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Abstract. We have implemented an effective and publicly available
tool, VETOT, to track and quantify the evolution of tumors and or-
gans over time. VETOT includes a framework both for registration and
segmentation. We have evaluated the accuracy and reliability of differ-
ent level set segmentation methods in order to validate this part of our
software and evaluate its usability. In addition to the registration and
segmentation frameworks, our program allows the creation of inter- and
intra-patient atlases based on a common coordinate system defined by
the landmarks selected during the registration process. Based on the Na-
tional Library of Medicine’s Insight toolkit, this free software is exten-
sible and provides an intuitive interface that allows very fast processing
with minimum training. This paper details VETOT and our level set
segmentation evaluation.

1 Introduction

Tracking organ and tumor changes over time is a well-known problem in medical
imaging [7R]. Every organ in the human body is subject to displacement and
deformations. This is particularly true in the abdominal area, which is affected
by bladder and rectal filling variations. For these reasons, even within the same
patient, comparing two images taken at different times can be a difficult task.

In the clinical application that motivated this research, individual uterine
fibroids need to be tracked over time. This requires registering images so that
the same fibroids can be recognized in consecutive images. Once corresponding
fibroids are found, one wants to segment them so that, for instance, their vol-
umes can be compared. This same need to segment features is evident in many
applications where patient images are tracked over time.

We have created a tool that addresses these needs, which we call VETOT, for
Volume Estimation and Tracking over Time. VETOT combines rigid landmark-
based and mutual information registration and offers two different types of level
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set segmentation methods: fast marching level sets |2] and geodesic active con-
tours [1]. We have also implemented a method for creating segmented volume
atlases based on anatomical landmarks that are provided by the user during
the registration process. In the rest of the paper we first provide details about
the software implementation and explain how our approach has the advantage
of being generic, widely applicable to the medical field and user-friendly. We
then present the registration process implemented in VETOT and discuss the
two level set segmentation methods that we evaluated for this application. This
paper concludes with a presentation of our results and some directions for future
work.

2 Description of the Software

A driving design goal for VETOT has been to minimize the requirement that
users understand the mathematical details of the underlying algorithms. Some
of the algorithms that we use for segmentation and registration depend on user
settable parameters, but we hide almost all of these parameters from the user,
either by computing them automatically, or inferring them from more intuitive
user inputs.

The registration framework of VETOT only requires the user to select four
anatomical landmarks in each of the two images. Typically, the landmarks are
chosen to make up an anterior-posterior pair and a left-right pair, but the only re-
quirement for registration is that they be easy for the user to find and sufficiently
well-separated. The software then performs an initial rigid landmark-based reg-
istration followed by a rigid mutual information registration step that requires
no further user interaction.

The segmentation process requires only slightly more human input. The user
chooses a point in the interior of the region to be segmented, and another point
just outside the boundary. Those two indicators are used to set a number of
parameters for the segmentation algorithms. The user must also specify a num-
ber of iterations, which can be adjusted interactively if the segmented feature
appears too large or too small. The geodesic active contour approach also re-
quires a smoothness constraint that is set by choosing which one of three icons
(circle, ellipse, or irregular blob) fits the overall appearance of the feature to be
segmented.

VETOT makes it possible to register and segment volumes in less than five
minutes. It also provides useful abilities for volume localization in three dimen-
sions.

3 Registration

The registration framework implemented in VETOT proceeds in two stages. The
process begins with a rigid landmark-based registration that roughly registers
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the two data sets. The registration is then refined by a rigid mutual informa-
tion registration, which is known to be a consistent and accurate registration
technique [0].

3.1 Rigid Landmark-Based Registration

We use landmark-based registration as a preliminary registration step because it
is fast, it works regardless of the size of the initial displacement, and it provides
good enough results to serve as a starting point for mutual information registra-
tion. Moreover, the landmarks provide a way to generate a coordinate system
that we can use to compare data from multiple patients, and therefore to create
tumor and volume atlases. The landmark-based rigid registration consists of a
least square distance minimization between pairs of landmarks specified by the
user.

3.2 Rigid Mutual Information Registration

We use mutual information registration [6] since it provides particularly consis-
tent results. The intuition behind mutual information registration is that, if two
images are registered properly, the value of a pixel on one image will substan-
tially reduce one’s uncertainty about the value of the corresponding pixel on the
other image. The mutual information metric measures, over all of the voxels in
a region of interest in the image, the total reduction in uncertainty. A gradi-
ent descent optimization is performed over the space of rigid transformations to
maximize the mutual information score.

Of course, organs do not always move rigidly, especially in the abdominal
cavity. However, we have found that rigid registration works well in practice.
It is important to bear in mind that the principal goal of our registration is to
facilitate the visual comparison of images taken at different times. Some misalign-
ment is acceptable, but it is essential that the registration be fast. In addition,
deformable registration is more difficult to analyze than rigid registration. While
rigid registration produces grosser artifacts, it is easier to understand the nature
of the artifacts than with deformable registration.

The landmarks specified for landmark-based registration can also serve to
define the region of interest for the nutual information registration. In this way
the rigid registration of a particular organ can be achieved despite surrounding
deformations, and we have found that fixed parameters work in a wide range of
cases.

