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Abstract. This paper presents an extension of the standard bitvector library of
the theorem prover PVS with multiplication, division and remainder operations,
together with associated results. This extension is needed to give correct seman-
tics to Java’s integral types in program verification. Special emphasis is put on
Java’s widening and narrowing functions in relation to the newly defined opera-
tions on bitvectors.

1 Introduction

Many programmming languages offer different integral types, represented by differ-
ent numbers of bits. In Java, for instance, one has integral types by te (8 bits), short
(16 bits), int (32 bits) and Long (64 bits). Additionally, there is a 16 bit type char for
unicode characters, see [8, §§4.2.1]. It is a usual abstraction in program verification to
disregard these differences and interpret all of these types as the unbounded, mathemat-
ical integers. However, during the last few years both program verification and theorem
proving technology have matured in such a way that more precise representations of
integral types can be used.

An important application area for program verification is Java Card based smart
cards. Within this setting the above mentioned abstraction of integral types is particu-
larly problematic, because of the following reasons.

— Given the limited resources on a smart card, a programmer chooses his/her integral
data types as small as possible, so that potential overflows are a concern (see [0,
Chapter 14]). Since such overflows do not produce exceptions in Java (like in Ada),
a precise semantics is needed.

— Communication between a smart card and a terminal uses a special structured byte
sequence, called an “apdu”, see [6]. As a result, many low-level operations with
bytes occur frequently, such as bitwise negation or masking.

— Unnoticed overflow may form a security risk: imagine you use a short for a se-
quence number in a security protocol, which is incremented with every protocol
run. An overflow then makes you vulnerable to a possible replay attack.

Attention in the theorem proving community has focused mainly on formalising
properties of (IEEE 754) floating-point numbers, see e.g. [4,9, 10, 18]. Such results
are of interest in the worlds of microprocessor construction and scientific computation.
However, there are legitimate concerns about integral types as well. It is argued in [19]
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that Java’s integral types are unsafe, because overflow is not detected via exceptions,
and are confusing because of the asymmetric way that conversions work: arguments are
automatically promoted, but results are not automatically “demoted”".

Verification tools like LOOP [3] or Krakatoa [14] use the specification language
JML [12, 13] in order to express the required correctness properties for Java programs.
Similarly, the KeY tool [1] uses UML’s Object Constraint Language (OCL). Program
properties can also be checked statically with the ESC/Java tool [7], but such checking
ignores integral bounds. The theorem prover based approach with the semantics of this
paper will take bounds into account. In [5] (see also [2]) it is proposed that a specifi-
cation language like JML for Java should use the mathematical (unbounded) integers,
for describing the results of programs using bounded integral types, because “develop-
ers are in a different mindset when reading or writing specifications, particularly when
it comes to reasoning about integer arithmetic”. This issue is not resolved yet in the
program specification community — and it will not be settled here.

Instead, this paper describes the bit-level semantics for Java’s integral types devel-
oped for the LOOP tool. As such it contributes both to program verification and to
library development for theorem provers (esp. for PVS [15]). The semantics is based
on PVS’s (standard) bitvector library. This PVS library describes bitvectors of arbitrary
length, given as a parameter, together with functions bv2nat and bv2int for the un-
signed (one’s-complement) and signed (two’s-complement) interpretation of bitvectors.
Associated basic operations are defined, such as addition, subtraction, and concatena-
tion. In this paper, the following items are added to this library.

1. Executable definitions. For instance, the standard library contains “definitions by
specification” of the form:

-(bv: bvec[N]): { bvn: bvec[N] | bv2int (bvn) =
IF bv2int (bv) = minint THEN bv2int (bv)
ELSE - (bv2int (bv)) ENDIF}
* (bvl: bvec[N], bv2: bvec[N]): {bv:bvec[2*N] | bv2nat (bv) =
bv2nat (bvl) * bv2nat (bv2)}

Such definitions? are not so useful for our program verifications, because some-
times we need to actually compute outcomes. Therefore we give executable redefi-
nitions of these operations. Then we can compute, for instance, (4*b) &0x0F.

