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Abstract. Quantitative measurements of changes in evolving brain pathology,
such as multiple sclerosis lesions and brain tumors, are important for clinicians
to perform pertinent diagnoses and to help in patient follow-up. Lesions or
tumors can vary over time in size, shape, location and composition because of
natural pathological processes or the effect of a drug treatment or therapy. In
the past, people have used as a quantitative measurement the change in total or
regional lesion/tumor volume. In this paper we propose a new model to quantify
changes in evolving processes in multimodal 3D medical images. We believe
this model reflects changes in pathology more accurately because it
simultaneously takes into account information in multiple imaging modalities
and the location of lesion/tumor voxels. We demonstrate the effectiveness of
this model with experiments on synthetic lesion data.

1   Introduction
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The main source of in-vivo information about lesion/tumor growth is magnetic
resonance imaging (MRI) [11]. Classical quantitative methods for quantifying lesion
growth include measuring total lesion volume and regional lesion volume. The
volume variation is an index of the lesion evolution. Total lesion volume is only an
approximate correlate of clinical disease severity in part because it fails to take into
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account the fact that lesions in different regions of the brain may have different types
and degrees of clinical impact.

Regional lesion volume takes location information into account, however both total
and regional lesion measurements have typically relied on a single imaging modality
at a time. There is evidence to suggest that multispectral approaches will yield a better
correspondence between imaging findings and clinical symptoms [5].  In this paper
we introduce a new method of quantifying regional changes in evolving
lesions/tumors in multimodal 3D medical images. The main idea is to use the
weighted sum of the distances of feature vectors for each voxel between two different
time points. Voxels will be weighted differently depending on their location.

To demonstrate the effectiveness of a lesion/tumor analysis metric for predicting
clinical status, it is customary to correlate the metric with clinical status scales. In
studies of MS, for example, the Expanded Disability Status Scale (EDSS) is often
used as an indication of clinical status. Neuropsychological tests provide a useful
metric when the goal is to predict cognitive symptoms based on MRI data. A high
correlation indicates that the metric accurately reflects clinically relevant changes in
pathology. We model the problem of finding the optimal weights to maximize this
correlation as a constraint optimization problem and discuss algorithms to solve this
problem.

This paper is organized as follows: Section 2 reviews related work on quantitative
lesion/tumor analysis. Section 3 gives the proposed Weighted Sum of the Vector
Distances (WSVD) approach. Section 4 discusses weights optimization algorithms.
Section 5 presents preliminary experimental results using synthetic lesion data.
Section 6 lists the conclusions and directions for future work.

2   Background and Related Work

Previous quantitative lesion tracking research [2, 3, 8] used total lesion volume and
regional lesion volume to quantify lesion growth using one or two MRI modalities.
Total lesion volume disregards location information and both approaches are limited
to using one imaging modality.

Thirion et al. [9] examined explicitly the quantitative measurement of volume
variations over time. However, they measured global change in lesion volumes, not
local changes.

Recently, Mainero et al. [5] reported that composite MR scores computed using
multivariate linear regression models were strongly correlated with EDSS scores in
patients with MS, while the correlations between EDSS score and each of the MR
quantities (T2 lesion volume, T1 lesion volume, brain magnetization transfer ratio,
etc.) taken in isolation were not significant. Tzika et al. [10]  also demonstrated that
using multiple MRI modalities can enhance assessment of brain tumors in children.
These studies demonstrated the usefulness of multispectral approaches, but did not
address the importance of lesion location. Our proposed approach is longitudinal,
multispectral, and takes location information into account.
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Table 1. MS Pathology Tracking Database. All scans registered to the spoiled grasse (SPGR)
sequence, with “voxel” referring to SPGR voxel. The SPGR scan is registered to the standard
brain atlas

Voxel
Coordinates

(x,y,z)

DTI FLAIR Post
Gad

SPGR
black-
holes

Interpretation

1,1,1 1 1 1 1
�������� �����
���� ������� ����������
 ������		���������������

1,1,2 1 0 0 0

Change in normal-appearing brain
tissue with no evidence of defined
lesion or blood-brain barrier
breakdown

1,1,3 1 1 0 0 Chronic, nonactive pathology

1,1,4 0 1 1 0 Active pathology

… … … … … …

This work is a natural extension of the In-vivo Pathology Tracking (IPT) approach
proposed in [6]. The IPT system is a low-level database that can be used to analyze
different MR modalities using different approaches. In the IPT system, voxels in each
type of MR scans are coded for the presence or absence of pathology for each subject
and entered in a database along with the location of the voxel in standard three-
dimensional atlas space (xyz coordinates). Scans are assessed independently, after
which the various combinations of normalcy or pathology on the different imaging
techniques yield different characterizations of and prognoses for each voxel (Table 1).
This approach lends itself to the use of combined imaging modalities in clinical
practice, and to research applications involving the correlation of symptoms and brain
activity patterns with disease-related structural brain abnormalities.

