
Optimizing Local Probability Models
for Statistical Parsing

Kristina Toutanova1, Mark Mitchell2, and Christopher D. Manning1

1 Computer Science Department, Stanford University,
Stanford, CA 94305-9040, USA

{kristina,manning}@cs.stanford.edu
2 CSLI, Stanford University,

Stanford, CA 94305, USA
markmitchell@fastmail.fm

Abstract. This paper studies the properties and performance of models for es-
timating local probability distributions which are used as components of larger
probabilistic systems — history-based generative parsing models. We report ex-
perimental results showing that memory-based learning outperforms many com-
monly used methods for this task (Witten-Bell, Jelinek-Mercer with fixed weights,
decision trees, and log-linear models). However, we can connect these results
with the commonly used general class of deleted interpolation models by showing
that certain types of memory-based learning, including the kind that performed so
well in our experiments, are instances of this class. In addition, we illustrate the
divergences between joint and conditional data likelihood and accuracy perfor-
mance achieved by such models, suggesting that smoothing based on optimizing
accuracy directly might greatly improve performance.

1 Introduction

Many disambiguation tasks in Natural Language Processing are not easily tackled by
off-the-shelf Machine Learning models. The main challenges posed are the complexity
of classification tasks and the sparsity of data. For example, syntactic parsing of natural
language sentences can be posed as a classification task — given a sentence s, find a
most likely parse tree t from the set of all possible parses of s according to a grammar
G. But the set of classes in this formulation varies across sentences and can be very
large or even infinite.

A common way to approach the parsing task is to learn a generative history-based
model P (s, t), which estimates the joint probability of a sentence s and a parse tree
t [2]. This model breaks the complex (s, t) pair into pieces which are sequentially gen-
erated, assuming independence on most of the already generated structure. More for-
mally, the general form of the history-based parsing model is P (t) =

∏n
i=1 P (yi|xi).

Here the parse tree is generated in some order, where every generated piece yi (future)
is conditioned on some context xi (history).

The most important factors in the performance of such models are (i) the chosen
generative model, including the representation of parse tree nodes, and (ii) the method
for estimating the local probability distributions needed by the model. Due to the sparse-
ness of NLP data, the method of estimating the local distributions P (yi|xi) plays a very

N. Lavrač et al. (Eds.): ECML 2003, LNAI 2837, pp. 409–420, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

410 Kristina Toutanova, Mark Mitchell, and Christopher D. Manning

important role in building a good model. We will sometimes refer to this problem as
smoothing.

The goals of the paper are three-fold: (i) to empirically evaluate the accuracy
achieved by previously proposed and new local probability estimation models; (ii) to
characterize the form of a kind of memory-based models that performed best in our
study, showing their relation to deleted interpolation models; and (iii) to study the rela-
tionship among joint and conditional likelihood, and accuracy for models of this type.

While various authors have described several smoothing methods, such as using
a deleted interpolation model [5], or a decision tree learner [13], or a maximum en-
tropy inspired model [3], there has been a lack of comparisons of different learning
methods for local decisions within a composite system. Because our ultimate goal
here is to have good classifiers for choosing trees for sentences according to the rule
t = arg maxt′ P (s, t′), where the model P (s, t′) is a product of factors given by the
local models P (yi|xi), one can not isolate the estimation of local probabilities P (yi|xi)
as a stand-alone problem, choosing a model family and setting parameters to optimize
the likelihood of test data. The bias-variance tradeoff may be different [9]. We find
interesting patterns in the relationship between joint and conditional data likelihood
and accuracy performance achieved by such compound models, suggesting that heavier
smoothing is needed to optimize accuracy and that fitting a small number of parameters
to optimize it directly might greatly improve performance.

The experimental study shows that memory-based learning outperforms commonly
used methods for this task (Witten-Bell, Jelinek Mercer with fixed weights, decision
trees, and log-linear models). For example, an error reduction of 5.8% in whole sentence
accuracy is achieved by using memory-based learning instead of Witten-Bell, which is
used in the state-of-the art model [5].