The preliminary landmark-based registration method allows an automatic
selection of a region of interest for the mutual information registration. The
user does not have to perform any extra parameterization in order to register a
specific organ shown in the image. Since the landmark-based registration always
brings the two data sets close to one another, we are able to use fixed parameters
that work generically.
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3.3 Atlas Coordinate System Construction

The landmarks selected by the user during the registration process also give us
the ability to create a pair of two-dimensional coordinate systems which can in
turn be used to create atlases of tumor locations. To do this, we define v to be
the vector from the posterior landmark to the anterior landmark, and vy to be
the vector from the left landmark to the right landmark. Then let v3 = vq X vg,
so that that v3 is orthogonal to both vi and vo. These three vectors could form
the basis for a coordinate system, but they provide no natural point to serve as
an origin in the physical space of the patient. Rather than arbitrarily choosing
a single origin, we create two planes P and P’, respectively defined by (v, vs)
and (va,v3).

We define a coordinate system for P with the basis {vy,||v1|[Vvs}, where
v3 is taken to be the unit vector in the direction of vs. Thus, the two basis
vectors of P are orthogonal and of the same length. Similarly, P’ has the basis
{va,||v2||¥3}. The origin of P is placed at the right hand landmark, and the
origin of P’ at the posterior landmark. Using these two coordinate systems, we
can identify any point p in the three-dimensional space by its projections onto
P and P’. In P, the posterior landmark corresponds to (0,0), and the anterior
landmark to (1,0). Similarly, in P’, the right landmark corresponds to (0, 0), and
the left landmark to (1,0). By projecting tumor locations onto these two planes,
we can get atlases of tumor locations with respect to each pair of landmarks. By
suppressing the vertical component of one plane or the other, the atlases can also
be merged into a three dimensional atlas in two different ways. Depending on
which z-component is retained, either the anterior-posterior pair or the left-right
pair of landmarks define the origin of the combined atlas.

4 Segmentation

VETOT has been implemented to use either of two level-set segmentation meth-
ods, the fast marching approach of Sethian [2] and the geodesic active countours
of Caselles, Kimmel, and Sapiro [I]. As part of our development, we have evalu-
ated and compared these two methods. In this section, we first discuss the level
set methods, after which we present the results of our evaluation.

4.1 Level Set Background

Level set methods are part of the family of segmentation algorithms that rely on
the propagation of an approximate initial boundary under the influence of image
forces. What distinguishes them from other boundary propagation methods is
that they represent the boundary implicitly as the zero level set of a function
f(x), that is, the set of points such that f(x) = 0. It is the function f that is
made to evolve based on image forces and internal smoothing forces; two benefits
of this approach are that there is no dependence on parameterization, and the
representation of the boundary as an implicit function allows one region to split
into two, or vice versa, if the image warrants it.
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It is worth noting that, whenever two algorithms are compared empirically,
it is actually implementations, not merely algorithms, that are being compared.
In this paper we are specifically evaluating the two algorithms as implemented
in the Insight toolkit.

4.2 Fast Marching Segmentation

Conceptually, the fast marching segmentation approach generates a solution to
an Eikonal equation, that is, one that characterizes the propagation of a front
based only on a speed image. The speed image is based on the magnitude of the
image intensity gradient, so that the speed is high where the gradient is low (i.e.,
away from boundaries) and the speed is low where the gradient is high. The front
starts at a seed point and proceeds outward, and the output of the algorithm is a
time crossing map that indicates at each pixel the time that it would take to the
propagation front to reach this pixel. If the image is thresholded at a particular
time, the threshold boundary indicates the location of the front at that time.
The term “fast marching” actually refers to the numerical solver of the Eikonal
equation. Other solvers could be used in this framework, but the fast marching
method is particularly efficient.

The main advantage of this segmentation method is that it runs truly fast
(less than 15 seconds on average for an image of size 384x512x131). Once the time
crossing map has been computed, it is only necessary to compute the threshold
in order to get a segmentation of the tumor. However, the absence of control
over the shape of the front reduces the accuracy of the segmentation. In cases
with low-contrast edges, this approach may be inefficient since there is no way
to prevent the front from leaking where edges are not well defined. We evaluate
and analyze this matter in further detail in Sec.

4.3 Geodesic Active Contour Segmentation

The geodesic active contours approach is based on a more complicated differen-
tial equation that has two significant advantages. First, it is based on velocity,
not speed, so that propagation can be directed inward if the front finds itself
beyond the boundary of the region. Second, it responds to internal forces that
tend to resist sharp curvature, reducing the tendency of the contour to leak out
through small regions of low contrast. The main disadvantage of this method
is that it is slower than the fast marching method. Also, the image it produces
does not encode the propagation of the front over time, so one cannot quickly
“rewind” to see what the front would have looked like after a smaller number of
iterations.

The geodesic active contour filter needs an initial segmentation as input,
rather than a simple seed point. As an initial segmentation, we use a sphere of
radius equal to a tenth of an estimated radius given by the user clicks well inside
and just outside the boundary of the feature to be segmented.
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4.4 Preprocessing

There are a number of preprocessing steps that must be performed on an image
before it can be segmentented by either of the two level set methods we use. We
briefly discuss them here.

