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Abstract. An accurate surface model is necessary in many biomedical applica-
tions. An anatomical volume image, like MR volume image, is not always avail-
able. In this paper, we compare different, mainly previously published, registration
methods that can be used to generate an individual geometric model when the only
information on the patient is a set of digitized points from the surface of the skin. In
addition, different aspects of the 3-D point selection are studied. The comparison
is performed using 22 manually segmented thorax MR volume images.

1 Introduction

Detailed 3-D geometric models are needed in numerous scientific and industrial prob-
lems, such as in computer graphics and finite-element engineering problems. Also, in
the biomedical field, a wide range of applications exists utilizing individualized geomet-
ric data. The most accurate way to build a geometric model is to segment the objects
needed from anatomical volume data, such as MR or CT volume images. However, such
an image is not always available, in which case some other information must be used,
e.g. digitized surface points. This paper concentrates on techniques to reconstruct 3-D
geometry from a digitized 3-D point set. Although a few methods have been published
applicable to the problem, the comparison of the methods as well as the assessment of
different aspects of the problem have not been carefully evaluated.

The geometric data used in this study are sparse and unorganized which makes the
reconstruction of 3-D geometry difficult. The use of a priori geometric knowledge is
often a pre-requisite for successful reconstruction.Approaches encountering the problem
are not, however, numerous. Free-form deformations (FFD), allowing regularized 3-
D spatial transformation for a geometric a priori model, have been proposed for the
problem of sparse data sets [1,2]. In addition, methods utilizing information on typical
deformations derived from a database have been applied to sparse data [3,4]. The use of
physically based free-vibration modes have also been reported [5].

In this paper, the application area is the thorax. The presented methods can be applied
e.g. to solving the inverse problems of electro- (ECG) or magnetocardiography (MCG)
source localization studies, where individualized volume conductor models, which take
into account the variations in the size and shape of the body, and the internal inhomo-
geneities, must be used to achieve accurate results [6]. However, the methods reported
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can be as well applied to other regions of interest, such as real-time tracking in image
guided surgery [7].

The objective of the work described in this paper was to study how a surface point
set should be selected to build a geometric thorax model, and what is the accuracy of
different techniques to reconstruct the 3-D geometry. In the studied techniques, the com-
mon principle was to register an a priori surface model, consisting of the torso, left and
right lung, and epicardium surfaces, to the points located from the torso surface, i.e.,
the reconstruction problem was treated as a registration problem. Affine and non-rigid
registration approaches were tested in the 3-D reconstruction. In the non-rigid registra-
tion, both standard free-form deformation (FFD) grid as well as statistical deformation
models (SDMs) were validated. In addition, different approaches to choose an a priori
model were studied. A technique based on regression analysis was also proposed to
correct the location and size of the internal organs, as the points were located only from
the torso surface.

2 Material and Methods

2.1 Volume Image Database

The database used in this work consisted of the T1-weighted thorax MR volume images
of 22 subjects (11 males and 11 females). The original size of the volumes was 256 ×
256×40 and the voxel size was about 2×2×10 mm3. These volumes were transformed
into isotropic volumes: size 128×128×150, voxel size about 3.9×3.9×3.9 mm3. The
torso, both lungs, and epicardium were segmented from these volumes using a manual
segmentation software, and triangle surface models were generated.

2.2 Set of Surface Points

The registration accuracy depends certainly on the number and position of the surface
points. In practice, the number of the points should be kept as low as possible in order to
reduce the workload of clinical staff in digitization. In this work, different sets of surface
points were located from the torso surfaces in the MR volume images. In this way, we
were able to define the registration error outside the surface points (target registration
error) because the real geometry was available in the MR volume images.

In this study, five sets of surface points were compared (Fig. 1). Usually, when the
digitization takes place, the patient is lying on his/her back in a bed. Therefore, no points
can be digitized from the back. However, considering the registration accuracy, it is
important to have information from all directions. Therefore, three points were defined
from the back (Fig. 1f). This could be implemented e.g. by measuring the bed level and
using this information as a constrain in the registration. Also, four points were located
on the shoulders (Fig. 1f).

2.3 Affine Registration

Prior to non-rigid registration, an a priori surface model and target’s surface points
must be registered using a more constrained, such as rigid or affine, transformation to
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remove external variations from the data. In this study, we tested both seven-parameter
(translation, rotation and isotropic scaling) and nine-parameter (translation, rotation
and an-isotropic scaling) affine transformation. A software tool combining surface- and
landmark-based registration techniques was used [8]. The energy term to be minimized
was defined as Esurf + αEmrk, where α was a user specified weight. The energy
component Esurf determined the mean distance of target’s surface points from an a
priori surface model, while Emrk was the mean distance of corresponding anatomical
landmarks in both data sets. The minimum of the energy function was searched by a pa-
rameter grid technique, which was based on forking the registration parameter space [9].
For the thorax studied in this work, only a few anatomical landmarks could be defined,
such as the heads of clavicles, mammary papillae and navel. In this work, the heads of
clavicles near sternum were used (Fig. 1).

