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Abstract. Context-aware computing involves the automatic tailoring
of information and services based on the current location of the user.
In this paper, we describe our experience in implementing Rover, a
system that enables location-based services, as well as the traditional
time-aware, user-aware and device-aware services. To achieve system
scalability to very large client sets, Rover servers are implemented in
an “action-based” concurrent software architecture that enables fine-
grained application-specific scheduling of tasks. We have demonstrated
its feasibility through implementations for both outdoor and indoor
environments on multiple platforms.
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1 Introduction

Context-aware computing requires the automatic tailoring of information and
services based on the current context of the user. The context of the user typically
consists of a set of user-specific parameters including his location, the charac-
teristics of the access device and interface, and the interests of the user, usually
represented in an user profile. The different technology components needed to
realize context-aware computing are present today, powered by the increasing
capabilities of mobile personal computing devices and the increasing deployment
of wireless connectivity.

What has hindered its ubiquitous deployment is the lack of system-wide inte-
gration of these components in a manner that scales with large user populations.
In our prior work [2], we had described an architecture of such a context-aware
computing system, called Rover, and had discussed its applications, devices, and
� This work was supported in part by the Maryland Information and Network Dy-

namics (MIND) Laboratory, its Founding Partner Fujitsu Laboratories of America,
and by the Department of Defense through a University of Maryland Institute for
Advanced Computer Studies (UMIACS) contract.

M. Conti et al. (Eds.): PWC 2003, LNCS 2775, pp. 364–374, 2003.
c© IFIP International Federation for Information Processing 2003



Implementation of a Scalable Context-Aware Computing System 365

Rover Controller

Database

Streaming

Media Unit

Location ServerClient Devices

Base Stations

Internet/PSTN

Local

Network

Firewall
             

Rover system Rover system

Rover systemInter Controller protocols

Fig. 1. Physical architecture of the Rover System

users. In this paper, we focus on our implementation experience of this system
for both indoor and outdoor environments. Rover enables services with char-
acteristics: a) Location-aware, in addition to the more traditional notions of
time-aware, user-aware, and device-aware. b) Available via a variety of wireless
access technologies and devices. c) Scales to a very large client population.

In the next section we present an overview of the Rover system. In Section 3
we describe the our implementation of the system. We explain the functionality
of the system in Section 4. In Section 5, we briefly comment on our experiments
and analysis to test system scalability. We describe some related projects in
Section 6 and finally conclude in Section 7.

2 Overview of Rover

The Rover system, depicted in Figure 1, consists of the following entities:

– End-users of the system. Rover maintains a user profile for each end-user,
that defines specific interests of the user and is used to customize the content
served.

– Rover-clients are the client devices through which users interact with Rover.
Rover maintains a device profile for each device, identifying its capabilities
and thus, the functionality available at that device.

– Wireless access infrastructure provides wireless connectivity to the Rover
clients.

– Servers implement and manage the various services provided to the end-
users. The server system consists of the following set of devices:

• Rover controller: is the “brain” of the Rover system. It provides and
manages the different services requested by the Rover clients. It schedules
and filters the content sent to the clients based on user and device profiles
and their current locations.

• Location server: is a dedicated unit responsible for managing the client
device location services within the Rover system.
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• Media manager: coordinates direct audio communication between differ-
ent Rover clients.

• Rover database: stores all content delivered to the Rover clients.
• Authentication server and security manager1: authenticates users before

connecting them to the Rover controller.
• Logger: interacts with all the Rover server devices and receives log mes-

sages from their instrumentation modules.

Rover achieves scalable performance using a new fine-grained real-time
application-specific scheduling called the Action Model (described in [2]). In this
model, scheduling occurs in “atomic” units called actions. An action is a small
piece of code that has no intervening I/O operations. The Action model avoids
the overhead of thread context switches and allows more efficient scheduling of
execution tasks.

The Rover system represents a single domain of administrative control that
is managed and moderated by its Rover controller. A large domain can be par-
titioned into multiple administrative domains each with its own Rover system,
much like the existing Domain Name System . For this multi-Rover system, we
define protocols that allow interaction between the domains to ease user roam-
ing. In the next section we describe our prototype of the Rover system that has
been implemented in the University of Maryland campus.

