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Abstract. Helix is a high-speed stream cipher with a built-in MAC
functionality. On a Pentium II CPU it is about twice as fast as Rijn-
dael or Twofish, and comparable in speed to RC4. The overhead per
encrypted/authenticated message is low, making it suitable for small
messages. It is efficient in both hardware and software, and with some
pre-computation can effectively switch keys on a per-message basis with-
out additional overhead.
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1 Introduction

Securing data in transmission is the most common real-life cryptographic prob-
lem. Basic security services require both encryption and authentication. This
is (almost) always done using a symmetric cipher—public-key systems are only
used to set up symmetric keys—and a Message Authentication Code (MAC).

The AES process provided a number of very good block cipher designs, as
well as a new block cipher standard. The cryptographic community learned a
lot during the selection process about the engineering criteria for a good cipher.
AES candidates were compared in performance and cost in many different imple-
mentation settings. We learned more about the importance of fast re-keying and
tiny-memory implementations, the cost of S-boxes and circuit-depth for hard-
ware implementations, the slowness of multiplication on some platforms, and
other performance considerations.

The community also learned about the difference of cryptanalysis in theory
versus cryptanalysis in practice. Many block cipher modes restrict the types of
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attack that can be performed on the underlying block cipher. Yet the gener-
ally accepted attack model for block ciphers is very liberal. Any method that
distinguishes the block cipher from a random permutation is considered an at-
tack. Each block cipher operation must protect against all types of attack. The
resulting over-engineering leads to inefficiencies.

Computer network properties like synchronization and error correction have
eliminated the traditional synchronization problems of stream-cipher modes like
OFB. Furthermore, stream ciphers have different implementation properties that
restrict the cryptanalyst. They only receive their inputs once (a key and a nonce)
and then produce a long stream of pseudo-random data. A stream cipher can
start with a strong cryptographic operation to thoroughly mix the key and nonce
into a state, and then use that state and a simpler mixing operation to produce
the key stream. If the attacker tries to manipulate the inputs to the cipher he
encounters the strong cryptographic operation. Alternatively he can analyse the
key stream, but this is a static analysis only. As far as we know, static attacks
are much less powerful than dynamic attacks. As there are fewer cryptographic
requirements to fulfill, we believe that the key stream generation function can be
made significantly faster, per message byte, than a block cipher can be. Given the
suitability of steam ciphers for many practical tasks and the potential for faster
implementations, we believe that stream ciphers are a fruitful area of research.

Additionally, a stream cipher is often implemented—and from a crypto-
graphic point of view, should always be implemented—together with a MAC.
Encryption and authentication go hand in hand, and significant vulnerabili-
ties can result if encryption is implemented without authentication. Outside the
cryptographic literature, not using a proper MAC is one of the commonly en-
countered errors in stream cipher systems. A stream cipher with built-in MAC
is much more likely to be used correctly, because it provides a MAC without the
associated performance penalties.

Helix is an attempt to combine all these lessons.

2 An Overview of Helix

Helix is a combined stream cipher and MAC function, and directly provides the
authenticated encryption functionality. By incorporating the plaintext into the
stream cipher state Helix can provide the authentication functionality without
extra costs [Gol00].

Helix’s design strength is 128 bits, which means that we expect that no attack
on the cipher exists that requires fewer than 2128 Helix block function evaluations
to be carried out. Helix can process data in less than 7 clock cycles per byte on
a Pentium II CPU, more than twice as fast as AES.

Helix uses a 256-bit key and a 128-bit nonce. The key is secret, and the
nonce is typically public knowledge. Helix is optimised for 32-bit platforms; all
operations are on 32-bit words. The only operations used are addition modulo
232, exclusive or, and rotation by fixed numbers of bits. The design philosophy
of Helix can be summarized as “many simple rounds.”
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Helix has a state that consists of 5 words of 32 bits each. (This is the max-
imum state that can fit in the registers of the current Intel CPUs.) A single
round of Helix consists of adding (or xoring) one state word into the next, and
rotating the first word. This is shown in Figure 1 where the state words are
shown as vertical lines.