2 Memory-Based and Deleted Interpolation Models

In this section we demonstrate the relationship between deleted interpolation models
and a class of memory-based models that performed best in our study.

2.1 Deleted Interpolation Models

Deleted interpolation models estimate the probability of a class y given a feature vec-
tor (context) of n features, P (y|x1, . . . , xn), by linearly combining relative frequency
estimates based on subsets of the full context (x1, . . . , xn), using statistics from lower-
order distributions to reduce sparseness and improve the estimate. To write out an ex-
pression for this estimate, let us introduce some notation. We will denote by Sj subsets
of the set {1, . . . , n} of feature indices. Sj can take on 2n values ranging from the
empty set to the full set {1, . . . , n}. We will denote by XS the tuple of feature values
of X for the features whose indices are in S. For example X{1,2,3} = (x1, x2, x3). For
convenience, we will add another set, denoted by ∗, which we will use to include in the
interpolation the uniform distribution P (y) = 1

V , where V is the number of possible
classes y. The general form of estimate is then:

P̃ (y|X) =
∑

Si⊆{1,...,n}∨Si=∗
λSi(X)P̂ (y|XSi) (1)

Optimizing Local Probability Models for Statistical Parsing 411

Here P̂ are relative frequency estimates and P̂ (y|X∗) = 1
V by definition. The inter-

polation weights λ are shown to depend on the full context X = (x1, . . . , xn) as well
as the specific subset Si of features. In practice parameters as general as that are never
estimated. For strictly linear feature subsets sequences, methods have been proposed
to fit the parameters by maximizing the likelihood of held-out data through EM while
tying parameters for contexts having equal or similar counts1.

2.2 (A Kind of) Memory-Based Learning Models

We will show that a broad class of memory-based learning methods have the same
form as Equation 1 and are thus a subclass of deleted interpolation models. While [18]
have noted that memory-based and back-off models are similar in the way they use
counts and in the way they specify abstraction hierarchies among context subsets, the
exact nature of the relationship is not made precise. They emphasize the case of 1-
nearest neighbor and show that it is equivalent to a special kind of strict back-off (non-
interpolated) model. Our experimental results suggest that a number of neighbors K
much larger than 1 works best for local probability estimation in parsing models. The
exact form of the interpolation weights λ as dependent on contexts and their counts is
therefore crucial for combining more specific and more general evidence. We will look
at memory-based learning models determined by the following parameters:

– K , the number of nearest neighbors.
– A distance function ∆(X, X ′) between feature vectors. This function should de-

pend only on the positions of matching/mis-matching features.
– A weighting function w(X, X ′), which is the weight of neighbor X ′ of X . We will

assume that the weight is a function of the distance, i.e. w(X, X ′) = w(∆(X, X ′)).

Let us denote by NK(X) the set of K nearest neighbors of X . The probability of a
class y given X is estimated as:

P̃ (y|X) =

∑
X′∈NK(X) w(∆(X, X ′))δ(y, y′)
∑

X′∈NK(X) w(∆(X, X ′))
(2)

Here y′ is the label of the neighbor X ′, and δ(y, y′) = 1 iff y = y′, and 0 otherwise.
For nominal attributes, as always used in conditioning contexts for natural language
parsers, the distance function commonly distinguishes only between matches and mis-
matches on feature values, rather than specifying a richer distance between values. We
will limit our analysis to this case as specified in the conditions above. In the majority
of applications of k-NN to natural language tasks, simple distance functions have been
used [6]2.

1 When not limited to linear subsets sequences, it is possible to optimize tied parameters, but EM
is difficult to apply and we are not aware of work trying to optimize interpolation parameters
for models of this more general form.