3 System Implementation

In our prototype implementation all system components were developed on
Linux-based platforms in C++ and they can easily be ported to any other op-
erating system as well.

Rover Controller
Scalability and reliability are the most important factors required in such system.
It is implemented using the action model. Each independent transaction of the
Rover controller with the clients is called a server operation. A server operation
consists of a sequence (or more precisely, a partial order) of actions interleaved
by asynchronous I/O events.

Rover Database
The database is implemented using a standard SQL language (MySQL2). It
consists of two different components — the relational data and the spatial data.
All attribute-based data, e.g. user and client states, are stored in the relational
component. All spatial information, e.g. floor plan of a building, are stores in
the spatial component in a hierarchical structures. Vector-based image is used
to represent spatial data.

1 The Authentication server is not shown in Figure 1.
2 Any other relational database could replace MySQL.
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Fig. 2. Rover client screen shots taken from a demonstration at the McKeldin mall
of the University of Maryland campus. (a) Rover client running the client software
showing the mall map. (b) A notification to the client about a nearby food stall. The
user associated with the client had previously set a trigger notification request when
he is close to a food stall. (c) The user had issued a query operation about the sites of
interest in his vicinity. On receiving the response from the Rover system, the client has
highlighted the relevant sites. (d) An active chat session between this user and another
user is marked as a dotted line connecting both users.

Rover Clients
The Rover clients are implemented on the Compaq IPAQ devices running the
familiar distribution of Linux for handheld devices. The user interface is imple-
mented using GTk++ (Figure 2).

Media Manager
Media manager enables Rover clients to establish direct audio communication
channels, independent of the Rover server system. We have defined a protocol
called Click & Connect that allows users to easily initiate voice communication
with each other. The protocol is so named because an user can directly click on
the icon representing another user to initiate voice communication. The Media
Manager arbitrates the handshaking process between two clients to provide a
degree of organization.

Wireless Infrastructure
University of Maryland has a IEEE 802.11 wireless network widely deployed
across the campus, which we used for all wireless communication to and from the
Rover clients. We also deployed some additional base stations in the campus to
increase the reachability of Rover in areas not covered by the university wireless
network.

Location Server
The location server is responsible for storing and managing user locations in the
Rover system. The system is designed to work in both indoors and outdoors
environments. We have experimented with RF-based systems that infer the lo-
cation of a device based on the signal strength of received RF signals of IEEE
802.11 wireless LAN frames.
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In our RF-based techniques, the user location of a client is obtained without
the use of any additional hardware. It thus provides more ubiquitous coverage
in campus-like environments that already have a rich wireless LAN coverage
for data transport. This can be contrasted to alternative Infra-red tag-based
systems [10,1] or ultra-sonic emitter and receiver based systems [9] in which
additional devices need to be attached to the infrastructure and the clients. We
have developed different RF-based techniques in the context of the Rover system.
Techniques are categorized into:

– Radio-map Techniques: Work in 2 phases: an offline phase and a location
determination phase. During the offline phase, the signal strengths received
from the access points, at selected locations in the area of interest, are gath-
ered as vectors and tabulated over the area. During the location determina-
tion phase, the vector of samples received from each access point is compared
to the radio-map and the ”best” match is returned as the estimated user lo-
cation. We used two methods to calculate the best match:

• K-Nearest Neighbors (KNN): A voting mechanism based on a distance
function is used to estimate the best user location.

• Probabilistic Clustering-based: The Baye’s theorem is used to select the
most probable location of the user. Refer to [13] for more details.

– Model-based Techniques: The relation between the signal strength received
from an access point and the distance to this access point is captured by some
function (model). By using three or more access points, the user location is
estimated. Two methods are used:

• Minimum Triangulation: Given each access point i, the distance (di)
between the receiver, located at x, y, z and the access point, located at
xi, yi, zi, is modeled as:

d2
i = (x − xi)2 + (y − yi)2 + (z − zi)2 =

k

vi

where vi is the strength of the received signal, and k is a constant.
• Curve Fitting: The received signal power is modeled as:

PL(d)[dB] = A + B log(d)

A = PL(d0)[dB] − 10n log(d0), and B = 10n

where PL is the received power, d is the three dimensional path length
to the transmitter, d0 is a reference distance, and n represents the path
loss exponent. Using curve fitting techniques, A and B are estimated for
each access points.