Fig. 1. A single round of Helix.

Multiple rounds are applied in a cyclical pattern to the state. The horizontal
lines of the rounds wind themselves in helical fashion through the five state
words. Twenty rounds make up one block (see Figure 2).

Helix actually uses two intertwined helices; a single block contains two full
turns of each of the helices.

During each block several other activities occur. During block i one word of
key stream is generated (Si), two words of key material are added (Xi,0 and
Xi,1), and one word of plaintext is added (Pi). The output state of one block
is used as input to the next, so the computations shown in figure 2 are all that
is required to process 4 bytes of the message. As with any stream cipher, the
ciphertext is created by xoring the plaintext with the key stream (not shown
in the figure).

At the start of an encryption a starting state is derived from the key and
nonce. The key words Xi,j depend on the key, the length of the input key, the
nonce, and the block number i. State guessing attacks are made more difficult by
adding key material at double the rate at which key stream material is extracted.
At the end of the message some extra processing is done, after which a 128-bit
MAC tag is produced to authenticate the message.

3 Definition of Helix

The Helix encryption function takes as input a variable length key U of up to 32
bytes, a 16-byte nonce N , and a plaintext P . It produces a ciphertext message
and a tag that provides authentication. The decryption function takes the key,
nonce, ciphertext, and tag, and produces either the plaintext message or an error
if the authentication failed.

3.1 Preliminaries

Helix operates on 32-bit words while the inputs and outputs are a sequences of
bytes. In all situations Helix uses the least-significant-byte first convention. A
sequence of bytes xi is identified with a sequence of words Xj by the relations
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Xj :=
3∑

k=0

x(4j+k) · 28k xi :=
⌊

X�i/4�
28(i mod 4)

⌋
mod 28

These two equations are complimentary and show the conversion both ways.
Let �(x) denote the length of a string of bytes x. The input key U consists of

a sequence of bytes u0, u1, . . . , u�(U)−1 with 0 ≤ �(U) ≤ 32. The key is processed
through the key mixing function, defined in section 3.7, to produce the working
key which consists of 8 words K0, . . . , K7.

The nonce N consists of 16 bytes, interpreted as 4 words N0, . . . , N3.
The plaintext P and ciphertext C are both sequences of bytes of the same

length, with the restriction that 0 ≤ �(P ) < 264. Both are manipulated as a
sequence of words, Pi and Ci respectively. The last word of the plaintext and
ciphertext might be only partially used. The ‘extra’ plaintext bytes in the last
word are taken to be zero. The ‘extra’ ciphertext bytes are irrelevant and never
used. Note that the cipher is specified for zero-length plaintexts; in this case,
only a MAC is generated.

3.2 A Block

Helix consists of a sequence of blocks. The blocks are numbered sequentially
which assigns each block a unique number i. At the start of block i the state
consists of 5 words: Z

(i)
0 , . . . , Z

(i)
4 ; at the end of the block the state consists of

Z
(i+1)
0 , . . . , Z

(i+1)
4 which form the input to the next block with number i + 1.

Block i also uses as input two key words Xi,0 and Xi,1, and the plaintext word
Pi. It produces one word of key stream Si := Z

(i)
0 ; the ciphertext words are

defined by Ci := Pi ⊕ Si.
Instead of repeating the block definition in formulas, we define the block

function using figure 2. All values are 32-bit words, exclusive or is denoted by
⊕, addition modulo 232 is denoted by �, and rotation by ≪.

In the remainder of this paper, the terms “block,” and “block function” are
used interchangeably.

