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Abstract. In multi-instance learning, the training set comprises labeled
bags that are composed of unlabeled instances, and the task is to predict
the labels of unseen bags. Through analyzing two famous multi-instance
learning algorithms, this paper shows that many supervised learning al-
gorithms can be adapted to multi-instance learning, as long as their
focuses are shifted from the discrimination on the instances to the dis-
crimination on the bags. Moreover, considering that ensemble learning
paradigms can effectively enhance supervised learners, this paper pro-
poses to build ensembles of multi-instance learners to solve multi-instance
problems. Experiments on a real-world benchmark test show that ensem-
ble learning paradigms can significantly enhance multi-instance learners,
and the result achieved by EM-DD ensemble exceeds the best result on
the benchmark test reported in literature.

1 Introduction

The term multi-instance learning was coined by Dietterich et al. [11] when they
were investigating the problem of drug activity prediction. In this learning frame-
work, the training set is composed of many bags each contains many instances.
A bag is positively labeled if it contains at least one positive instance. Other-
wise it is negatively labeled. The task is to learn some concept from the training
bags for correctly labeling unseen bags. This task is very difficult because unlike
supervised learning where all the training instances are labeled, here the labels
of the individual instances are unknown. It has been shown that learning al-
gorithms ignoring the characteristics of multi-instance learning could not work
well in this scenario [11].

The PAC-learnability of multi-instance learning has been studied by many
researchers [2][3][5][13], and some important results, such as ‘if the instances in
the bags are not independent then APR (Axis-Parallel Rectangle) learning [11]
under the multi-instance learning framework is NP-hard’ [3], have been obtained.
At present, the most famous multi-instance learning algorithm is Diverse Den-
sity [14] which has been applied to several applications including stock predic-
tion [14], natural scene classification [15], and content-based image retrieval [20].
There are also many other practical algorithms, such as Citation-kNN [18], Relic
[17], ID3-MI [8], RIPPER-MI [8], EM-DD [21], BP-MIP [23], etc. Recently, multi-
instance regression with real-valued outputs has begun to be studied [1][16]. It

N. Lavrač et al. (Eds.): ECML 2003, LNAI 2837, pp. 492–502, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Ensembles of Multi-instance Learners 493

is worth noting that multi-instance learning has also attracted the attention of
the ILP community. It has been suggested that multi-instance problems could
be regarded as a bias on inductive logic programming, and the multi-instance
paradigm could be the key between the propositional and relational representa-
tions, being more expressive than the former, and much easier to learn than the
latter [9].

In this paper, two famous multi-instance learning algorithms, i.e. Diverse
Density and Citation-kNN, are analyzed, which suggests that many supervised
learning algorithms can be adapted to multi-instance learning as long as they
attempt to discriminate the bags instead of the instances. Then, considering that
ensemble learning paradigms that train multiple learners to solve a problem can
effectively improve the generalization ability in supervised learning [10], this
paper proposes to build multi-instance ensembles to solve multi-instance prob-
lems. Experiments on a real-world benchmark data set show that current multi-
instance learners can be significantly enhanced by ensemble learning paradigms.
Moreover, it is observed that the ensemble of a specific multi-instance learner,
i.e. EM-DD, exhibits the best performance up to date on the benchmark test.

The rest of this paper is organized as follows. Section 2 analyzes the Diverse
Density algorithm and the Citation-kNN algorithm. Section 3 proposes to build
multi-instance ensembles. Section 4 presents the experimental results. Finally,
Section 5 summarizes the contributions of this paper.

2 Adapt Supervised Algorithms
to Multi-instance Learning

When proposing the notion of multi-instance learning, Dietterich et al. [11] raised
an open problem, i.e. designing multiple instance modifications for popular ma-
chine learning algorithms. In fact, multi-instance versions of many machine learn-
ing algorithms have been developed in recent years [8][17][18][23]. However, there
is no general rule indicating how to do such a modification.

Usually, the focus of a supervised learning algorithm is to discriminate the
instances, which is feasible since all training instances are labeled in supervised
scenario. But in multi-instance learning, it is infeasible to build a model through
discriminating training instances because none of them is labeled. Moreover, if
the label of a bag is simply regarded as the label of its instances, i.e. to believe
that positive bag contains only positive instances and negative bag contains
only negative instances, then the learning task may be very difficult although
every training instance holds a label now. This is because the positive noise
may be extremely high1, as indicated by [11]. Therefore, whether it is possible
to discriminate the training instances or not is the principal difference between
supervised and multi-instance learning.