2 Richer distance functions have been proposed and shown to be advantageous [18, 12, 8]. How-
ever, such distance functions are harder to acquire and using them raises significantly the
computational complexity of applying the k-NN algorithm. When simple distance functions
are used, clever indexing techniques make testing a constant time operation.

412 Kristina Toutanova, Mark Mitchell, and Christopher D. Manning

The distance function ∆(X, X ′) will take on one of 2n values depending on the
indices of the matching features between the two vectors. In practice we will add V
artificial instances to the training set, one of each class (to avoid zero probabilities).
These instances will be at an additional distance value δsmooth which will normally be
larger that the other distances. We require that the distance ∆(X, X ′) be no smaller
than ∆(X, X ′′) if X ′′ matches X on a superset of the attributes on which X ′ matches.

The commonly used overlap distance function, ∆(X, X ′) =
∑n

i=1 wiδ(xi, x
′
i),

satisfies these constraints. Every feature has an importance weight wi ≥ 0. This is the
distance function we have used in our experiments, but it is more restrictive than the
general case for which our analysis holds, because it has only n + 1 parameters — the
wi and δsmooth. The general case would require 2n + 1 parameters.

We go on to introduce one last bit of notation. We will say that the schema S of an
instance X ′ with respect to an instance X is the set of feature indices on which the two
instances match. (We are herer using similar terminology to [18]). It is clear that the
distance ∆(X, X ′) depends only on the schema S of X ′ with respect to X . The same
holds true for the weight of X ′ with respect to X . We can therefore think of the K
nearest neighbors as groups of neighbors that have the same schema. Let us denote by
SK(X) the set of schemata of the K nearest neighbors of X . We assume that instances
in the same schema are either all included or excluded from the nearest neighbors set.
The same assumption has commonly been made before [18]. We have the following
relationships between schemata S′ ≤ S if the schema S′ is more specific than S, i.e.
the set of feature indices S′ is a superset of the set S. We will use S′ ≺ S for immediate
precedence, i.e. S′ ≺ S iff S′ ≤ S and there are no schemata between the two in the
ordering. We can rearrange Equation 2 in terms of the participating schemata and then
after an additional re-bracketing, we obtain the same form as Equation 1.

P̃ (y|X) =
∑

Sj∈SK(X)

λSj (X)P̂ (y|XSj) (3)

The interpolation coefficients have the form:

λSj (X) =
(w(∆(Sj)) −

∑
Sj≺S′

j
,S′

j
∈SK(X) w(∆(S′

j)))

Z(X)
c(XSj) (4)

Z(X) =
∑

Sj∈SK(X)

w(∆(Sj)) −
∑

Sj≺S′
j
,S′

j
∈SK(X)

w(∆(S′
j))

c(XSj) (5)

This concludes our proof that memory-based models of this type are a subclass of
deleted interpolation models. It is interesting to observe the form of the interpolation
coefficients. We can notice that they depend on the total number of instances matching
the feature subset as is usually true of other linear subsets deleted interpolation meth-
ods such as Jelinek-Mercer smoothing and Witten-Bell smoothing. However they also
depend on the counts of more general subsets as seen in the denominator. The different
counts are weighted according to the function w.

In practice the most widely used deleted interpolation models exclude some of the
feature subsets and estimates are interpolated from a linear feature subsets order. These
models can be represented in the form:

Optimizing Local Probability Models for Statistical Parsing 413

P̃ (y|x1, . . . , xn) = λx1,...,xn P̂ (y|x1, . . . , xn) + (1 − λx1,...,xn)P̃ (y|x1, . . . , xn−1) (6)

The recursion is ended with the uniform distribution as above. Memory-based mod-
els will be subclasses of deleted interpolation models of this form if we define ∆(S) =
∆({1, . . . , i}), where i is the largest numbers such that {1, . . . , i} ≥ S. If such i does
not exist ∆(S) = ∆({}) or ∆(∗) for the artificial instances.