3.3 Key Words for Each Block

The expanded key words are derived from the working key K0, . . . , K7, the nonce
N0, . . . , N3, the input key length �(U), and the block number i. We first extend
the nonce to 8 words by defining Nk := (k mod 4) − Nk−4 (mod 232) for k =
4, . . . , 7. The key words for block i are then defined by

Xi,0 := Ki mod 8

Xi,1 := K(i+4) mod 8 + Ni mod 8 + X ′
i + i + 8

X ′
i :=






�(i + 8)/231� if i mod 4 = 3
4 · �(U) if i mod 4 = 1
0 otherwise
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where all additions are taken modulo 232. Note that X ′
i encodes bits 31 to 62 of

the value i + 8; this is not the same as the upper 32 bits of i + 8.

3.4 Initialisation

A Helix encryption is started by setting

Z
(−8)
i = Ki+3 ⊕ Ni for i = 0, . . . , 3

Z
(−8)
4 = K7

Eight blocks are then applied, using block number -8 to -1. For these block the
plaintext word Pi is defined to be zero, and the generated key stream words are
discarded.

3.5 Encryption

After the initialisation the plaintext is encrypted. Let k := �(�(P )+3)/4� be the
number of words in the plaintext. The encryption consists of k blocks numbered
0 to k−1. Each block generates one word of key stream, which is used to encrypt
one word of the plaintext. Depending on �(P ) mod 4, between 1 and 4 of the
bytes of the last key stream word are used.

3.6 Computing the MAC

Just after the block that encrypted the last plaintext byte, one of the state words
is modified. The state word Z

(k)
0 is xored with the value 0x912d94f11. Using this

modified state, eight blocks, numbered k, . . . , k + 7 are applied for post-mixing.
For these blocks the generated key stream is discarded and the plaintext word
Pi is defined as �(P ) mod 4. After the post-mixing, four more blocks, numbered
k+8, . . . , k+11, are applied. The key stream generated by these four blocks form
the tag. The plaintext input remains the same as in the previous eight blocks.

3.7 Key Mixing

The key mixing converts a variable-length input key U to the fixed-length work-
ing key, K.

First, the Helix block function is used to create a round function F that maps
128 bits to 128 bits. The four input words to F are extended with a single word
with value �(U) + 64 to form a 5-word state. The block function is then applied
with zero key inputs and zero plaintext input. The first four state words of the
resulting state form the result of F .
1 This constant is constructed by taking the 6 least significant bits of each of the

ASCII characters of the string “Helix”, and putting a single one bit both before and
after it.
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The input key U is first extended with 32 − �(U) zero bytes. The 32 key
bytes are converted to 8 words K32, . . . , K39. Further key words are defined by
the equation

(K4i, . . . , K4i+3) := F ((K4i+4, . . . , K4i+7)) ⊕ (K4i+8, . . . , K4i+11)

for i = 7, . . . , 0. The words K0, . . . , K7 form the working key of the cipher. (This
recursion defines a Feistel-type cipher on 256-bit blocks.)

3.8 Decryption

Decryption is almost identical to encryption. The only differences are:

– The key stream generated at the start of each block is used to decrypt the
ciphertext and produce the plaintext word that is required half a block later.
Care has to be taken with the last plaintext word to ensure that unused
plaintext bytes are taken to be zero and not filled with the extra key stream
bytes.

– Once the tag has been generated it is compared to the tag provided. If the
two values are not identical, all generated data (i.e. the key stream, plaintext,
and tag) is destroyed.

4 Implementation

Compared to other ciphers Helix is relatively easy to implement in software. If 32-
bit addition, exclusive or, and rotation functions are available, all the functions
are easily implemented. Helix is also fast. A single round takes only a single clock
cycle to compute on a Pentium II CPU, because the super-scalar architecture
can perform an addition or xor simultaneously with a 32-bit rotation. A block
of Helix takes 20 cycles plus some overhead for the handling of the plaintext,
key stream, and ciphertext. Our un-optimised assembly implementation requires
less than 7 clock cycles per byte. This compares to about 16 clock cycles per
byte for the best AES implementation on the same platform2.