In this section we claim that many supervised learning algorithms can be
adapted to multi-instance learning, as long as they shift their focuses from the
1 Consider that a positive bag may contain hundreds or even thousands of negative

instances but only one positive instance.
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discrimination on the instances to the discrimination on the bags. We illustrate
that two well-known multi-instance learning algorithms2, i.e. Diverse Density
and Citation-kNN, can be derived from standard Bayesian classifier and k-nearest
neighbor algorithm according to our claim. These two algorithms are chosen
to analyze because Diverse Density is the most famous multi-instance learning
algorithm at present, and Citation-kNN had achieved the best result on the real-
world multi-instance benchmark test [18] before EM-DD, a variant of Diverse
Density, was proposed.

2.1 Diverse Density

The Diverse Density algorithm [14] regards each bag as a manifold, which is
composed of many instances, i.e. feature vectors. If a new bag is positive then
it is believed to intersect all positive feature-manifolds without intersecting any
negative feature-manifolds. Intuitively, diverse density at a point in the feature
space is defined to be a measure of how many different positive bags have in-
stances near that point, and how far the negative instances are from that point.
Thus, the task of multi-instance learning is transformed to search for a point in
the feature space with the maximum diverse density.

It is evident that the key of the Diverse Density algorithm lies in the formal
definition of the maximum diverse density, which is the objective to be optimized
by the algorithm. Below we show that such a definition can be achieved through
modifying standard Bayesian classifier according to the rule, i.e. shifting the
focus from discriminating the instances to discriminating the bags.

Given data set D and a set of class labels, i.e. C = {c1, c2, · · · , ct}, to be
predicted, the posterior probability of the class can be estimated according to
the Bayes rule as shown in Eq. 1.

Pr (C |D ) =
Pr (D |C ) Pr (C)

Pr (D)
(1)

What we want is the class label with the maximum posterior probability, as
indicated in Eq. 2, where Obj denotes the objective.

Obj = arg max
1≤k≤t

Pr (ck |D )

= arg max
1≤k≤t

Pr (D |ck ) Pr (ck)
Pr (D)

(2)

Considering that Pr (D) is a constant which can be dropped, and Pr (ck) can
also be dropped if we assume uniform prior, then Eq. 2 can be simplified as
Eq. 3.

Obj = arg max
1≤k≤t

Pr (D |ck ) (3)

2 Due to the limited paper length, the analyses of more multi-instance learning algo-
rithms are left to be presented in a longer version of this paper.
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Eq. 3 is enough when the goal is to discriminate the instances. But for dis-
criminating the bags, it is helpful to consider D = {B+

1 , · · · , B+
m, B−

1 , · · · , B−
n }

where B+
i denotes the i-th positive bag while B−

j denotes the j-th negative bag.
Then, Eq. 3 can be re-written as Eq. 4 assuming that the bags are conditionally
independent.

Obj = arg max
1≤k≤t

Pr
({B+

1 , · · · , B+
m, B−

1 , · · · , B−
n } |ck

)

= arg max
1≤k≤t

∏

1≤i≤m

Pr
(
B+

i |ck

) ∏

1≤j≤n

Pr
(
B−

j |ck

)
(4)

Now apply the Bayes rule to Eq. 4, we get Eq. 5.

Obj = arg max
1≤k≤t

∏

1≤i≤m

Pr
(
ck

∣
∣B+

i

)
Pr

(
B+

i

)

Pr (ck)

∏

1≤j≤n

Pr
(
ck

∣
∣B−

j

)
Pr

(
B−

j

)

Pr (ck)
(5)

Considering that
∏

1≤i≤m

Pr
(
B+

i

) ∏

1≤j≤n

Pr
(
B−

j

)
is a constant which can be

dropped, and reminding that Pr (ck) can be dropped as that has been done in
Eq. 3 because we assume uniform prior, then Eq. 5 can be simplified as Eq. 6.

Obj = arg max
1≤k≤t

∏

1≤i≤m

Pr
(
ck

∣
∣B+

i

) ∏

1≤j≤n

Pr
(
ck

∣
∣B−

j

)
(6)

Eq. 6 is the general expression for the class label with the maximum posterior
probability. Concretely, the class label for a specific point x in the feature space
can be expressed as Eq. 7, where (x = ck) means the label of x is ck.