3 Experiments

We investigate these ideas via experiments in probabilistic parse selection from among
a set of alternatives licensed by a hand-built grammar in the context of the newly devel-
oped Redwoods HPSG treebank [14]. HPSG (Head-driven Phrase Structure Grammar) is
a modern constraint-based lexicalist (unification) grammar, described in [15].

The Redwoods treebank makes available syntactic and semantic analyses of much
greater depth than, for example, the Penn Treebank. Therefore there are a large number
of features available that could be used by stochastic models for disambiguation. In
the present experiments, we train generative history-based models for derivation trees.
The derivation trees are labeled via the derivation rules that build them up; an example
is shown in Figure 1. All models use the 8 features shown in Figure 2. They estimate
the probability P (expansion(n)|history(n)), where expansion is the tuple of node
labels of the children of the current node and history is the 8-tuple of feature values.
The results we obtain should be applicable to Penn Treebank parsing as well, since we
use many similar features such as grand-parent information and build similar generative
models.

The accuracy results we report are averaged over a ten-fold cross-validation on the
data set summarized in Table 1. Accuracy results denote the percentage of test sentences
for which the highest ranked analysis was the correct one. This measure scores whole
sentence accuracy and is therefore stricter than the labelled precision/recall measures,
and more appropriate for the task of parse selection3.

Table 1. Annotated corpus used in experiments: The columns are, from left to right, the total
number of sentences, average length, average lexical ambiguity (number of lexical entries per to-
ken), average structural ambiguity (number of parses per sentence), and the accuracy of choosing
at random

sentences length lex ambiguity struct ambiguity random baseline
5312 7.0 4.1 8.3 25.81%

3.1 Linear Feature Subsets Order

In this first set of experiments, we compare memory-based learning models restricted
to linear order among feature subsets to deleted interpolation models using the same

3 Therefore we should expect to obtain lower figures for this measure compared to labelled
precision/recall. As an example, the state of the art unlexicalized parser [11] achieves 86.9%
F measure on labelled constituents and 30.9% exact match accuracy.

414 Kristina Toutanova, Mark Mitchell, and Christopher D. Manning

IMPER

HCOMP

HCOMP

LET V1

Let

US

us

SEE V3

see

Fig. 1. Example of a Derivation Tree

No. Name Example
1 Node Label HCOMP
2 Parent Node Label HCOMP
3 Node Direction left
4 Parent Node Direction none
5 Grandparent Node Label IMPER
6 Great Grandparent Label yes
7 Left Sister Node Label HCOMP
8 Category of Node verb

Fig. 2. Features over derivation trees

linear subsets order. The linear interpolation sequence was the same for all models
and was determined by ordering the features of the history by gain-ratio. The resulting
order was: 1, 8, 2, 3, 5, 4, 7, 6 (see Table 2). Numerous methods have been proposed for
estimation of parameters for linearly interpolated models4. In this section we survey the
following models:

Jelinek Mercer with a fixed interpolation weight λ for the lower-order model (and
1−λ for the higher-order model). This is a model of the form of Equation 6, where the
interpolation weights do not depend on the feature history. We report test set accuracy
for varying values of λ. We refer to this model as JM.

Witten-Bell smoothing [17] uses as an expression for the weights : λ(x1, . . . , xi) =
c(x1,...,xi)

c(x1,...,xi)+d×|y:c(y,x1,...,xi)>0| . We refer to this model as WBd. The original Witten-

Bell smoothing5 is the special case with d = 1, but use of an additional parameter d
which multiplies the number of observed outcomes in the denominator is commonly
used in some of the best-performing parsers and named-entity recognizers [1, 5].