Most implementation flexibility is in the way the key schedule is computed.
The key mixing only needs to be done once for each key value. The recurrence
relation used in the key mixing implements a Feistel cipher, so the key mixing
can be done in-place. The Xi,1 key words can mostly pre-computed with only the
block number being added every block. Implementations that limit the plaintext
size to 232 bytes can ignore the upper bits of the block number in the definition
of X ′

i because these bits will always be zero.
2 This is a somewhat unfair comparison. The AES implementation does not actually

read the data from memory, encrypt it, and write it back, which would slow it
down further. What is more, most block cipher modes only provide encryption or
authentication so two passes over the message are required. The alternative is to use
one of the new authenticated encryption modes, such as [Jut01], but they are all
patented and require a license.
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Helix is also fast in hardware. The rotations cost no time, although they do
consume routing resources in chip layouts. The critical path through the block
function consists of 6 additions and 5 xors. As the critical path contains no
rotations, a certain amount of ripple of the adders can be overlapped, with the
lower bits being produced and used before the upper bits are available. A more
detailed analysis of this overlapping is required for any high-speed implemen-
tation. A conservative estimate for a relatively low-cost ASIC layout is 2.5 ns
per 32-bit adder and 0.5 ns per xor , which adds up to 17.5 ns/block. This
translates to more than 200 MByte per second, or just under 2 Gbit per second.

5 Use

One of the dangers of a steam cipher is that the key-stream will be re-used. To
avoid this problem Helix imposes a few restrictions on the sender and receiver:

– The sender must ensure that each (K,N) pair is used at most once to encrypt
a message. A single sender must use a new, unique, nonce for each message.
Multiple senders that want to use the same key have to ensure that they never
choose the same nonce, for example by dividing the nonce space between
them. If two different messages are ever encrypted with the same (K,N)
pair, Helix loses its security properties.

– The receiver may not release the plaintext P , or the key stream, until it has
verified the tag successfully. In most situations this requires the receiver to
buffer the entire plaintext before it is released.

These requirements seem restrictive, but they are in fact implicitly required by all
stream ciphers (e.g. RC4) and many block cipher modes (e.g.
OCB [RBBK01b,RBBK01a] and CCM [WHF])

Although Helix allows the use of short keys, we strongly recommend the use
of keys of at least 128 bits, preferably 256 bits.

6 Other Modes of Use

So far we have described Helix as providing both encryption and authentication.
Helix can be used in other modes as well. For any particular key Helix should
be used in only one of these modes. Using several modes with a single key can
lead to a loss of security.

6.1 Unencrypted Headers

In packet environments it is often desirable to authenticate the packet header
without encrypting it. From the encryption/authentication layer this looks like
an additional string of data that is to be authenticated but not encrypted. We
define a standard method of handling such additional data without modifying
the basic Helix computations.

First a length field is formed which is eight bytes long and encodes the length
of the additional data in least-significant-byte first format. The additional data
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is padded with 0–3 zero bytes until the length is a multiple of four. The con-
catenation of the length field, the padded additional data, and the message data
are then processed as a normal message through Helix. The ciphertext bytes
corresponding to the length field and the padded additional data are discarded,
leaving only the ciphertext of the message data and the tag.

6.2 Pure Stream Cipher & PRNG

Helix can be use as a pure stream cipher by ignoring the MAC computations at
the end. And like any stream cipher, Helix is a cryptographically strong pseudo-
random number generator. For every (key,nonce) input it produces a stream of
pseudo-random data. This makes Helix suitable for use as a PRNG.

6.3 MAC with Nonce

Helix can also be used a pure MAC function. The data to be authenticated is
encrypted, but the ciphertext is discarded. The receiver similarly discards the
key stream and just feeds the plaintext to the Helix rounds. In this mode Helix is
significantly faster than, for example, HMAC-SHA1, but it does require a unique
nonce for each message. Unfortunately, it is insecure to use Helix with a fixed
nonce value, due to collisions on the 160-bit state.