Objx = arg max
1≤k≤t

∏

1≤i≤m

Pr
(
x = ck

∣
∣B+

i

) ∏

1≤j≤n

Pr
(
x = ck

∣
∣B−

j

)
(7)

If we want to find out a single point in the feature space where the maximum
posterior probability of a specific class label, say ch, is the biggest, then the point
can be located according to Eq. 8.

x̂ = arg max
x

Pr (Objx = ch)

= arg max
x

∏

1≤i≤m

Pr
(
x = ch

∣
∣B+

i

) ∏

1≤j≤n

Pr
(
x = ch

∣
∣B−

j

)
(8)

It is interesting that Eq. 8 is neither more nor less than the formal definition
of the maximum diverse density which is optimized by the Diverse Density
algorithm [14]!

2.2 Citation-kNN

The Citation-kNN algorithm [18] is a nearest neighbor style algorithm, which
borrows the notion of citation of scientific references in the way that a bag is
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labeled through analyzing not only its neighboring bags but also the bags that
regard the concerned bag as a neighbor.

Nevertheless, it is evident that for any nearest neighbor style algorithm, the
key lies in the definition of the distance metric which is utilized to measure the
distance between different objects. Below we show that the key of Citation-kNN,
i.e. the definition of the minimal Hausdorff distance, can be achieved through
modifying standard k-nearest neighbor algorithm according to the rule, i.e. shift-
ing the focus from discriminating the instances to discriminating the bags.

In standard k-nearest neighbor algorithm, each object, or instance, is re-
garded as a feature vector in the feature space. For two different feature vectors,
i.e. a and b, the distance between them can be written as Eq. 9. Usually ‖a − b‖
is realized as the Euclidean distance.

Dist (a, b) = ‖a − b‖ (9)

When the goal is to discriminate the instances, Eq. 9 is enough to be instan-
tiated. But if the goal is to discriminate the bags, then Eq. 9 must be extended
because now we should measure the distance between different bags.

Suppose we have two different bags, i.e. A = {a1, a2, · · · , am} and B =
{b1, b2, · · · , bn} where ai (1 ≤ i ≤ m) and bj (1 ≤ j ≤ n) are the instances. It
is obvious that they can be regarded as two feature vector sets, where each ai

(1 ≤ i ≤ m) or bj (1 ≤ j ≤ n) is a feature vector in the feature space. There-
fore, the problem of measuring the distance between different bags is in fact the
problem of measuring the distance between different feature vector sets.

Geometrically, a feature vector set can be viewed as a group of points enclosed
in a contour in the feature space. Thus, an intuitive way to measure the distance
between two feature vector sets is to define their distance as the distance between
their nearest feature vectors, as illustrated in Fig. 1.

Fig. 1. An intuitive way to define the distance between bags

Formally, such a distance metric can be written as Eq. 10.

Dist (A, B) = MIN
1≤i≤m
1≤j≤n

(Dist (ai, bj))

= MIN
a∈A

MIN
b∈B

‖a − b‖ (10)
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It is interesting that Eq. 10 is neither more nor less than the formal definition
of the minimum Hausdorff distance, which is employed by the Citation-kNN
algorithm to measure the distance between different bags [18]!

Note that although Wang and Zucker admitted that using the minimal Haus-
dorff distance does allow k-nearest neighbor algorithm to be adapted to multi-
instance learning, they also indicated that it is not sufficient [18]. This is is be-
cause the common prediction-generating scheme employed by k-nearest neighbor
algorithms, i.e. majority voting, might be confused by false positive instances in
positive bags in some cases. Therefore as mentioned before, the notion of citation
and reference is introduced for obtaining the optimal performance.

However, it is evident that the utilization of the notion of citation and ref-
erence does not change the fact that the minimal Hausdorff distance is the key
in adapting k-nearest neighbor algorithms to multi-instance learning. This is
because the notion of citation and reference can also be introduced to improve
the performance of k-nearest neighbor algorithms dealing with supervised learn-
ing tasks. More importantly, a k-nearest neighbor algorithm employing common
distance metrics such as the Euclidean distance cannot work in multi-instance
scenarios, even though it were facilitated with the notion of citation and ref-
erence; while a k-nearest neighbor algorithm employing the minimal Hausdorff
distance can work in multi-instance scenarios, even though it does not take ci-
tation and reference into account.