For indoor environments, we found that radio-map based techniques achieve
better accuracy than model-based techniques. This is because the relation be-
tween the signal strength and distance in indoor environments is complicated by
to the multi-path effect and other phenomena which are difficult to capture by
simple models. On the other hand, model-based techniques have the advantage
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of not depending on the calibration process required to build the radio-map.
This advantage favors model-based techniques in outdoor environments, where
the relation between signal strength and distance can be captured by simple
functions and the coverage area is large making building the radio-map a time
consuming process.

Security Manager
The Rover system inherits the vulnerability of the IEEE 802.11 wireless commu-
nication system such as unauthorized access, non confidential, and non integrity.
Therefore, we have implemented different security mechanisms to protect client
interactions.

– Client-Server Security: A session based security protocol, Secure Sockets
Layer (SSL) is used to secure the channels between the clients and the server.

– Chat (peer-peer) Security: The direct audio chat sessions we employ the
Data Encryption Standard (DES), which is an inexpensive symmetric key
cryptographic system. The session key is transferred using the SSL-protected
secure channel.

4 System Functionality

Rover provides different capabilities to the users, which can be categorized as
follows:

– System Admin Operations are available only to the authorized system ad-
ministrator. These set of operations are used to monitor, manage, and query
users, devices, and Rover system.

– User Access Operations are the basic set operations that every user avails to
access the Rover system.

– Trigger Operations allow users to set context-specific alerts. The triggers are
activated based on user interests and depend on current time and/or location
of the user. When the trigger condition is satisfied the Rover server system
sends appropriate notification to the particular user (Figure 2(b)).

– Query Operations allow users to acquire information about different aspects
of the system and the environment. Figure 2(c) shows a client screen shot in
response to a client query on sites of interest in its vicinity.

– Location Update Operation inform the server system about the client’s loca-
tion.

– Audio Chat Operations enable direct audio communication between clients.
Audio chat between clients is initiated with the coordination of the Media
Manager. Once an audio chat is initiated, the clients interact directly with
each other without intervention of the Rover server system (Figure 2(d)).

5 System Performance

To asses the performance and scalability of the Rover System we take two ap-
proaches: a) Active Monitoring where we instrumented the controller to collect
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Fig. 3. Passive monitoring analysis: (a) Performance model for passive monitoring. (b)
Typical asymptotic bounds.

different performance statistics (e.g. queue lengths for each component, the re-
sponse time for each operation, etc.). b) Passive Monitoring which is described
in this paper.

5.1 Analysis Using Passive Monitoring

In this approach, no instrumentation code is introduced in the server system.
Instead, we use a client load generator to stress test the server and observe
two different metrics — the response time obtained by individual clients and
the number of clients that can simultaneously served by the system without
significantly impacting the performance.

We model the Rover system as a single-server multi-client system as shown
in Figure 3(a). The Rover System is modeled as a central subsystem consisting
of two devices, the Rover controller and the Rover database, and N terminal sub-
systems. Each of the N terminals is a client of the Rover System and perform the
cycle of issuing a request, waiting for the response and processing the response
(think time). Wireless network models the communication channel between the
server and the clients. Since we are interested in assessing the performance of
the Rover system we do not explore the affects of communication channel in this
paper.

Using a technique called operational law [5] to analyze such systems, it can
be shown that the response time observed by clients increase marginally with
increasing the number of clients up to a critical client population. Let D denotes
the time required by the system to process a single client operation, and Dmax
denotes the time required at the bottleneck server of a multi-server system. For
the single server model, Dmax = D. If N∗ indicates the critical number of clients
that the system can support without impacting the response time for the clients
and Z the think time used by the clients between operations, then operational
analysis suggests that:

N∗ =
D + Z

Dmax
(1)

The graphical representation of N∗ is shown in Figure 3(b).
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Fig. 4. GetAllLoginUsers operation: (a) Controller response time, and (b) Response
time when Z=200ms.

5.2 Experiment Configuration

The central subsystem runs on Pentium IV 1.5 GHz desktop machine with 256
MB of RAM running the Linux OS with kernel version 2.4.7. A second machine
is used to behave as a set of clients (client loader). The client loader runs on
a Pentium III 800 MHz laptop with 128 MB of RAM and running a Linux OS
with kernel version 2.4.2. The client machine uses 802.11b wireless network to
connect to the network.