7 Design Rationale

Although the design strength of Helix is 128 bits, we use 256-bit keys. This
avoids a very general class of attacks that exploits collisions on the key value. For
flexibility Helix also allows shorter keys to be used, as there are many practical
situations in which fewer than 256 bits of key material are available.

The small set of elementary operations that Helix uses makes it efficient
on a large number of platforms. The absence of tables makes Helix efficient in
hardware as well.

Most ciphers use lookup tables to provide the necessary nonlinearity. In Helix
the nonlinearity comes from the mixing of xors with additions. Neither of these
operations can be approximated well within the group of the other. There are
some good approximations, but on average the approximations are quite bad
[LM01].

The diffusion in Helix is not terribly fast, but it is unstoppable. As the
attacker has very little control over the state, it is not possible to limit the
diffusion of differences. In those areas where dynamic attacks are possible we
use a sequence of 8 blocks to ensure thorough mixing of the state words.

The key mixing is an un-keyed bijective function. The purpose is to spread
the available entropy over all key words. If, for example, the key is provided by
a SHA-1 computation then only 5 words of key material are provided. The key
mixing ensures that all 8 key words depend on the key material. Using a bijective
mixing function ensures that no two 256-bit input keys lead to the same working
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key values. The use of the input key length in X ′ guarantees that even keys that
lead to the same working key (each short key leads to a working key that is also
produced by a 256-bit key) do not lead to equivalent Helix encryptions.

7.1 Key Schedule

The Xi,0 values simply cycle through the key words. The Xi,1 values depend on
the same key words in anti-phase, the extended nonce words, the block number,
and the input key length. This key schedule has a number of properties. All 8
key words and and all 4 nonce words affect the state every 4 blocks.

The key schedule also ensures that different (K, N) pairs produce different
block key sequences. Even stronger: no sequence of 17 key words ever occurs twice
across all keys, all nonce values, and all positions in the encryption computation.

To demonstrate this we look at the sequence Yj := X�j/2�,j mod 2. This is the
sequence of key words in the order they are used. Given just part of the sequence
Yj , without the proper index values j, we can recover the key, nonce, and block
number. (When the plaintext word is zero the first half of the block function is
identical to the second half of the block function, so it makes sense to look at
the sequence Yj and allow half-block offsets.)

If Yj = Yj+16 then j is even, otherwise j is odd. This allows us to split the
Y values back into an Xi,0 and Xi,1 sequence.

Now consider

Ri := Xi,1 − Xi,0 + Xi+4,1 − Xi+4,0

= Ni mod 8 + N(i+4) mod 8 + X ′
i + X ′

i+4 + 2i + 20
= (i mod 4) + 2i + 20 + X ′

i + X ′
i+4

all modulo 232. We first look at Ri mod 4. The X ′ terms can only have a nonzero
contribution if i mod 4 = 3, so 3 out of 4 consecutive times we get just ((i mod
4) + 2i) mod 4 = 3i mod 4, which gives us i mod 4. Looking at the full Ri for
an i with i mod 4 = 0 gives us i mod 231. The sum X ′

i + X ′
i+4 from the case

i mod 4 = 3 gives us the upper bits of i. This recovers3 the block number, i.
Given i mod 8 we can recover the working key from the Xi,0’s. Knowledge

of i and the key words allows us to compute the key length and the nonce from
the Xi,1’s, as well as check the redundancy introduced by the nonce expansion
to 8 words.

We have not investigated whether it is possible to recover the key, nonce,
and block number from fewer than 17 consecutive key words. A simple counting
argument shows that at least 14 are required. This remains an open problem.