2. Similarly, executable definitions are introduced for division and remainder opera-
tions, which are not present in the standard library. We give such definitions both for
unsigned and signed interpretations, following standard hardware realisations via
shifting of registers. The associated results are non-trivial challenges in theorem
proving.

! For a byte (or short) b, the assignmentb = b-b leads to a compile time error: the arguments
of the minus function are first converted implicitly to int, but the result must be converted
explicitly back, asinb = (byte) (b-b).

2 Readers familiar with PVS will see that these definitions generate so-called type correctness
conditions (TCCs), requiring that the above sets are non-empty. These TCCs can be proved
via the inverses int2bv and nat2bv of the (bijective) functions bv2int and bv2nat, see
Section 3. The inverses exist because one has bijections, but they are not executable.
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3. Specifically for Java we introduce so-called widening and narrowing, for turning
a bitvector of length N into one of length 2 « N and back, see [8, §§5.1.2 and
§65.1.3]. When, for example, a byte is added to a short, both arguments are first
“promoted” in Java-speak to integers via widening, and then added. Appropriate
results are proven relating for instance widening and multiplication or division.

We show how our definitions of multiplication, division and remainder satisfy all prop-
erties listed in the Java Language Specification [8, §§15.17.1-3].

In particular we get a good handle on overflow, so that we can prove for the values
minint = 0x80000000 and maxint = Ox7FFFFFFF, the truth of the follow-
ing Java boolean expressions.

minint - 1 == maxint maxint + 1 == minint
minint * -1 == minint maxint * maxint == 1
minint / -1 == minint

As a result the familiar cancellation laws for multiplication (a xb=a*xc= b =c,
for a # 0) and for division (&2 = g, for a # 0, ¢ # 0) do not hold, since:

axc

minint * -1 == minint * 1 (minint * -1) / (minint * 1) ==

But these cancellation laws do hold in case there is no overflow. Similarly, we can prove
the crucial property of a mask to turn bytes into nonnegative shorts: for a byte b,

(short) (b & OxFF) == (b >= 0) ? b : (b + 256)

Two more examples are presented in Section 2.

Integral arithmetic is a very basic topic in computer science (see e.g. [17]). Most the-
orem provers have a standard bitvector library that covers the basics, developed mostly
for hardware verification. But multiplication, division and remainder are typically not
included. The contribution of this paper lies in the logical formalisation of these oper-
ations and their results, and in linking the outcome to Java’s arithmetic, especially to
its widening and narrowing operations. These are the kind of results that “everybody
knows” but are hard to find and easy to get wrong.

Of course, one can ask: why go through all this trouble at bitvector level, and why
not define the integral operations directly on appropriate bounded intervals of the (math-
ematical) integers — like for instance in [16] (for the theorem prover Isabelle)? We have
several reasons.

— Starting at the lowest level of bits gives more assurance. The non-trivial definitions
of the operations that should be used on the bounded intervals appear in our bit-
level approach as results about operations that are defined at a lower level (see the
final results before Subsection 7.1). This is important, because for instance in [16]
it took several iterations (with input from the present approach) to get the correct
formulation for the arithmetically non-standard definitions of division and remainer
for Java.

— Once appropriate higher-level results are obtained about the bit-level representa-
tion, these results can be used for automatic rewriting, without revealing the under-
lying structure. Hence this approach is at least as powerful as the one with bounded
intervals of integers.
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— Certain operations from programming languages (like bitwise conjunction or nega-
tion) are extremely hard to describe without an underlying bit-level semantics.

This paper has a simple structure. It starts by describing simple Java programs with
integral types as motivation. From there it investigates bitvectors. First it explains the
basics of PVS’s standard bitvector library. Then, in Section 5 it describes our defini-
tion of multiplication with associated properties. Division and remainder operations are
more difficult; they are first described in unsigned (one’s-complement) form in Sec-
tion 6, and subsequently in signed (two’s-complement) form in Section 7. Although the
work we have done has been carried out in the language of a specific theorem prover
(namely PVS), we shall use a general, mathematical notation to describe it.