In fact, through analyzing the experimental data presented in the Appendix
of Wang and Zucker’s paper [18], it could be found that when k is 3, the per-
formance of the k-nearest neighbor algorithm employing the minimal Hausdorff
distance without utilizing citation and reference is already comparable to or even
better than that of some multi-instance learning algorithms such as Relic [17]
and MULTINST [2] on Musk1, and RIPPER-MI [8] and GFS elim-count APR
[11] on Musk2. Moreover, if the fact that the occurrence of positive bags is far
smaller than that of negative bags has been considered so that a new bag is neg-
atively labeled when ties appear in determining its label, the performance of the
k-nearest neighbor algorithm employing the minimal Hausdorff distance without
utilizing citation and reference would be 90.2% on Musk1 and 82.4% on Musk2,
respectively, when k is 2. It is interesting that this reaches the best performance
of another multi-instance k-nearest neighbor algorithm, i.e. Bayesian-kNN, pro-
posed by Wang and Zucker [18].

3 Multi-instance Ensemble

Ensemble learning paradigms train multiple versions of a base learner to solve
a problem. Since ensembles are usually more accurate than single learners, one
of the most active areas of research in supervised learning has been to study
paradigms for constructing good ensembles [10].

Since we have shown in Section 2 that many supervised learning algorithms
can be adapted to multi-instance learning, a consequent exciting idea is to see
whether ensemble learning paradigms can be used to enhance multi-instance
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learners. Here we call ensemble of multi-instance learners as multi-instance en-
semble.

During the past years, diverse ensemble learning algorithms have been devel-
oped, such as Bagging [6], Arc-x4 [7], AdaBoost [12], MultiBoost [19], GASEN
[22], etc. In this section, we use a relatively simple algorithm, i.e. Bagging, to
build the multi-instance ensembles.

Bagging employs bootstrap sampling to generate several training sets from
the original training set and then trains component learners, i.e. multiple versions
of the base learner, from each generated training set. The predictions of the
component learners are combined via majority voting. The Bagging algorithm
is shown in Table 1, where T bootstrap samples S1, S2, · · · , ST are generated
from the training set S and a component learner Lt is trained from each St, an
ensemble L∗ is built from L1, L2, · · · , LT whose output is the class label receiving
the most number of votes, x is the input feature vector, and Y is the set of class
labels.

Table 1. The Bagging algorithm

Input: training set S, base learner L, trials of bootstrap sampling T
Output: ensemble L∗

Process:
for t = 1 to T {

St = bootstrap sample from S
Lt = L (St)

}
L∗ (x) = arg max

y∈Y

∑

t: Lt(x)=y

1

We attempt to build multi-instance ensembles for four different base learn-
ers, i.e. Iterated-discrim APR [11], Diverse Density [14], Citation-kNN [18], and
EM-DD [21]. The reason for choosing Diverse Density and Citation-kNN was
discussed in Section 2. Here we briefly explain why the other two algorithms are
chosen.

Iterated-discrim APR is the best Axis-Parallel Rectangle (abbreviated as
APR) algorithm proposed by Dietterich et al. [11], which attempts to search
for appropriate axis-parallel rectangles constructed by the conjunction of the
features. Dietterich et al. [11] indicated that since the APR algorithms had been
optimized to the Musk data, i.e. the only real-world multi-instance benchmark
data until now, the performance of Iterated-discrim APR might be the upper
bound of this benchmark test.

EM-DD [21] is a recent development in multi-instance learning, which com-
bines the EM and Diverse Density algorithms. It converts the multi-instance
problem to a single-instance setting by using EM to estimate the instance which
is responsible for the label of the bag. The best performance on the real-world
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multi-instance benchmark test until now, i.e. predictive error rate as small as
3.2% on Musk1 and 4.0% on Musk2, are achieved by this algorithm [21]. Note
that the performance of EM-DD has already exceeded the upper bound of this
benchmark test anticipated by Dietterich et al. [11].

4 Experiments

The experiments are performed on the Musk data, which is the only real-world
benchmark test data for multi-instance learners at present.

The Musk data were generated in Dietterich et al.’s research on drug activ-
ity prediction [11]. Here each molecule is regarded as a bag, and its alternative
low-energy shapes are regarded as the instances in the bag. A positive bag cor-
responds to a molecule qualified to make a certain drug, that is, at least one
of its low-energy shapes could tightly bind to the target area of some larger
protein molecules such as enzymes and cell-surface receptors. A negative bag
corresponds to a molecule not qualified to make a certain drug, that is, none of
its low-energy shapes could tightly bind to the target area.