7.2 Choice of Rotation Counts

The strength of Helix is depends on the rotation counts chosen for the Helix block
function. The rotations provide the diffusion between the various bit positions
3 This isn’t absolutely perfect. We don’t recover the 62’nd bit of i + 8, but this bit

will only be set during the very last few blocks of a message very close to 264 bytes
long. This does not lead to a weakness.
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in the state words. During the design process we examined the impact of various
choices of rotation counts both in terms of attempts to cryptanalyze the cipher,
and also in terms of their impact on statistical tests of the block function.

To analyse the diffusion properties of a set of rotation counts, consider a
variant of the block function with all the additions are changed to xors. (This is
equivalent to ignoring the carries in the additions.) In this variant we can track
which output bits are affected by which input bits. For this analysis we consider
an output bit affected if its computational path has a dependency on the input
bit at any one point, even if the output bit in our linearised block function is not
changed due to several dependencies canceling out. This seems to be the most
suitable way to analyse diffusion and is related to the independence assumption
in differential and linear cryptanalysis.

A set of rotation counts can, at best, ensure that changing a single state
input bit affects at least 21 bits of the output. There are a large number (over 6
000) of such rotation count sets.

We discarded all rotation count sets that contained a rotation count of 0, 1, 8,
16, 24, or 31. Rotation by a multiple of 8 has a relatively low order, and rotation
by 1 or 31 bit positions provides diffusion between adjacent bits, something the
carry bits already do. This reduced the set of candidate rotation counts to 86.

Using the full block function we ran statistical tests on many candidate ro-
tation count sets to see how these values would affect the ability of the block
function to diffuse changes and mix together separate information within the
160-bit internal state. Among our tests, we considered:

1. The number of rounds required before all output bits passed binomial tests
given a fixed input difference in the state.

2. The number of rounds required before the output states’ Hamming weight
distribution passed a χ2 test given low- and high-Hamming weight input
states.

3. The number of round required before the output states’ differences Hamming
weight distribution passed a χ2 test given low- and high-Hamming weight
differences in the input state [KRRR98].

4. Low- and high-Hamming weight higher-order differences, and the number of
rounds required before the resulting output differences’ Hamming weights
passed a χ2 test.

The surprising result was that most rotation counts did pretty well. Our
carefully-selected rotation count sets were slightly better than random ones, but
only by a small margin. Degenerate rotation counts (all rotation counts equal,
or most rotation counts zero) led to much worse test results.

At the end of our analysis, we selected more or less at random from the
remaining candidates. Based on our limited analysis, the specific choice of rota-
tion counts does not have a strong impact on the security of Helix, with only
the caveat that we had to avoid some obvious degenerate cases.
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8 Conclusions and Intellectual Property Statement

Most applications that require symmetric cryptography actually require both
encryption and authentication. We believe that the most efficient way to achieve
this combined goal is to design cryptographic primitives specifically for the task.
Towards this end, we present such a new cryptographic primitive, called Helix.
We hope that Helix and this paper will spur additional research in authenticated
encryption stream ciphers. As with any experimental design, we remark that
Helix should not be used until it has received additional cryptanalysis.

Finally, we hereby explicitly release any intellectual property rights to Helix
into the public domain. Furthermore, we are not aware of any patent or patent
application anywhere in the world that cover Helix.
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A Test vectors
The authors will maintain a web site at http://www.macfergus.com/helix
with news, example code, and test vectors. We give some simple test vectors
here. (The 8-word working key is given as a sequence of 32 bytes, least significant
byte first.)