2 Java Examples

The following two programs’

mantical issues.

are extremely simple, yet involve some non-trivial se-

int n() { int s() {
for (byte b = Byte.MIN_VALUE; int n = 0;
b <= Byte.MAX VALUE; b++) { while (-1 << n != 0) {
if (b == 0x90) { n++;
return 1000; }; b
} return n;

} }

Both these programs hang (i.e. loop forever). This can be shown with the LOOP tool,
using the integral semantics described in this paper. The reader may wish to pause a
moment to understand why these programs hang.

The program n on the left hangs because the bound conditionb <= Byte.MAX_-
VALUE is always true: the increment operation wraps around. Further, the value 0x90
is interpreted in Java as an integer, and is thus equal to 9 x 16 = 144, which is outside
the range [—128, 127] used for bytes. Hence the condition of the if-statement is always
false, so that one does not return from the loop in this way.

Within the program s on the right the integral —1 (which is OXFFFFFFFF) is
repeatedly shifted to the left. However, Java’s leftshift operator << only uses the five
lower-order bits of its second argument, see [8, §§15.19]. These five bits can result in a
shift of at most s> — 1 = 31 positions. This is not enough to turn -1 into 0.

This illustrates that a proper understanding of ranges and bitpositions is needed to
reason about even elementary Java programs.

3 PVS’s Standard Bitvector Library

The distribution of PVS comes with a basic bitvector library*. We sketch some in-
gredients that will be used later. A bit is defined as in PVS as a boolean, but here
we shall equivalently use it as an element of {0,1}. A bitvector of length N is a

3 Adapted from www . linux-mag.com/downloads/2003-03/puzzlers/.
* Developed by Butler, Miner, Carrefio (NASA Langley), Miller, Greve (Rockwell Collins) and
Srivas (SRI International).
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function in bvec(N) &t (below(N) — bit), where below(N) is the N-element set

{0,1,..., N — 1} of natural numbers below N. For instance, the null bitvector is
—
i € below(N).0, which we shall often write as 0, leaving the length N implicit.

Similarly, one can write T for \i € below (V). 1. It should be distinguished from 1 =
i € below(N).if i = 0then 1 else 0.

The unsigned interpretation of bitvectors is given by the (parametrised) function
bv2nat: bvec(N) — below(2"), defined as:

bv2nat(bv) &f bv2nat-rec(bv, N), where
et | O ifn=0 1
bv2nat-rec(bv, n) &ef 1 " 2
bv(n — 1) x 27~! + bv2nat-rec(bv,n — 1) if n > 0

Clearly, bv2nat is bijective. And also: bv2nat(bv) = 0 & by = 6), bv2nat(bv) =
2N _ 1 & by=1,andbv2nat(bv) = 1 < by = 1.

The signed interpretation is given by a similar function bv2int: bvec(N) — {i €
Z| —2N=1 <iAd < 2N71) Ttis defined in terms of the unsigned interpretation:

bv2nat(bv) if bv2nat(bv) < 2NV -1
bv2nat(bv) — 2V otherwise.

bv2int(bv) & { 2

The condition bv2nat(hv) < 2¥~! means that the most significant bit by(N — 1) is
0. Therefore, this bit is often called the sign bit, when the signed interpretation is used.
This bv2int function is also bijective.

The PVS bitvector library provides various basic operations and results. For in-
stance, there is an (executable) addition operation + on bitvectors, introduced via a

recursively defined adder. A unary minus operation — is introduced via a specifica-

. . . . . . . . def
tion, as described in the introduction. Binary minus is then defined as: bv; — bvy =

bvi + (—bvs). These operations work for both the unsigned and for the signed interpre-
tation. A typical result is:

bv2int(bvy + bvs)
bv2int(bvi) + bv2int(bvy) if —2V=1 < bv2int(bv;) + bv2int(bvs)
and bv2int(bv1) + bv2int(bvy) < 2V -1
bv2int(bv;) + bv2int(bvy) — 2% if bv2int(bvy) > 0 and bv2int(bvs) > 0
bv2int(bvy) + bv2int(bvy) + 2V otherwise.
The second cases deals with overflow, and the third one with underflow. The library

shows, among other things, that the structure (bvec(N), +, 6), —) is a commutative
group.