Memory-based models restricted to linear sequence, with varying weight function
and varying values of K . The restriction to linear sequence is obtained by defining
the distance function to be of the special form described at the end of section 2. We
define the distance function as follows for subsets of the linear generalization sequence:
∆({1, . . . , n}) = 0, · · · , ∆({}) = n, ∆(∗) = n+1. We implemented several weighting
methods, including inverse, exponential,information gain, and gain-ratio. The weight
functions inverse cubed(INV3) and inverse to the fourth (INV4) worked best. They are
defined as follows: INV3(d)=(1/(d + 1))3 INV4(d)=(1/(d + 1))4. We refer to these
models as LKNN3 and LKNN4, standing for linear k-NN using weighting INV3 and
linear k-NN using weighting function INV4 respectively.

Figure 3 shows parse selection accuracy for the three models discussed above —
JM in (a), WBd in (b) and LKNN3 and LKNN4 in (c). We can note that the maxi-
mal performance of JM (79.14% at λ = .79) is similar to the maximal performance
of WBd (79.60% at d = 20). The best accuracies are achieved when the smoothing

4 In addition to models of the form of Equation 6 there are models that use modified distributions
(not the relative frequency). Comparison to these other good models (e.g., forms of Kneser-
Ney and Katz smoothing [4] is not the subject of this study and would be an interesting topic
for future research.

5 Method C, also used in [4].

Optimizing Local Probability Models for Statistical Parsing 415

Jelinek Mercer Fixed Weight

73,0%

74,0%

75,0%

76,0%

77,0%

78,0%

79,0%

80,0%

81,0%

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Interpolation Weight

A
cc

u
ra

cy

Witten-Bell Varying d

73,0%

74,0%

75,0%

76,0%

77,0%

78,0%

79,0%

80,0%

81,0%

0 20 40 60 80 100

d

A
cc

u
ra

cy

Linear k-NN

73,0%

74,0%

75,0%

76,0%

77,0%

78,0%

79,0%

80,0%

81,0%

0 5000 10000 15000

K

A
cc

u
ra

cy

Weight Inverse 3 Weight Inverse 4

(a) (b) (c)

Fig. 3. Linear Subsets Deleted Interpolation Models: Jelinek Mercer (JM) (a) Witten-Bell (b) and
k-NN (c)

is much heavier than we would expect. For example, one would think that the higher
order distributions should normally receive more weight, i.e. λ < .5 for JM. Similarly,
for Witten-Bell smoothing, the value of d achieving maximal performance is larger than
expected. WB is an instance of WBd and we see that it does not achieve good accu-
racy. [5] reports that values of d between 2 and 5 were best. The over-smoothing issue
is related to our observations on the connection between joint likelihood, conditional
likelihood, and parse selection accuracy, which we will discuss at length in Section 4.

The best performance of LKNN3 is 79.94% at K = 3, 000 and the best performance
of LKNN4 is 80.18% at K = 15, 000. Here we also note that much higher values of K
are worth considering. In particular, the commonly used K = 1 (74.07% for LKNN4)
performs much worse than optimal. The difference between LKNN4 at K = 15, 000
and JM at λ = 0.79 is statistically significant according to a two-sided paired t-test at
level α = .05 (p-value=.024). The difference between LKNN4 and the best accuracy
achieved by WBd is not significant according to this test but the accuracy of LKNN4
is more stable across a broad range of K values and thus the maximum can be more
easily found when fitting on held-out data.

We saw that using k-NN to estimate interpolation weights in a strict linear interpo-
lation sequence works better than JM and WBd. The real advantage of k-NN, however,
can be seen when we want to combine estimates from more general feature contexts but
do not limit ourselves to strict linear deleted interpolation sequences. The next section
compares k-NN in this setting to other proposed alternatives.

3.2 General k-NN, Decision Trees, and Log-Linear Models

In this second group of experiments we study the behavior of memory-based learning
not restricted to linear subset sequences, using different weighting schemes and number
of neighbors, comparing this result to the performance of decision trees and log-linear
models. The next paragraphs describe our implementation of these models in more
detail.