First we crop the image to a suitable region of interest, which considerably
speeds up the segmentation process. The region of interest is determined based
on the landmarks used to register images, and is not explicitly given by the user.

After cropping, we run a smoothing filter to reduce image noise. We use
a curvature anisotropic diffusion filter [3]. Such nonlinear diffusion method is
especially suitable because we wish to preserve edges, and remove point noise.

The smoothed image is then used to produce a gradient magnitude image
that determines the speed of propagation of the segmentation contour. In prin-
ciple the gradient magnitude image can be given to the level-sets-based method
directly, but we apply a sigmoid function to emphasize the dynamic range of the
boundary, and suppress it elsewhere. Such functions require that appropriate
parameters be set. We determine those parameters using a histogram analysis
along the line defined by user clicks.

5 Validation

The validation protocol contains three parts to estimate accuracy and reliability
of level set segmentation methods implemented in VETOT.

Firstly, accuracy evaluation consists of segmenting an MR image of a surgical
glove filled up with a known amount of water. We segment the same structure
ten times and compare the mean to the real volume.

Secondly, reliability of the different methods is evaluated by comparing the
volume of the same tumor as segmented by ten different users. We calculate the
mean and standard deviation of tumor volumes. In order to estimate if increasing
voxel size would allow speeding up the segmentation process without significantly
affecting accuracy, we have compared the segmentation results obtained for an
image with isotropic voxels to the same image with a spacing multiplied by 2
along each dimension. Each user has reported the volume estimation, the time
necessary to perform the segmentation and the parameters necessary to obtain
a satisfactory segmentation.

Lastly, each segmentation has been saved and then processed using Valmet,
which is available at http://zeus.ia.unc.edu/public/valmet. Valmet is a tool for
segmentation validation that applies a set of standard quantitative evaluation
such as percentage overlap, mean/median absolute distances between surfaces
and Hausdorff distance.

These results suggest that both methods are consistent even though there
are some significant differences. In particular, the fast marching method actu-
ally provided more consistent performance across users. For both methods the
Hausdorff distance for select users was over 10 voxels due to leakage of the con-
tour into neighboring fibroids. Fig Blshows an example of Haussdorf distance for
both methods. The light gray values corresponds to short distance while dark
gray value reflects longer distances. In Fig Bl the smoothness constraint of the
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Volume (mm3) 490000
Estimated volume (mm3)|466919
Standard Deviation 13879

Fig. 1. Accuracy validation by comparison of an average segmented volume,using the
geodesic active contour approach, to a known volume. The fast marching method did
not give satisfactory results due to the anisotropic nature of data.

Isotropic Isotropic half-size

Geodesic Geodesic

Fast Marching|Active Contour|Fast Marching|Active Contour

average volume(mm3) 48782 53948 47222 53931
standard deviation 6234 8267 6525 9059
average iteration 47 65 22 36
standard deviation 7 6 4 8
laverage time 4’307 | 87007 | 37307] 4’307 |

Fig. 2. Estimation of the reliability of the segmentation method.

Fig. 3. This figure shows two slices of the data used for our reliability study. The two
other images represent the haussdorf distance between segmented tumors obtained with
the fast marching method (left) and with geodesic active contours (right). It is worth
noticing that the edge at one end of the tumor is barely noticeable (pointed by the
arrow). Despite the abscence of sharp edge, we can see that the geodesic segmentation
results stay consistent while the fast marching technique provides abnormalities.

Geodesic

Fast Marching|Active Contour

Haussdorf distance 9.8288514 10.253
standard deviation| 4.704292362 3.493

Fig. 4. This table presents the average Haussdorf distance we obtained for each seg-
mentation method, as well as the corresponding standard deviation. We can notice that,
as expected, the geodesic active contour approach provides more consistent behavior.
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geodesic active contour provided additional stability to the segmentation. How-
ever, in general, geodesic active contour leakage was very sensitive to the initial
seed point, the smoothness constraint and particularly the number of iterations.
User reported more difficulty in adjusting these parameters to attain a desired
segmentation. Fast marching leakage was dependent solely on the number of
iterations. Users reported less frustration in trying to manage the parameter.
We believe that these results are quite specific to the difficult nature of fibroid
segmentation in these data. Nevertheless, on such clinically relevant segmenta-
tion tasks, the simplicity, speed and intuitive behavior of fast marching lead to
increased clinical performance compared to geodesic active contours.

6 Conclusion

VETOT is innovative and user-friendly software that provides an efficient way
to track a wide variety of volumes and tumors over time. It gives accurate and
reliable results in a couple of minutes. It also allows the comparison of intra
and inter-patient data for creation of atlases. This package is downloadable for
free on our web site (http://www.caddlab.rad.unc.edu) and has been developed
using the National Library of Medicine’s Insight toolkit. It is very easy to extend
and showcases the most recent medical image processing methods added to ITK.
This work was supported by the NIEHS, and in part by NLM NO1 LM 03501.
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