Also we shall make frequent use of left and right shift operations. For k£ € N,
bv(i —k)ifi >k
0 otherwise.
bv(i+k)ifi+k <N

0 otherwise.

Ish(k, bv) = \i € below(N).

rsh(k, bv) = \i € below(N).
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4 Widening and Narrowing

As mentioned in the introduction, Java uses so-called widening and narrowing opera-
tions to move from one integral type to another. These operations can be described in a
parametrised way, as functions:

widen: bvec(N) — bvec(2 « N) and narrow: bvec(2 x N) — bvec(N)
defined as:

bv(i) ifi <N

widen(bv) e below(2 « N). _
bv(N — 1) otherwise

narrow(BYV) i e below(N). BV (i)

Thus, narrowing simply ignores the first N bits. The key property of widening is that
the unsigned interpretation is unaffected, in the sense that:

bv2int(widen(bv)) = bv2int(bv)

A theme that will re-appear several times in this paper is that after widening there is no
overflow:

bv2int(widen(bv1) + widen(bv,)) = bv2int(bvy) + bv2int(bv)

bv2int( — widen(bv)) = —bv2int(bv). ©

There are similar results about narrowing. First:
narrow(widen(bv)) = bv.

But also:
narrow(BV; + BVy) = narrow(BV;) + narrow(BVz)
narrow(—BV) = —narrow(BYV).

The LOOP tool uses widening and narrowing in the translation of Java’s arithmetical
expressions. For instance, for a byte b and short s, a Java expression

(short) (b + 2*s)
is translated into PVS as:
narrow (widen(widen(b)) + 2% widen(s))

because the arguments are “promoted” in Java to 32 bit integers before addition and
multiplication are applied.

In this way we can explain (and verify in PVS) that forbyte b = -128, one has
inJava: b-1is —129 and (byte) (b-1) is 127.
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S Multiplication

This section describes bitvector multiplication in PVS, following the standard pen-and-
paper approach via repeated shifting and adding. The definition we use works well
under both the unsigned and signed interpretation.

In our parametrised setting, we use a recursive definition for multiplication. For two
bitvectors bvy, bvs: bvec(N) of length N, we define:

def .
bvy * bvy = times-rec(bvy, bvy, N)
where for a natural number n,

times-rec(bvy, bva, n)

—

0 ifn=20
L vy + Ish(1,times-rec(rsh(1,bvy),bva,n — 1)) if n > 0 and bv1(0) =1
Ish(1,times-rec(rsh(1,bvy), bve,n — 1)) ifn > 0and bv1(0) =0

Note that in this definition bvy xbv, has the same length as bv; and bvs, unlike the multi-
plication by specification from the standard PVS library (described in the introduction),
which doubles the length.

A crucial result is that (our) multiplication can be expressed simply as iterated ad-
dition, an appropriate number of times.

bvy = bvy = iterate(\b € bvec(N).b + by, bv2nat(bvz))(6>),

where iterate(f, k)(x) is f*)(z) = f(--- f(x)---), i.e. f applied k times to . This
allows us to prove familiar results, like

— —
0 xbv=0 bvyxbvg=>bvoxbvy 1xbv=>bv (—bvy)xbvy=—(bvs*bvy)
bvy * (bva * bvs) = (bvy * bvy) * bvs bvy * (bva + bvs) = bvy * bvy + bvy * by

They express that (bvec(N), x,1) is a commutative monoid, and that * preserves the
—
group structure (bvec(N),+, 0, —).
As for the interpretation, the following two results are most relevant.

bv2nat(bv;) * bv2nat(bvy) < 2V
= bv2nat(bv; * bvy) = bv2nat(bvy) * bv2nat(bvs)

—2N=1 < pv2int(bvy) * bv2int(bve) and bv2int(bv;) x bv2int(bvy) < 2V -1
= bv2int(bvy * bve) = bv2int(bvy) * bv2int(bvs).

