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Propensity score methods were proposed by Rosenbaum and Rubin (1983, Bio-
metrika) as central tools to help assess the causal effects of interventions. Since
their introduction two decades ago, they have found wide application in a variety
of areas, including medical research, economics, epidemiology, and education,
especially in those situations where randomized experiments are either difficult
to perform, or raise ethical questions, or would require extensive delays before
answers could be obtained. Rubin (1997, Annals of Internal Medicine) provides
an introduction to some of the essential ideas. In the past few years, the number
of published applications using propensity score methods to evaluate medical and
epidemiological interventions has increased dramatically. Rubin (2003, Erlbaum)
provides a summary, which is already out of date.

Nevertheless, thus far, there have been few applications of propensity score
methods to evaluate marketing interventions (e.g., advertising, promotions),
where the tradition is to use generallly inappropriate techniques, which focus
on the prediction of an outcome from an indicator for the intervention and
background characteristics (such as least-squares regression, data mining, etc.).
With these techniques, an estimated parameter in the model is used to esti-
mate some global “causal” effect. This practice can generate grossly incorrect
answers that can be self-perpetuating: polishing the Ferraris rather than the
Jeeps “causes” them to continue to win more races than the Jeeps ¡=¿ visiting
the high-prescribing doctors rather than the low-prescribing doctors “causes”
them to continue to write more prescriptions.

This presentation will take “causality” seriously, not just as a casual con-
cept implying some predictive association in a data set, and will show why
propensity score methods are superior in practice to the standard predictive ap-
proaches for estimating causal effects. The results of our approach are estimates
of individual-level causal effects, which can be used as building blocks for more
complex components, such as response curves. We will also show how the stan-
dard predictive approaches can have important supplemental roles to play, both
for refining estimates of individual-level causal effect estimates and for assess-
ing how these causal effects might vary as a function of background information,
both important uses for situations when targeting an audience and/or allocating
resources are critical objectives.

The first step in a propensity score analysis is to estimate the individual
scores, and there are various ways to do this in practice, the most common
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being logisitic regression. However, other techniques, such as probit regression
or discriminant analysis are also possible, as are the robust methods based on
the t-family of long tailed distributions. Other possible methods include highly
non-linear methods such as CART or neural nets. A critical feature of esti-
mating propensity scores is that diagnosing the adequacy of the resulting fit is
very straightforward, and in fact guides what the next steps in a full propen-
sity score analysis should be. This diagnosing takes place without access to the
outcome variables (e.g., sales, number of prescriptions) so that that objectivity
of the analysis is maintained. In some cases, the conclusion of the diagnostic
phase must be that inferring causality from the data set at hand is impossible
without relying on heroic and implausible assumptions, and this can be very
valuable information, information that is not directly available from traditional
approaches.

Marketing applications from the practice of AnaBus, Inc. will also be pre-
sented. AnaBus currently has a Small Business Innovative Research Grant from
the US NIH to implement essential software to allow the implementation of the
full propensity score approach to estimating the effects of interventions. Other
examples will also be presented if time permits, for instance, an application from
the current litigation in the US on the effects of cigarette smoking (Rubin, 2002,
Health Services Outcomes Research).

An extensive reference list from the author is included. These references are
divided into five categories. First, general articles on inference for causal effects
not having a focus on matching or propensity scores. Second, articles that focus
on matching methods before the formulation of propensity score methods – some
of these would now be characterized as examples of propensity score matching.
Third, articles that address propensity score methods explicitly, either theoreti-
cally or through applications. Fourth, articles that document, by analysis and/or
by simlulation, the superiority of propensity-based methods, especially when
used in combination with model-based adjustments, over model-based methods
alone. And fifth, introductions and reviews of propensity score methods. The
easiest place for a reader to start is with the last collection of articles.

Such a reference list is obviously very idiosyncratic and is not meant to imply
that only the author has done good work in this area. Paul Rosenbaum, for
example, has been an extremely active and creative contributor for many years,
and his text book “Observational Studies” is truly excellent. As another example,
Rajeev Deheija and Sadek Wahba’s 1999 article in the Journal of the American
Statistical Association had been very influential, especially in economics.
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