(a) (b) (c) (d) (e) (f)

Fig. 1. The sets of surface points: a) M16, b) M18, c) M28, d) M30, e) M53 and f) the points on
the shoulders and in the back. The uppermost point was defined from the head of clavicle. The
number after ”M” gives the size of the point set

2.4 Non-rigid Registration Using FFD

A software tool based on FFD grid was used to deform non-rigidly an a priori surface
model [10]. In FFD, the model was deformed by manipulating the locations of underlying
grid points. The transformation function T : x �→ x′ was defined by a tensor product:

T(x, y, z) =
l∑

i=0

m∑

j=0

n∑

k=0

Ql,i(x)Qm,j(y)Qn,k(z)Pijk, (1)

where Ql,i was a polynomial basis function and Pijk the position of the grid point ijk.
The energy to be minimized by FFD point displacements was Edata + γEmodel. Edata

was the average distance of target’s surface points from an a priori surface model. Emodel

regulated the transformation and it could be computed in several ways in the tool; the
curvature of the transformation, T, was regularized in this study (γ = 0.5). The energy
minimization was started with a sparse grid (3×3×3).After getting the energy minimum
for the current grid, the number of grid points was increased.

Because the selection of an a priori model used in FFD deformation affects notably on
the registration accuracy, three methods to choose the model were evaluated: 1) random
selection from a database, 2) use of an average model (Section 2.5), and 3) controlled
model selection from a database (Section 2.6).
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2.5 Average Model

An average model was constructed from the database using the approach presented
in [11]. First, a reference subject was selected and all database subjects were registered
with the reference subject using the seven-parameter affine registration. Next, the ref-
erence subject was non-rigidly registered to all database subjects using a surface-based
registration algorithm similar to [10]. The average model was achieved by computing an
average deformation field and applying this field to the surface model of the reference
subject.

2.6 Non-rigid Registration Using FFD with Model Selection

In the model selection [12], the most similar subject to a target was chosen from the
database, and its surface model was used as an a priori surface model in the non-rigid
registration. The similarity was measured based on features computed for each database
subject.

The features were computed from the surface points of a target and a database subject
after initial (affine) registration: distances between corresponding surface points of the
database subject and the target, distances of the target’s surface points from the database
subject’s torso surface, and differences in the surface points’ coordinates of the target
and the database subject. The similarity measure was a weighted linear combination of
the features, where the weights were optimized using regression analysis: the features
were used as independent variables and the registration error was used as a dependent
variable.

The position and size of the lungs and heart can vary a lot, even if the torso surfaces
were registered (Fig. 2a). Therefore, separate model selections for the torso and the
internal organs were tested, i.e., the torso surface and the surface of the internal organs
of an a priori model were selected from different subjects.

2.7 Corrections of Internal Organs

Since the registration was based only on the information from the torso surface, the
internal organs could be inaccurately registered. Therefore, we studied if the size and
position of the internal organs could be estimated from the shape of the torso surface. The
size and mass center of the internal organs were determined for each database subject.
After the initial registration, new (approximate) values for the size and mass center
were calculated based on the transformation parameters. The errors of these measures
between database subjects and a target were calculated and used as dependent variables
in four regression analyses (one for the size, and one for the x-, y- and z-directions).
The regression analyses were performed in the same way as in the model selection. The
regression analyses gave the estimates for the errors in the size and the position of the
mass center, and the internal organs were transformed according to these estimates.

2.8 Non-rigid Registration Using Statistical Deformation Model

Active shape model (ASM) [13] is a standard approach to deform a surface model
in a way that follows the variability of the shape in the database. In this study, the
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(a) (b)

Fig. 2. a) The mass centers of the internal organs of the database subjects after seven-parameter
affine registration into a same coordinate system. The average size of the internal organs was
2.3 dm3 and the standard deviation was 0.6 dm3. b) The average registration errors of the torso
surface for the seven-parameter affine registration. ”s” means that the points on the shoulders,
and ”b” that the points in the back were used in the registration. The weights α for the energy
component Emrk (Section 2.3) are given in the lower row

deformation could be defined only for one surface from which the points were digitized
but the transformation should have been applied to all surfaces of the model, i.e. the
transformation should have been volumetric. Therefore, a statistical deformation model
(SDM) [11] was computed from the data produced in Section 2.5. Instead of computing
the covariance of the surface model points, as in ASM, the covariance of the deformation
field, T : x �→ x′, was determined in SDM. The deformation fields were defined for a
FFD grid of size 15 × 15 × 10. The principal modes of the variation of the deformation
field were determined as the eigenvectors of the covariance matrix computed for the
FFD grid points.

The deformation of the average model was defined as a weighted sum of the eigen-
vectors. In the non-rigid registration, the problem was to find the optimal weights, b, for
the eigenvectors. In this study, the minimization of energy function E = E(b) was used.
The energy described the average distance of target’s surface points from the deformed
average surface model. A fast and relatively efficient minimization strategy was used:
the weights bi were changed in random order until the energy minimum was found.
The procedure was repeated 50 times and the solution producing the lowest energy was
chosen. The number of the eigenvectors used in the registration was determined so that
95% of the variance of the database was included in the eigenvectors.