This means that we have an analogue of (3) for multiplication: after widening there is
no overflow:

bv2int(widen(bvy) * widen(bvs)) = bv2int(bvy) * bv2int(bvs). 4

This result is very useful in actual calculations (in PVS, about Java programs). For the
general situation, with possible over- or under-flow, we have the following formula that
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slices the (mathematical) integers into appropriate ranges.

Vn € Z. nx 2N — 2N=1 < pv2int(bv;) * bv2int(bvy) A
bv2int(bvy) x bv2int(bvy) < n x 2V 4 2N -1
= bv2int(bv; * bvy) = bv2int(bv1) * bv2int(bvy) — n x 2V,

Finally, we have the following two results about multiplication and narrowing.

narrow(BV; x BV3) = narrow(BV;) x narrow(BVs)

5
bvi x bvy = narrow(widen(bvl) * widen(bvz)) (%)

This second result follows immediately from the first. It is of interest because it shows
that our multiplication satisfies the following requirement from the Java Language
Specification [8, §§15.17.1]:

If an integer multiplication overflows, then the result is the low-order bits of the mathe-
matical product as represented in some sufficiently large two’s-complement format.

The “lower-order bits” result from the narrow in narrow (widen(bv:) * widen(bvs))
in (5)’s second equation, and the “mathematical product” is its argument widen(bv, ) *
widen(bvs), as expressed by (4).

6 Unsigned Division and Remainder

Division and remainder for bitvectors are less straightforward than multiplication. They
are based on the same pen-and-paper principles, but the verifications are more involved.
In this section we describe a standard machine algorithm for the unsigned interpretation,
see e.g. [17, 8.3]. The next section adapts this approach to the signed interpretation, and
shows how it can be used for division in Java.

In the description below we use arbitrary bitvectors dvd, dvs, rem, quot, aux, of a
fixed length N. The abbreviation dvd stands for ‘dividend’, and dvs for ‘divisor’, to be
used in dvd / dvs and dvd % dvs.

Unsigned division and remainder are defined via first and second projections of a
recursive auxiliary function:

div(dvd, dvs) & m diviem(dvd, dvs, 0, N)
def . -
rem(dvd, dvs) = modivrem(dvd, dvs, 0, N),

where forn € N,

divrem(dvd, dvs, rem,0) &f (dvd, rem)
divrem(dvd, dvs, rem,n + 1) & let dvd’ = Ish(1, dvd),
rem’ = Ish(1, rem) with [(0) := dvd(N — 1)]
in if bv2nat(dvs) < bv2nat(rem’)
then divrem(dvd’ with [(0) := 1],
dvs,rem’ — dvs,n — 1)
else divrem(dvd’, dvs, rem’,n — 1).
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The ‘with’ operator is a convenient short-hand for function update: f with [(i) := ] is
the function g with g(n) = if n = i then a else f(n).

The definition of divrem is quite sneaky and efficient, since it uses very few argu-
ments (or registers in a hardware implementation). The dvd argument is shifted from the
left into rem, and at the same time the quotient result is built up in dvd from the right.
This overloaded use of dvd makes it impossible to formulate an appropriate invariant for
this recursive function. Therefore we introduce an alternative function divrem™ without
this overloading, show that divrem* computes the same result as divrem, and formulate
and prove an appropriate invariant for divrem®*.

. . def
divrem*(aux, dvd, dvs, rem, 0) =

(aux, dvd, rem)
divrem*(aux, dvd, dvs, rem,n + 1) def
let aux’ = Ish(1, aux) with [(0) := dvd(N — 1)]
dvd' =Ish(1,dvd),
rem’ = Ish(1, rem) with [(0) := dvd(N — 1)]
in if bv2nat(dvs) < bv2nat(rem’)
then divrem*(aux’, dvd’ with [(0) := 1], dvs,
(/\z' € below(N).ifi < N —n+1 ) v — 1)
then rem/ (i) else 0 '

else divrem*(aux’, dvd’, dvs, rem’ ,n — 1).