Initial Key: <empty string>
Nonce: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Working Key: a9 3b 6e 32 bc 23 4f 6c 32 6c 0f 82 74 ff a2 41

e3 da 57 7d ef 7c 1b 64 af 78 7c 38 dc ef e3 de
Plaintext: 00 00 00 00 00 00 00 00 00 00
Ciphertext: 70 44 c9 be 48 ae 89 22 66 e4
MAC: 65 be 7a 60 fd 3b 8a 5e 31 61 80 80 56 32 d8 10

Initial Key: 00 00 00 00 01 00 00 00 02 00 00 00 03 00 00 00
04 00 00 00 05 00 00 00 06 00 00 00 07 00 00 00

Nonce: 00 00 00 00 01 00 00 00 02 00 00 00 03 00 00 00
Working Key: 6e e9 a7 6c bd 0b f6 20 a6 d9 b7 59 49 d3 39 95

04 f8 4a d6 83 12 f9 06 ed d1 a6 98 9e c8 9d 45
Plaintext: 00 00 00 00 01 00 00 00 02 00 00 00 03 00 00 00

04 00 00 00 05 00 00 00 06 00 00 00 07 00 00 00
Ciphertext: 7a 72 a7 5b 62 50 38 0b 69 75 1c d1 28 30 8d 9a

0c 74 46 a3 bf 3f 99 e6 65 56 b9 c1 18 ca 7d 87
MAC: e4 e5 49 01 c5 0b 34 e7 80 c0 9c 39 b1 09 a1 17

Initial Key: 48 65 6c 69 78
Nonce: 30 31 32 33 34 35 36 37 38 39 61 62 63 64 65 66
Working Key: 6c 1e d7 7a cb a3 a1 d2 8f 1c d6 20 6d f1 15 da

f4 03 28 4a 73 9b b6 9f 35 7a 85 f5 51 32 11 39
Plaintext: 48 65 6c 6c 6f 2c 20 77 6f 72 6c 64 21
Ciphertext: 6c 4c 27 b9 7a 82 a0 c5 80 2c 23 f2 0d
MAC: 6c 82 d1 aa 3b 90 5f 12 f1 44 3f a7 f6 a1 01 d2
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B Cryptanalysis

Helix is intended to provide everything needed for an encrypted and authenti-
cated communications session. A successful attack on Helix will have occurred
when an attacker can either predict a keysteam bit he hasn’t seen with a probabil-
ity slightly higher than 50%, or when he can create a forged or altered message
that is accepted by the recipient with a probability substantially higher than
2−128. To be meaningful given the 128-bit security bound of Helix, any such at-
tack must require fewer than 2128 block function evaluations for all participants
combined. Also, any such attack must obey the security requirements placed
on Helix’ operations, e.g., no reuse of nonces, MACs checked before decrypted
messages released, etc.

In this section, we consider a number of possible ways to attack Helix. Al-
though our time and resources have been limited, we have not yet discovered
any workable method of attacking Helix.

B.1 Static Analysis

A static analysis just takes the key stream and tries to reconstruct the state
and key. Several properties make this type of attack difficult. Even if the whole
state is known, any four consecutive key stream words are fully random. This
is because each Xi,1 key value affects Si+1 in a bijective manner, so for any
given state and any sequence of Xi,0 words there is a bijective mapping from
K(i+4) mod 8, . . . , K(i+7) mod 8 to Si+1, . . . , Si+4. A similar argument applies when
the block function is computed backwards. Any attempt to recover the key, even
if the state is known at a single point, must therefore span at least 4 blocks and
5 key stream words. Of course, there is no reasonable way of finding the state.
At the beginning of each block there is 128 bits of unknown state. (The 32 bits
of the key stream word are known to the attacker.) As the design strength is
128 bits, an attacker cannot afford to guess the entire state. A partially guessed
state does not help much as key material is added at twice the rate that key
stream is produced.

B.2 Period Length

Helix’ internal state is updated continuously by the plaintext it is encrypting. So
long as the plaintext is not repeating, the keystream should have an arbitrarily
long period.

With a fixed or repeating plaintext, the Helix state does not cycle either. In
section 7.1 we showed that any 17 consecutive key words used as inputs to the
block function are unique. The nonrepeating key word values prevent the state
from ever falling into a cycle.

B.3 State Collisions

The 160-bit state of Helix can be expected to collide for some (key,nonce) pairs.
However, this doesn’t lead to a weakness, because the state collision is guaranteed
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not to survive long enough to yield an attack, or even allow reliable detection
by the attacker.