The response time for each operation were collected as observed at the
database, the controller and the client (points A, B, C respectively in Fig-
ure 3(b)). Instead of collecting response time for each of the system operations,
we experimented with three different operations representing three different cat-
egories:

1. GetAllLoginUsers: Gets the position of all users who are logged into the sys-
tem. This operation is controller intensive and does not involve the database.

2. VectorMap: Gets the vector map of an area. This operation is computation-
ally intensive at the database side.

3. Locate: Locates the object containing the given point. This operation involves
the database though it is not very computationally intensive at either the
database or the controller sides.

5.3 Results and Discussion

GetAllLoginUsers
Figure 4(a) shows the response time, at the controller, plotted against the num-
ber of clients in the system for different think times (Z = 100ms, 200ms, 300ms).
The total service demand time, D of the controller is observed to be around 300
microseconds. For only one device in the system Dmax = D. Using Equation 1
where D = 300 microseconds and a think time Z = 200 milliseconds, we get N∗

to be approximately 667 requests. Hence the server can support 667 requests
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Fig. 5. VectorMap operation: (a) Database response time, (b) Controller response time,
(c) Client response time, and (d) Response time when Z=1s.

without any significant delays. In an actual deployment, the think time would
be of the order of 10’s of seconds and that would give an even higher value of
N∗ (of the order of thousands of clients).

Figure 4(b) shows the response time behavior of both the controller and the
client when the think time is Z = 200 milliseconds. As the graph shows the
controller graph stays almost horizontal as the number of clients are increased
which shows the controller can handle a large number of clients. On the other
hand, the client graph grows with the number of clients. This can either be due
to the effect of the wireless hop involved or the processing involved at the OS
level. The performance of the 802.11b wireless network has not been taken into
account and is left for future work.

VectorMap
Figure 5 shows the response time at the different Rover components. For the
database the total service demand time is observed to be around 0.5 seconds.
Using equation 1, we can predict the knee-point to be at N∗ = 3 with a think
time Z = 1 second. We should note that the VectorMap operation is an infre-
quent operation and has been used only to assess the performance of the system
in the extreme case. In an actual deployment, the duration between subsequent
VectorMap operation requests (Z) would be in the order of minutes. The differ-
ence in the database response and the controller response (Figure 5(d)) could be
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explained by the fact that at the controller all the data is touched and a copy is
created for debugging purpose.

Locate
Similar to the analysis of the previous operations, we show the response time at
the database, the server and the client for a think time of 200 milliseconds in
Figure 6.

6 Related Work

There are several ongoing research efforts in the area of context-aware applica-
tions. The Active Badge system [10] uses infrared based special badges to locate
current people in each room. Georgia Tech’s conference assistant [4] was designed
to assist conference attendees in choosing specific presentations to attend based
on their profile. AT&T sentient computing system [7] location based system is
based on ultrasonic measurements. The Cyberguide [1] project is a context-aware
tourist guide prototype based on infrared technology. Other personal assistant
projects include: office assistant [11], GUIDE system [3], CMU’s smart sight [12],
ComMotion [6] project, and HP’s Cooltown [8]. All the context-aware applica-
tions described in this section were developed as a framework to assist individual
users. Rover, in contrast, defines a system framework in which such applications
can be built. It allows direct interaction between the users and as well as between
the users and the environment in a scalable manner. Rover system architecture
enables easy instantiation of new applications into the system by appropriate
definition of server operations and client interactions.

7 Conclusions and Future Work

Rover is currently available as a deployable system using specific technologies,
both indoors and outdoors. Our final goal is to provide a completely integrated
system that operates under different technologies, and allows a seamless expe-
rience of location-aware computing to clients as they move through the system.
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With this in mind, we are continuing our work in a number of different directions.
We are experimenting with a wide range of client devices, specially the ones with
limited capabilities. We are also experimenting with other alternative wireless
access technologies including a Bluetooth-based LAN. We are also working on
the design and implementation of a multi-Rover system.

We believe that Rover Technology will greatly enhance the user experience for
many different context-aware applications in different environments. Our initial
experience indicate that our designed system scales to large user populations
and the benefits of the system increase with increase in the number of users.
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