In this definition the original argument dvd is also shifted into the aux register, so that
it is not lost and can be used for the formulation of the invariant. Also, the subtraction
of dvs from rem’, if possible, happens only from the relevant, lower part of rem’.

The fact that divrem and divrem* compute the same results is expressed as follows.
Foralln < N,

let dr* = divrem*(aux,dvd, dvs,rem,n),

. i € below(N).ifi <n
dr = divrem(dvd, dvs, ( then rem(i) else O> ,n)

in mdr* = X\i € below(N).if i <nthen dvd(N —n + i) else aux(i —n) A
Todr* = midr N

m3dr* = modr.

Note that for n = N, the third argument of divrem is simply rem, and 7, dr* = dvd. As
a result, division and remainder can also be expressed in terms of divrem™:

div(dvd, dvs) = modivrem*(
rem(dvd, dvs) = msdivrem*(

,dvd, dvs,

— —
0 0,N)
— —

0,dvd,dvs, 0 ,N).

)
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We are now in a position to express the key invariant property. Forn < N,

let dvdn = \i € below(N).if i < nthen dvd(N — n + i) else aux(i — n),
quotn = i € below(N).if i < N —n then dvd(i) else 0,
rem_n = \i € below(N).if i < nthen dvd(N — n + i) else rem(i — n),
dr* = divrem*(aux, dvd, dvs, rem, n)
in bv2nat(dvd_n) = 2" « bv2nat(dvs) * bv2nat(quotn) + bv2nat(rem_n)
—
bv2nat(m dr*) = bv2nat(dvs) * bv2nat(madr*) 4+ bv2nat(msdr*)

The proof of this property is far from trivial. The most interesting case is when n = N.
—

We then have dvd_n = dvd, quot_.n = 0 and rem_n = dvd, so that the antecedent of the

implication = trivially holds. This yields a first success:

bv2nat(dvd) = bv2nat(dvs) x bv2nat(div(dvd, dvs)) + bv2nat(rem(dvd, dvs)).
It is not hard to prove the expected upperbound for remainder: ©
bv2nat(dvs) # 0 = bv2nat(rem(dvd, dvs)) < bv2nat(dvs). (7
The restriction to non-null divisors is relevant, because:

div(dvd, 0) =1 and rem(dvd, 0) = dvd.

Division and remainder in Java throw an exception when the divisor is null. This be-
haviour is realised in the semantics used by the LOOP tool via a wrapper function
around the bitvector operations that we are describing. But this wrapper is omitted here.

These two results (6) and (7) characterise division and remainder, in the following
sense.

Vq,r € N. bv2nat(dvs) = g + r = bv2nat(dvd) A r < bv2nat(dvs)

8
= ¢ = bv2nat(div(dvd, dvs)) A r = bv2nat(rem(dvd, dvs)). ©

This is, together with (6) and (7), the main result of this section. It allows us to prove
various results about (unsigned) division and remainder, such as:
div(dvd,1) = dvd and rem(dvd,1) = 0.

And:
bv2nat(div(dvd, dvs)) = 0 <= bv2nat(dvd) < bv2nat(dvs).

7 Signed Division and Remainder

Our aim in this section is first to introduce signed division and remainder operations,
and prove the analogues of (6), (7) and (8). Next we intend to prove the properties that
are listed in the Java Language Specification [8] about division and remainder.
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Before we move from unsigned division and remainder to the signed versions (as
used in Java), we recall that:

5/3=1 5%3 =2
5/-3=-1 5% —3=2
—5/3=-1 —5%3=—2
—5/-3=1 —5% —3=—2.

In line with these results, we make the following case distinctions:

dvd / dvs dvd % dvs
&' it bv2int(dvd) > 0 &' it bv2int(dvd) > 0

then if bv2int(dvs) > 0 then if bv2int(dvs) > 0
then div(dvd, dvs) then rem(dvd, dvs)
else — div(dvd, —dvs)) else rem(dvd, —dvs))

else if bv2int(dvs) > 0 else if bv2int(dvs) > 0
then — div(—dvd, dvs)) then — rem(—dvd, dvs))
else div(—dvd, —dvs) else — rem(—dvd, —dvs)

Using the properties of unsigned division and remainder we quickly get:

. dvd % 0 = dvd
1 otherwise.