In order to represent the shapes, a molecule is placed in a standard posi-
tion and orientation and then a set of 162 rays emanating from the origin is
constructed so that the molecular surface is sampled approximately uniformly.
There are also four features that represented the position of an oxygen atom on
the molecular surface. Therefore each instance in the bags is represented by 166
continuous attributes.

There are two data sets, i.e. Musk1 and Musk2, both of which are publicly
available from the UCI Machine Learning Repository [4]. Musk1 contains 47
positive bags and 45 negative bags, and the number of instances contained in
each bag ranges from 2 to 40. Musk2 contains 39 positive bags and 63 negative
bags, and the number of instances contained in each bag ranges from 1 to 1,044.
Detailed information on the Musk data is tabulated in Table 2.

Table 2. The Musk data (72 molecules are shared in both data sets)

Bags Instances per bag
Data set Dim.

Total Musk Non-musk
Instances

Min Max Ave.

Musk1 166 92 47 45 476 2 40 5.17
Musk2 166 102 39 63 6,598 1 1,044 64.69

Ten-fold cross validation is performed on each Musk data set. In each fold,
Bagging is employed to build an ensemble for each of the four base multi-instance
learners, i.e. Iterated-discrim APR, Diverse Density, Citation-kNN, and EM-DD.
Each ensemble comprises five versions of the base learner. The predictive error
rates of the ensembles are shown in Table 3. For comparison, the best results of
the single multi-instance learners reported in the literatures [11][14][18][21] are
also included in Table 3.
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Table 3. Predictive error rates (%) of single or ensembled multi-instance learners

Musk1 Musk2
Algorithm

Single Ensemble Single Ensemble

Iterated-discrim APR 7.6 7.2 10.8 6.9
Diverse Density 11.1 8.2 17.5 11.0
Citation-kNN 7.6 5.2 13.7 12.9
EM-DD 3.2 3.1 4.0 3.0

Table 3 shows that Bagging can significantly improve the generalization abil-
ity of all the investigated multi-instance learners3. It is impressive that even the
strongest multi-instance learner, i.e. EM-DD, can be enhanced by such a rela-
tively simple ensemble learning algorithm. In fact, the EM-DD ensemble achieves
the best performance up to date on both the Musk data sets, i.e. predictive error
rate 3.1% on Musk1 and 3.0% on Musk2.

Since the process of building ensemble of multi-instance learners has noth-
ing being geared to any specific data, we believe that such a paradigm can be
applied to any multi-instance problems. It is also reasonable to anticipate that
such a paradigm may return more profit on difficult problems where no single
multi-instance learners works very well. Moreover, the experiments reported in
this section also suggest ensemble learning paradigms be investigated in more
scenarios, not to be limited in supervised learning.

5 Conclusion

When formalizing the notion of multi-instance learning, Dietterich et al. [11]
raised an open problem, i.e. designing multiple instance modifications for popular
machine learning algorithms. Although multi-instance versions of many machine
learning algorithms have been developed in recent years, there is no general rule
indicating how to do such a modification until now.

This paper claims that many supervised learning algorithms can be adapted
to multi-instance learning through shifting their focuses from the discrimination
on instances to the discrimination on bags. Although the concrete shift process
is dependent on the working mechanism of the supervised learning algorithm
concerned, the rule for adaptation is feasible and general enough to be applied to
diverse supervised learning algorithms. For example, this paper illustrates that
how two famous multi-instance algorithms, i.e. Diverse Density and Citation-
kNN, can be derived from standard Bayesian classifier and k-nearest neighbor
algorithm, respectively, through shifting their focuses.

Designing multi-instance learning algorithms with strong generalization abil-
ity is always an important issue in this area. Considering that many supervised
3 The results of the single multi-instance learners in Table 3 are the best results

reported by their authors [11][14][18][21]. In our implementation, the performance
of the single learners are slightly worse than these best results.
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learning algorithms can be adapted to multi-instance learning, and ensemble
learning paradigms can effectively enhance supervised learners, this paper claims
to build multi-instance ensembles to solve multi-instance problems.

Experiments show that all the investigated multi-instance learners can be
enhanced by a relatively simple ensemble learning algorithm, and the best result
up to date on the real-world benchmark test of multi-instance learners is achieved
by EM-DD ensemble. The experiments not only support our claim that building
multi-instance ensembles is a good choice for solving multi-instance problems,
but also suggest ensemble learning paradigms be investigated in more scenarios,
not to be limited in supervised learning.
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