothing is received before the end of a time unit, transition
takes place to next state Rj,q

2 .

Rj,q
i (pi−1, xK0)

.=
ci(pi).R

′j,q
i (pi, pi−1, xK0) Receive i-th packet; go to intermediary state R′j,q

i

+tick.Rj,q
i+1(null, xK0) Go to next state after a time unit

Rj,q
i is willing to accept packet Pi and travels to an intermediary state R′j,q

i .
If nothing is received before the end of a time unit, transition takes place to the
next state.

R′j,q
i (pi, pi−1, xK0)

.=
ci(xKi−1). Receive key packet
[xK0 = F i−1(xKi−1)] Verify the key w.r.t. the commitment
[pi−1 �fst ypay] Extract payload
([ypay xKi−1 �mac z] If xKi−1 = Kj

i−1 then: Compute MAC
[pi−1 �snd ymac] Extract MAC
[z = ymac] Verify MAC
appypay. Send mj

1 to application level
tick.Rj,q

i+1(pi, xK0) Allow a time unit to pass and go to next state
); R′j,q

i (pi, pi−1, xK0) Wait for key

In intermediary state R′j,q
i receives a key packet and verifies the correctness of

the key w.r.t. the authenticated commitment xK0 = Kj
0 . Given the collision-

free property of one-way functions, if the verification does not succeed it means
xKi−1 �= Kj

i−1 and R′j,q
i simply stays in the same state waiting for the right

subgroup key. If the verification succeeds, the correctness of Pi−1 is verified by
checking that the enclosed MAC is authentic. The successful outcome is here

Formal Analysis of Some Timed Security Properties in Wireless Protocols 151

modeled by a scenario where the receiver sends the payload of the accepted
packet over channel app6.

Suppose packet Pi−1 was correctly received, suppose also packet disclosing
Kj

i−1 is lost. At step i the receiver still cannot authenticate packet Pi−1. The key
chain mechanism of the original protocol takes into account such a possibility: in
interval i+1 the base station broadcasts key Kj

i , which the receiver authenticates
by verifying Kj

0 = F i(Kj
i). The receiver can authenticate Pi and derives Kj

i−1 =
F (Kj

i), so it can also authenticate Pi−1. Actually, our formalization does not
take into account recovering lost keys. For the sake of simplicity, we prefer to
suppose that the key packet related to subgroup j is received (state R′j,q

i).
We report below the formalization at step i, with i ≥ 2, when a packet was

not received at step i − 1.

Rj,q
i (null, xK0)

.=
ci(pi).tick.Rj,q

i+1(pi, xK0) Receive i-th packet; go to next state
+tick.Rj,q

i+1(null, xK0) Go to next state after a time unit

5 An Analysis of the µTESLA Protocol: Timed Integrity

We focus our attention on the so called timed integrity, belonging to a new
class of properties defined in [6]. A stream signature protocol guarantees timed
integrity on a set of messages {mi} if, whenever the generic receiver accepts an
item in a time interval i, let us say item x, then x = mi−δ, i − δ being the time
interval in which x has been received. (δ = 1 in our formalization of µTESLA.)
Timed integrity property may be efficiently verified by means of Proposition 1 in
Subsection 3.1. We consider µTESLA as a case study for proving its correctness
in terms of messages mi timed integrity. We refer to the instantiation in Fig.
3 and its tCryptoSPA specifications of Subsection 4.1. Assume that a receiver
signals the acceptance of a payload as a legitimate one, by issuing it on a special
channel app.

Let P q .= Sj
0 |Rj,q

0 be the system consisting of a single sender and q-th receiver
in subgroup j, sharing Kj

SM . Let function αtInt(P q) be tSpec0 where

tSpec0
.= tick.tSpec1

tSpec1
.= tick.tSpec2

tSpeci
.= tick.tSpeci+1 + app(mj

i−1).tick.tSpeci+1 i ≥ 2

αtInt(P q) may denote the correct external behaviour of P q. In the first two
steps it simply let time pass, while in further steps it may either let time pass
(denoting packet loss) or let a verified payload to be sent on the special channel
app and then let time pass. The set of all messages sent on channel app is the
6 We omitted to insert an idling behavior when a deduction construct fails to be

executed and in our formalization the system simply stops without letting time
pass. This is not realistic, but it has no consequences since we use trace semantics
for the analysis and makes it simpler.

152 Roberto Gorrieri et al.

set of all the possible ordered substreams of {mj
i}i≥1. Let function αj

tInt(P
j) .=

Π1≤q≤nj αtInt(P q), nj being the cardinality of the receivers in subgroup j.

Definition 5. The system P j .= Sj
0 |Rj,1

0 |Rj,2
0 | . . . |Rj,nj

0 , consisting of a sender
of streamed data {mj

i} and the receivers in subgroup j enjoys the timed integrity

property whenever P j ∈ tGNDC
αj

tInt(P
j)

≤ttrace
.