T if bv2int(dvd) > 0
dvd | 0 = { ! e =
dvd | 1= dvd dvd%1=10.

The signed analogue of (7) involves the absolute value function:
bv2int(dvs) # 0 = abs(bv2int(dvd % dvs)) < abs(bv2int(dvs)). 9)

The analogue of (6) involves an overflow exception:

—(bv2int(dvd) = =2~ A bv2int(dvs) = —1)
— (10)
bv2int(dvd) = bv2int(dvs) x bv2int(dvd / dvs) + bv2int(dvd % dvs).

The proof of this property is obtained from (6), applied after the various case distinc-
—

tions. The overflow case — when dvd = minint and dvs = 1 — does not satisfy (10)

because:

bv2int(minint / 1) = —2N-1 bv2int(minint % 1) = 0.

Actually, we can move the bv2int’s in (10) to the outside and remove them (because
bv2int is injective). This yields:

dvd = dvs * (dvd/ dvs) + (dvd % dvs). (11
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The restriction from (10) disappears in this form — where * is multiplication from Sec-
tion 5, with its own overflow behaviour.

Next we turn to the sign of signed division and remainder. It is most complicated
for division.

—(bv2int(dvd) = =2V~ A bv2int(dvs) = —1) A bv2int(dvs) # 0
.
(bvzint(dvd/ dvs) > 0 < (bv2int(dvd) > bv2int(dvs) A bv2int(dvs) > 0)
V (bv2int(dvd) < bv2int(dvs) A bv2int(dvs) < o))
(12)
bv2int(dvd / dvs) = 0 < abs(bv2int(dvd)) < abs(bv2int(dvs))>

bv2int(dvd / dvs) < 0 < (bv2int(dvd) > —bv2int(dvs) A bv2int(dvs) < 0)
V (bv2int(dvd) < —bv2int(dvs) A bv2int(dvs) > O))

E
<

About the sign of the remainder we can only say it is determined by the sign of the
dividend:

bv2int(dvd) > 0 = bv2int(dvd % dvs)

>0
- 13
bv2int(dvd) < 0 = bv2int(dvd % dvs) <0 (13)

The uniqueness of signed division and remainder requires more assumptions than
in the unsigned case (8). It involves for instance the above sign descriptions.

Vq,r € Z. =(bv2int(dvd) = -2V~ A bv2int(dvs) = —1) A
bv2int(dvs) #0 A
(4> 0« (bv2int(dvd) > bv2int(dvs) A bv2int(ds) > 0)
V (bv2int(dvd) < bv2int(dvs) A bv2int(dvs) < 0)) A
q = 0 < abs(bv2int(dvd)) < abs(bv2int(dvs))) A
g <0< (bv2int(dvd) > —bv2int(dvs) A bv2int(dvs) < 0)
V (bv2int(dvd) < —bv2int(dvs) A bv2int(dvs) > o)) A (14)
bv2int(dvd) > 0=1r>0) A
bv2int(dvd) <0 =1r <0) A
abs(r) < abs(bv2int(dvs)) A
bv2int(dvs) * ¢ + r = bv2int(dvd)
=
q = bv2int(dvd / dvs) A r = bv2int(dvd % dvs).
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As consequence, we obtain the relation between widening and division & remain-
der, following (3) for addition and (4) for multiplication.

—(bv2int(dvd) = =2~ A bv2int(dvs) = —1)
= widen(dvd) / widen(dvs) = widen(dvd / dvs) A (15)
widen(dvd) % widen(dvs) = widen(dvd % dvs).

As another consequence we can relate division and remainder for bitvectors to their
mathematical counterparts (for integers). In order to do so we use the floor and frac-
tional functions® from the standard PVS library. For a real z, floor(x) is the unique
integer ¢ with ¢ < x < i + 1. And fractional(z) is then = — floor(x), which is in the
interval [0, 1). The main result is split in two parts. The difference is in the “+1” and
“—1” in the last two lines.