3 Results

The studies were done using full leave-one-out cross-validation, i.e., each subject (N =
22) was once regarded as a target and remaining 21 subjects composed the database. The
results reported here are average values over all 22 targets. The registration error was
determined as an average distance from the manually segmented target surface (from
the nodes of the triangle surface) to a spatially transformed a priori surface model. In all
studies, the internal organs were treated as a one object to avoid topological problems.
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Table 1. The registration errors (mm) for different registration methods. Columns from the left:
7-parameter affine (7A) and 9-parameter affine (9A) registration, 7-parameter affine registration
using average models (7AA), non-rigid registration with the biggest grid size of 3 × 3 × 3 (F3),
7 × 7 × 7 (F7) and 12 × 12 × 12 (F12), non-rigid registration using average models (F12A,
F12AS, see text), registrations with model selections and corrections (M1, M2, M3 and M3S,
see text), and registration using SDMs. In the non-rigid registrations, the seven-parameter affine
registration was used as an initialization

7A 9A 7AA F3 F7 F12 F12A F12AS M1 M2 M3 M3S SDM
torso 11.56 11.24 9.17 8.66 8.23 8.22 6.99 7.15 6.34 6.34 6.34 6.40 7.92

int. org. 14.16 14.30 10.56 14.37 14.26 14.24 10.62 11.13 12.04 11.52 9.68 8.88 10.28
total 12.86 12.77 9.86 11.52 11.25 11.23 8.80 9.14 9.19 8.93 8.01 7.64 9.10

3.1 Set of Surface Points

The average registration errors of the torso surface for different point sets and for different
weights for the anatomical landmark, the head of clavicle, are presented in Fig. 2b for
the seven-parameter affine registration. A similar figure was achieved for the internal
organs, too. The difference between the point sets producing the smallest and the biggest
error was about 6 mm of the total error of about 14 mm indicating the importance of the
point selection. In practice, the distribution of the surface points appeared to be more
important than the number of the points: the registration error of the set M53 (α = 0.0)
(16.3 mm, 53 points) was bigger than the error of the set M16bs (α = 0.5) (11.6 mm,
23 points).

For further studies, the surface point set M16bs and weight α = 0.5 were selected.
Same studies were done using the point set M30bs, too, but no big differences existed.

3.2 Registration Methods

The registration errors (average values over all 22 targets) for different registration meth-
ods are presented in Table 1. In 7A, 9A, F3, F7 and F12, an a priori model was selected
randomly from the database. In practice, each database subject was once regarded as
an a priori model in the registration and the average error of these registrations was
calculated.

For the torso, the less constrained transformation was used the better results were
obtained, but at the same time the results for the internal organs were unchanged. In the
non-rigid registration using FFD, the best attainable error was achieved already with a
quite moderate maximum grid size: increasing the size above 7 × 7 × 7 did not increase
the accuracy.

The use of the average models improved the average results notably, both in the affine
(7AA) and non-rigid (F12A) registration. However, the errors of the average models
were bigger than the minimum errors of the individual subjects. If we had been able
to select from the database the subject which gave the best registration, the individual
subjects would have given smaller registration errors than the average models. Results
for different model selection procedures and for the corrections of the internal organs are
presented in columns M1, M2 and M3. The model selected for the torso was used also for
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Fig. 3. The best (upper row) and the worst (lower row) registration (M3S) for males

the internal organs in M1, and separate model selections for the torso and internal organs
were done in M2 and M3. In all cases, the non-rigid registration F12 was performed for
the torso surface. For the internal organs, only the seven-parameter affine registration
was done in M1 and M2, but in M3 the surfaces were furthermore transformed using the
method presented in Section 2.7. Both the separate model selections and the corrections
improved the registration accuracy. The total error of SDMs was worse than the error of
the average models or the best model selection procedure.

Above, no difference was made between males and females. However, there are
quite big differences in the thorax geometry of males and females. Hence, the database
was divided in two parts. When separate average models were constructed for males
and females, the average total error (F12AS) was bigger than when a common average
model was used (F12A), indicating that the database must be big enough when an average
model is used. The model selections and the corrections of the internal organs performed
better when the database was divided (M3S). In fact this was the best studied method
(Fig. 3). Especially, the error of the internal organs decreased.

4 Conclusion

In this work, different methods to build a geometric model using only a set of surface
points were compared. The number of surface points was not highly crucial, but they
had to be as uniformly distributed as possible. A reasonable weight (α ≈ 0.5) for the
anatomical landmark improved the results, indicating that the extra information from
accurate anatomical landmarks should be used. The best studied method was the non-
rigid registration using FFD with both the model selection and the corrections of the
internal organs.

It is evident that the database used in this study was too small and hence the statistical
models could not model accurately possible variations in the organs’ shape and position.
If the database had included all possible shapes, SDMs would have given much more
accurate results. Naturally, the model selection procedures would have given better
results in that case, too.

Obviously, a user can be more confident of the location and size of the internal organs
in the model built from an MR volume image than from a few surface points. However,
the methods tested provide a good approximation of the geometry if only very limited
geometric information is available.
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