3   Weighted Sum of the Vector Distances (WSVD)

To quantify lesion/tumor changes in multimodal medical images, we propose a new
approach called Weighted Sum of the Vector Distances (WSVD). As the name
indicates, the WSVD method models the lesion/tumor change from time point t1 and t2

as the weighted sum of the vector distances between voxels at time point t1 and t2 in
the IPT database.

Suppose the voxels are labeled vijk, where i, j and k are integers labeling the voxels
along the x, y and z axes respectively. Suppose we use n imaging modalities M1

through Mn. Let Mm(ijk, t) denote the scalar for voxel vijk at time point t in imaging
modality Mm. The value of Mm(ijk, t) is either 1 or 0 depending on whether it is labeled
as a lesion/tumor voxel or not:
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(a)                (b)                (c)                (d)

Fig. 1. (a) and (b) Show lesions with potentially different clinical implications. (a) shows a
lesion in the centrum semiovale proximal to cortical association regions, important for higher
cognitive functioning. (b) shows a lesion of similar size and intensity in a smaller anterior
corticofugal white matter bundle with possible implications for motor functioning.  In general,
given the size of the two lesions relative to the respective white matter regions in which they
are located, the second could be hypothesized to have greater impact on clinical status as it is
essentially occupying the pathway in which it is located. (c) and (d) show lesions at different
time points. Despite the depicted differences in these lesions, they are located in the same
region and are of approximately the same volume. Because our WSVD method examines
changes in the lesion voxels in standard space, it is capable of quantifying the differences in (a)
vs (b) and in (c) vs (d)
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Let

� # &� � � �� � � ������ � � ����� � �� � ��� � � ��� � � ��� �=� (2)

denote the feature vector for voxel vijk at time point t.

For example, the voxel data at time point t illustrated in Table 1 becomes

###� �#�#�#�#��� =�
 and ##&� �#�%�%�%��� =�

, etc.

Let D(t1, t2) denote the lesion/tumor change from time point t1 and t2. We define
D(t1, t2) as follows.

# &# & � �� � � � � ���� ��� � ��� �
��� 	


 � � � � � �
∈

= ∑ � � (3)

where

'#� ����� ∈ +∞ is the weight assigned to voxel vijk based on its location in the brain;

S = {ijk | vijk is a lesion/tumor voxel at some time point in some imaging modality};

# &� �� � ���� � ��� �� � �
� �

is the vector distance between 
#���� ��

�
and

&���� ��
�

.



Quantifying Evolving Processes in Multimodal 3D Medical Images         105

We then assign the weights using the following two approaches:
1.�Voxel-based approach

In this approach, we use an independent weight variable for each voxel. So if the
scans have resolution 256x256x48, there will be 3.15x106 different weight variables.
2.�Atlas-based approach

In this approach, we use an independent weight variable for each brain structure.
Let Wh be the weight assigned to brain structure H. We define

� ���� 
 ���� � � � �= ⋅ ∈∑ (4)

where � ����� � �∈ is the probability that voxel ����  belongs to brain structure H.

To compute the vector distance
# &� �� � ���� � ��� �� � �

� �
, we can use two approaches.

1.�Apply a distance measure
For example, we can use the generalized Minkowski metric (Lr metric):

#

� � � ( (
�

�
� � �

�

� � � � �
=

= −∑
(5)

Three special cases of Lr metric are of particular interest, namely, r = 1(Manhattan
distance), r = 2(Euclidean distance), and ��)�*�
2.�User-specified distance matrix

Due to the complex nature of pathological changes, a distance matrix filled with
empirical values chosen by the user may be more suitable than distance functions. In
the distance matrix, the rows and columns represent all the possible feature vectors of
length n. The value of the matrix element aij represents whether the observed change
from the vector represented by row i to the vector represented by column j reflects
deterioration or improvement in tissue integrity. If we have n=4 imaging modalities,

the distance matrix is of size + +& &× .
This WSVD model is more general than lesion/tumor volume. In fact, if we have

only one imaging modality and assign weights of 1 to all the voxels, we get the
change of lesion volume.