= (bv2int(dvd) = —2N~1 A bv2int(dvs) = —1) A
((bv2int(dvd) = 0 A bv2int(dvs) # 0) vV
(bv2int(dvd) > 0 A bv2int(dvs) > 0) V
(bv2int(dvd) < 0 A bv2int(dvs) < 0) V
(bv2int(dvs) # 0 A 3n € Z.bv2int(dvd) = n  bv2int(dvs)) )
= bv2int(dvd / dvs) = floor(bv2int(dvd) / bv2int(dvs)) A
bv2int(dvd % dvs) = bv2int(dvs) * fractional(bv2int(dvd) / bv2int(dvs)).

((bv2int(dvd) > 0 A bv2int(dvs) < 0) V
(bv2int(dvd) < 0 A bv2int(dvs) > 0) ) A
—3n € Z.bv2int(dvd) = n = bv2int(dvs))
= bv2int(dvd / dvs) = floor(bv2int(dvd) / bv2int(dvs)) + 1 A
bv2int(dvd % dvs) =bv2int(dvs) * (fractional(bv2int(dvd) / bv2int(dvs)) — 1).

Such results are used as definitions in [16].
7.1 Division in Java

We start with a quote from the Java Language Specification [8, §§15.17.2].

Integer division rounds toward 0. That is, the quotient produced for operands n and d
that are integers after binary numeric promotion (§5.6.2) is an integer value g whose
magnitude is as large as possible while satisfying |d * ¢| < |n|; moreover, ¢ is positive
when and n and d have the same sign, but ¢ is negative when and n and d have opposite
signs. There is one special case that does not satisfy this rule: if the dividend is the
negative integer of largest possible magnitude for its type, and the divisor is -1, then
integer overflow occurs and the result is equal to the dividend. Despite the overflow,
no exception is thrown in this case. On the other hand, if the value of the divisor in an
integer division is 0, then an ArithmeticException is thrown.

3> Developed by Paul Miner.
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We check that all these properties hold for our signed division and remainder operations
defined on bitvectors in PVS. The first property stating that the quotient is *.. . as large
as possible ...” is formalised (and proven) as:

Vq: Z. bv2int(dvs) # 0 A abs(bv2int(dvs) = q) < abs(bv2int(dvd))
= abs(q) < abs(bv2int(dvd / dvs)).

The sign of the quotient has already been described in (12). And the “...one special
case ...” in this quote refers to the assumption in (10).

7.2 Remainder in Java

The relevant quote [8, §§15.17.3] says:

The remainder operation for operands that are integers after binary numeric promotion
(85.6.2) produces a result value such that (a/b) * b+ (a%b) is equal to a. This identity
holds even in the special case that the dividend is the negative integer of largest possible
magnitude for its type and the divisor is -1 (the remainder is 0). It follows from this
rule that the result of the remainder operation can be negative only if the dividend is
negative, and can be positive only if the dividend is positive; moreover, the magnitude
of the result is always less than the magnitude of the divisor. If the value of the divisor
for an integer remainder operator is 0, then an ArithmeticException is thrown.

The identity “(a/b) xb+ (a%b) is equal to a” in this quote holds as (11), indeed without
the restriction that occurs in (10). The statement about the sign of the remainder is stated
in (13), and about its magnitude in (9).

We conclude that all properties of division and remainder required in the Java Lan-
guage Specification hold for our formalisation in PVS.

8 Conclusions

This paper formalises the details of multiplication, division and remainder operations
for bitvectors in the higher order logic of the theorem prover PVS, and makes precise
which properties that this formalisation satisfies. This is typical theorem prover work,
involving many subtle details and case distinctions (which humans easily get wrong).
The main application area is Java program verification. Therefore, the relation between
the newly defined bitvector operations and Java’s widening and narrowing functions
gets much attention.

The theories underlying this paper have recently been included (by Sam Owre) in
the bitvector library of PVS version 3.0 (and upwards). Also, the bitvector semantics is
now heavily used for verifying specific Java programs, see for instance [11].
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