To detect a collision on 160 bit values requires 160-bits of information about
each state. But in the four block computations required to generate 160 bits
of key stream the whole key, nonce, and block number get added to the state.
Starting at the same state these inputs will introduce a difference in the key
stream, and make it impossible to detect the state collision4.

B.4 Weak Keys

Helix makes constant use of the words of the working key. An all-zero working
key intuitively seems like a bad thing (it effectively omits a few operations from
the block function), but we have not discovered any possible attack based on it.
The all-zero working key is only generated by a single key of 32 bytes length.
Shorter key length cannot generate the all-zero working key. The all-zero working
key does not seem to have any practical security relevance, and there is no reason
to treat this key differently from any other key.

B.5 Adaptive Chosen Plaintext Attacks

Because the plaintext affects the state, Helix allows an attack model that tra-
ditional stream ciphers prevent: An attacker can request the encryption of a
plaintext block under an already established (key,nonce) pair, and can use the
resulting ciphertext to determine what plaintext to request next.

We have found no way to use such an attack against Helix. As with the dis-
cussion of static analysis, above, the large unknown and untouchable state, and
the continual mixing of key material into that state, appear to defeat attempts
to use control over one input of the block function to control other parts of its
state. Additionally, the usage restrictions on Helix do not allow reuse of nonces,
which ensures that the state is always a “moving target.”

B.6 Chosen Input Differential Attacks

One powerful mode of attack is for the attacker to make small changes in the
input values and look at how the changes propagate through the cipher.

In Helix, this can be done only with the key or the nonce. In each case, the
block function is applied multiple times to the input. In Helix all the places where
such attacks are possible we have eight consecutive blocks without any output. A
change to the nonce, such as is considered in [DGV93], will be thoroughly mixed
into the state by the time the first key stream word is generated. Similarly,
a change to the last plaintext byte is thoroughly mixed into the state before
the first MAC tag word is generated. A differential attack would have to use a
differential through 8 blocks, or 160 rounds of Helix. A search found no useful
differentials for 8 blocks of Helix, nor useful higher-order differentials.
4 State collisions where the key and nonce are the same and the block number differs

only in the upper 30 bits also do not lead to an attack.
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Fig. 3. A round of Single-Helix.

B.7 Algebraic Attacks Over GF(2)

The only reasonable line of attack we have found so far is to apply equation-
solving techniques. In 2002, XSL was used to analyse block ciphers [CP02].
An attack on Serpent seems to be marginally better than brute force, another
attack on the AES is slower than brute force. Similar techniques have been used
to successfully analyse stream ciphers [Cou02,Arm02].

We have tried to analyse Helix by algebraic techniques. Under an opti-
mistic assumption (from the attacker’s point of view) on the number of linear-
independent equations, the best attack we could think of requires solving an
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(overdefined) system of ≈ 249.7 linear equations in N = 249.1 binary variables.
Gaussian elimination needs N3 ≈ 2147.3 steps, and falls well outside our security
bound.

[CP02] suggest to use another algorithm, which takes O(N2.376) steps, but
with an apparently huge proportional constant. In our case N2.376 ≈ 2116.7, so
even a relatively small proportional constant pushes this beyond our security
bound5. Our analysis has not resulted in an attack that requires less work than
2128 block function evaluations, and we conjecture that no such attack exists.

C Single Helix

Most ciphers are analysed by first creating simplified versions and attacking
those. Apart from the obvious methods of simplifying Helix we present Single
Helix as an object for study. Single Helix uses only one helix instead of two
interleaved ones, and has significantly slower diffusion in the backwards direction.
A block of single Helix is shown in Figure 3. This uses an alternative configuration
where the key and plaintext inputs are added directly to the state words.

5 Due to space constraints, we left out a more detailed description of the attack.
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