Basically, it means that each receiver accepts exactly the messages belonging
to {mj

i} in the correct order and within the time interval following the one in
which the sender actually sent the messages, even in presence of an intruder
(unless packets Pi are lost). The key point is that the intruder will never acquire
the shared key Kj

SM to establish a secure channel over which the commitment
to the key chain is exchanged7.

We first consider system P q. We may prove that Sj
0 and Rj,q

0 (Subsection
4.1) are t.d. stable w.r.t. the sequence {φi} = φ0, φ1, φ2, . . . defined as follows:

φ0 = {Kj
0 , mac(Kj

0 , K
j
SM) | 1 ≤ j ≤ n}

φ1 = φ0 ∪ {mj
1, mac(mj

1, K
j
1) | 1 ≤ j ≤ n}

φ2 = φ1 ∪ {mj
2, mac(mj

2, K
j
2), K

j
1 | 1 ≤ j ≤ n}

. . .

φi = φi−1 ∪ {mj
i , mac(mj

i , K
j
i), Kj

i−1 | 1 ≤ j ≤ n}
. . .

where n is the number of senders. φi is equal to φi−1 plus the set of all the
messages an intruder would be able to add to its knowledge by eavesdropping on
a run of the protocol during the whole time interval i (of course including those
messages coming from all the other senders processes). Actually, the intruder
will have more powerful means to act since the beginning of each time interval.

We may prove that Sj
0 enjoys tGNDC0′

≤ttrace
and Rj,q

0 enjoys tGNDC
αtInt(P

q)
≤ttrace

,
that is to say for all X ∈ tEφ0

C we have (Sj
0 |X)\C ≤ttrace 0′ and (Rj,q

0 |X)\
C ≤ttrace αtInt(P q). This may be done by finding a suitable weak simulation
relation between (Sj

0 |Xφ0) \ C and 0′ and between (Rj,q
0 |Xφ0) \ C and tSpec0,

respectively. The set C of channels over which an intruder is able to communicate
is C = {ci | i ≥ 0}. The weak simulation relation dealing with the sender
specifications is the following:

RS = (((Sj
i (...) |Xφi)\C,0′) | ∀i, Xφi ∈ tEφi

C)
∪(((Bj

i (...) |Xφi)\C,0′) | ∀i, Xφi ∈ tEφi

C)
∪(((ciK

j
i−1.B

j
i (. . .) |Xφi)\C,0′) | i > 1, Xφi ∈ tEφi

C)

7 We remind the reader that Km
SM �= Kn

SM if m �= n and Km
i �= Kn

l if m �= n or i �= l.

Formal Analysis of Some Timed Security Properties in Wireless Protocols 153

The weak simulation relation we consider for dealing with the receiver specifica-
tions is the following (superscript q is omitted for simplicity):

R = (((Rj
0(null) |Xφ0)\C, tSpec0) | Xφ0 ∈ tEφ0

C)
∪((tick.(Rj

1(K
j
0) |Xφ0)\C, tSpec0) | Xφ0 ∈ tEφ0

C)
∪(((Rj

1(K
j
0) |Xφ1)\C, tSpec1) | Xφ1 ∈ tEφ1

C)
∪(((Rj

i (null, Kj
0) |Xφi)\C, tSpeci) | i ≥ 2, Xφi ∈ tEφi

C)
∪((tick.(Rj

i (pi−1, K
j
0) |Xφi−1)\C, tSpeci−1) | i ≥ 2, Xφi−1 ∈ tEφi−1

C)
∪(((Rj

i (pi−1, K
j
0) |Xφi)\C, tSpeci) | i ≥ 2, Xφi ∈ tEφi

C)
∪(((Rj′

i (pi∗, pi−1, K
j
0) |Xφi)\C, tSpeci) | i ≥ 2, Xφi ∈ tEφi

C)
∪(((Rj

i (xi−1, K
j
0) |Xφi)\C, tSpeci) | fst(xi−1) �= mj

i−1, i ≥ 2, Xφi ∈ tEφi

C)
∪((tick.(Rj

i (xi−1, K
j
0) |Xφi−1)\C, tSpeci−1) | fst(xi−1) �= mj

i−1, i ≥ 2,

Xφi−1 ∈ tEφi−1
C)

∪((tick.(Rj
i (pi−1∗, Kj

0) |Xφi−1)\C, tick.tSpeci) | i ≥ 2, Xφi−1 ∈ tEφi−1
C)

where p1, pi−1, pi∗, pi−1∗ and xi−1 are not empty fields. pi∗, pi−1∗ are shortcuts
to denote either authentic packets sent by the sender or others. We omitted
to explicitly put in RS and R the pairs in which the first process performs
deduction constructs.

Lemma 1. Sj
0 and Rj,q

0 are t. d. stable w.r.t. {φi}.

Lemma 2. Sj
0 ∈ tGNDC0′

≤ttrace
and Rj,q

0 ∈ tGNDC
αtInt(P

q)
≤ttrace

The following proposition follows by Lemma 1,2 and by Proposition 1 where
r = 1, 2, P1 = Sj

0 , P2 = Rj,q
0 .