4   Weights Optimization

Suppose we have scans taken at time point t1 through tn for k patients. We also have
patient performance tests taken for each patient at time point t1 through tn. We then
have k×n scores represented as s(1,1), s(1,2),…s(k,1), s(k,2), …, s(k,n).

The weights are the central part of this model. We want to find the optimal weights
Ws such that the correlation between Dl(ti, ti+1) for patient l and the changes of patient
test score yl,i = s(l, i) – s(l, i+1). We want to maximize the correlation coefficient
defined by
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Where
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subject to

#
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We solve this problem using the quasi-Newton method (see [7]). The quasi-
Newton method is a popular general-purpose algorithm for constrained optimization.
Then we normalize the resulting weights by dividing all the weights by the first
weight W1. This step is necessary because the algorithm may converge at equivalent
but different weights depending on the initialization.

5� Experiments

To test the effectiveness of the proposed approach, we experimented with synthetic
MS lesion data. A series of synthetic Fluid Attenuated Inversion Recovery (FLAIR)
lesion scans, simulating scans taken at 12 time points, were generated using the SDC
Morphology Toolbox for MATLAB V1.2. [1]. Synthetic lesions were generated by
applying mathematical morphological operators on a segmented FLAIR lesion scan.
We artificially divided the whole brain into 8 regions and grew lesions only in the
region designated as frontal lobes. For other regions, lesion volumes were generated
randomly. We also generated corresponding synthetic Trail Making Test, Part B
scores for each of the 12 time points. The Trail Making Test, Part B is a standardized
measure of executive ability thought to correlate at least in part with frontal system
functioning [4]. The score on this test is the time to complete (in seconds) and can
range from 0 to 300 seconds. The synthetic scores on this test are generated based on
the lesion volume in the frontal lobes. We also added 30% noise to the synthetic
scores. Through this experiment, we investigated whether our method can assign
weights optimally and obtain strong correlation between lesion data and cognitive
tests.

The weights are initially set to 1, and the optimal weights as output are shown in
Fig. 2. As expected, the weight for region 2 (the region designated as the frontal
lobes) is significantly bigger than weights for other region. As shown in Table 2, with
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these weights, the correlation coefficient computed using formula (6) is –0.9237,
which is greater than the correlation coefficient (–0.7505) computed using total lesion
volume.  Therefore, our method shows a stronger correlation than the traditional
lesion load metric. The computed weights also reveal the underlying principle used to
generated the synthetic data, that is, that the frontal lobes are more important than
other regions in terms of executive functioning.

1.0

21,992.0

1.0 1.2 1.0 1.0

32.5

1.0100
101
102
103
104
105

W1 W2 W3 W4 W5 W6 W7 W8

Fig. 2. Optimal weights for each of the 8 brain regions are computed. The weight for the frontal
lobes is W

2
, which is greater than other weights

Table 2. Correlation coefficients computed with and without weights

With computed
optimal weights

Without weights
(all weights set to 1)

Correlation coeffiecent –0.9273 –0.7505

6   Discussion and Future Work

In this paper, we completed a preliminary test of our proposed WSVD method for
quantifying lesion/tumor changes. This new method:
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Our system is also an open data fusion framework that integrates disparate data
streams, and can incorporate other MR modalities, such as Diffusion Tensor Imaging
(DTI). Our current implementation combines both voxel-based and atlas-based
approaches. The weights are based on a standard brain atlas, but the changes are
computed at the voxel level. This is advantageous because, if we assign an
independent weight variable to each voxel, there would be too many weight variables
(the total number of voxels is about 3×106) and would require a huge dataset to
produce meaningful results. However, it would be interesting to investigate the
feasibility of a purely voxel-based approach, where we can apply dimensionality
reduction techniques, such as independent component analysis, to reduce the number
of weight variables. It is also possible to extend our method to optimize weights for
correlation with multiple test scores.

This paper represents the first test of our proposed WSVD method for predicting
the clinical relevance of MRI changes over time. For this initial work, we used a
simplified case with one imaging modality, FLAIR. It is unlikely that frontal MS
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lesion volume would grow steadily while the lesion changes in other regions were
random. The synthetic data were used only for testing the capability of the system to
find optimal weights. The WSVD method is designed to work with multiple MRI
modalities and application to multispectral data is in progress, as is clinical validation.
Other future work includes visualization of changes in MS lesions over time, and
development of similarity search algorithms based on the WSVD model to search for
similar series of MRI lesion scans in the IPT database.
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