Proposition 2. P q ∈ tGNDC
αtInt(P

q)
≤ttrace

8.

The correctness of the multiple receivers version (considering all the receivers
belonging to subgroup j), can be also proved using results of Lemma 1,2 and
Proposition 1 where index r is not fixed a priori and P1 = Sj

0 and Pr = Rj,q
0

with 1 ≤ q ≤ nj .

Proposition 3. System P j (in Definition 5) ∈ tGNDC
αj

tInt(P
j)

≤ttrace
.

We get into the issue of considering a multiple senders/receivers environment.
Let us consider Γ = Π1≤j≤nP j and αtInt(Γ) = Π1≤j≤nαj

tInt(P
j), where n is

the cardinality of the senders processes.

Proposition 4. System Γ ∈ tGNDC
αtInt(Γ)
≤ttrace

.

The result follows by application of Propositions 3 and 1.
Note that in order to have timed integrity on the messages mi, µTESLA

must ensure timed secrecy on the keys Ki. Indeed, we could also check explicitly
timed secrecy on the keys with the same machinery.
8 Note that 0′ |αtInt(P

q) ≤ttrace αtInt(P
q).

154 Roberto Gorrieri et al.

6 Conclusions
In this paper we presented some preliminary steps towards a framework suit-
able for the security analysis of time-dependent wireless protocols. In particular,
we developed a compositional approach for reasoning about security properties
that rely on time constraints. This allowed us to check a relevant protocol, i.e.
µTESLA. As a future work, we plan to deal with security properties in a mobile
framework and offering some tool support for our compositional analysis.

Related work in security protocol verification in a timed setting may be found
in [15], where tock-CSP is presented. The main differences are a different treat-
ment of time operators and cryptography modeling. Moreover, no compositional
proof rule has been provided. However, the verification proposed in [15] is au-
tomated through the use of PVS ([16]) while ours is completely manual (as of
now).

Acknowledgments. We would like to thank the anonymous referees for their helpful
comments.

References

1. A. Aldini, M. Bravetti, and R. Gorrieri. A Process-algebraic Approach for the
Analysis of Probabilistic Non-interference. Journal of Computer Security, 2003.

2. P. Broadfoot and G. Lowe. Analysing a Stream Authentication Protocol using
Model Checking. In Proc. of ESORICS’02, LNCS 2502, 146-161, 2002.

3. R. Focardi, R. Gorrieri, and F. Martinelli. Non Interference for the Analysis of
Cryptographic Protocols. In Proc. of ICALP’00, LNCS 1853, 354-372, 2000.

4. R. Focardi, R. Gorrieri, and F. Martinelli. Real-Time Information Flow Analysis.
IEEE JSAC, 21(1), 2003.

5. R. Focardi and F. Martinelli. A uniform approach for the definition of security
properties. In Proc. of FM’99, LNCS 1708, 794-813, 1999.

6. R. Gorrieri, E.Locatelli, and F.Martinelli. A Simple Language for Real-time Cryp-
tographic Protocol Analysis. In Proc. of ESOP’03, LNCS 2618, 114-128, 2003.

7. R. Gorrieri and F. Martinelli. Process Algebraic Frameworks for the Specification
and Analysis of Cryptographic Protocols. In Proc. of MFCS, LNCS 2747, 2003.

8. R. Gorrieri, F. Martinelli, M.Petrocchi, and A.Vaccarelli. Compositional Veri-
fication of Integrity for Digital Stream Signature Protocols. In Proc. of IEEE
ACSD’03, 142-149, 2003.

9. M. Hennessy and T. Regan. A Temporal Process Algebra. I&C, 117:222–239,
1995.

10. Y. W. Law, S. Dulman, S. Etalle, and P. Havinga. Assessing Security in Energy-
efficient Sensor Networks. In Proc. of Small Systems Security Workshop’03, 2003.

11. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
12. A. Perrig, R. Canetti, D. X. Song, and D. Tygar. Efficient and Secure Source

Authentication for Multicast. In Proc. of NDSS’01. The Internet Society, 2001.
13. A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. Culler. SPINS: Security

Protocols for Sensor Networks. Wireless Networks Journal, 8:521–534, 2002.
14. K. Romer. Time Synchronization in Ad Hoc Networks. In Proc. of ACM Mobi-

Hoc’01, pages 173–182, 2001.
15. S. Schneider. Analysing Time-Dependent Security Properties in CSP using PVS.

In Proc. of ESORICS’00, LNCS 1895, 2000.
16. N. Shankar, S. Owre, and J. M. Rushby. PVS Tutorial. Tutorial Notes, FME ’93:

Industrial-Strength Formal Methods, pages 357–406, April 1993.

	1 Introduction
	2 A Real-Time Language for Cryptographic Protocols
	3 tGNDC
	3.1 Time-Dependent Stability and Compositional Results

	4 The μTESLA Protocol
	4.1 The {\it tCryptoSPA} Specifications of the μTESLA Protocol

	5 An Analysis of the μTESLA Protocol: Timed Integrity
	6 Conclusions
	References