For k-NN we define the distance metric as follows: ∆({i1, . . . , ik}) = n − k;
∆({}) = n, ∆(∗) = n + 1. We report the performance of inverse weighting cubed
(INV3) and inverse weighting to the fourth(INV4) as for linear k-NN. We refer to these
two models as KNN3 and KNN4 respectively.

416 Kristina Toutanova, Mark Mitchell, and Christopher D. Manning

Table 2. Best Parse Selection Accuracies Achieved by Models

Model KNN4 DecTreeWBd LogLinSingle LogLinPairs LogLinBackoff
Accuracy 80.79% 79.66% 78.65% 78.91% 77.52%

Decision trees have been used previously to estimate probabilities for statistical
parsers [13]6. We found that smoothing the probability estimates at the leaves by linear
interpolation with estimates along the path to the root improved the results significantly,
as reported in [13]. We used WBd and obtained final estimates by linearly interpolating
the distribution at the leaf up to the root and the uniform distribution. We can think
of this as having a different linear subset sequence for every leaf. The obtained model
is thus an instance of a deleted interpolation model ([13]). We denote this model as
DecTreeWBd.

Log-linear models have been successfully applied to many natural language prob-
lems, including conditional history-based parsing models [16], part-of-speech tagging,
PP attachment, etc. In [3], the use of a “maximum entropy inspired” estimation tech-
nique leads to the currently best performing parser7. The space of possible maximum
entropy models that one could build is very large. In our implementation here, we
are using only binary features over the history and expansion of the following form:
fvi1,...,vik,expansion(x′

1, . . . , x
′
n, expansion′) = 1 iff expansion′ = expansion and

xi1 = vi1 · · ·xik = vik . Gaussian smoothing was used by all models. We trained three
models differing in the type of allowable features (templates).

– Single attributes only. This model has the fewest number of features. Here we allow
the features to be defined by specifying a value for a single attribute for a history.
We denote this model LogLinSingle.

– This model includes features looking at the values of pairs of attributes. However,
we did not allow all pairs of attributes, but only pairs including attribute number 1
(the node label). These are a total of 8 pairs (including the singleton set containing
only attribute 1). We denote this model LogLinPairs.

– This final model mimics the linear feature subsets deleted interpolation models of
section 3.1. It uses all subsets in the linear sequence, which makes for 9 subsets.
We denote this model LogLinBackoff.

Figure 4 shows the performance of k-NN using the two inverse weighing functions
for varying values of K and DecTreeWBd for varying values of d. Table 2 shows the
best results achieved by KNN4, DecTreeWbd and the three log-linear models.

The results suggest that memory-based models perform better than decision trees
and log-linear models in combining information for probability estimation. The differ-
ence between the accuracy of KNN4 and WBd is 5.8% error reduction and is statis-

6 We induce decision trees using gain-ratio as a splitting criterion (information gain divided by
the entropy of the attribute). We stopped growing the tree when all samples in a leaf had the
same class, or when the gain ratio was 0.

7 In [3], estimates based on different feature subsets are multiplied and the model has a form
similar to that of a log-linear model. The obtained distributions are not normalized but are
close to summing to one.

Optimizing Local Probability Models for Statistical Parsing 417

k-NN Accuracy

74,0%

75,0%

76,0%

77,0%

78,0%

79,0%

80,0%

81,0%

0 5000 10000 15000

K

A
cc

u
ra

cy

Inverse Weight 4 Inverse Weight 3

Decision Tree Accuracy

74,0%

75,0%

76,0%

77,0%

78,0%

79,0%

80,0%

81,0%

0 20 40 60 80

d

A
cc

u
ra

cy

(a) (b)

Fig. 4. k-NN using INV3 and INV4(a) and DecTreeWBd (b)

tically significant at level α = 0.01 according to a two-sided paired t-test (p-value=
0.0016).

This result agrees with the observation in [7] that memory-based models should be
good for NLP data, which is abundant with exceptions and special cases. The study
in [7] is restricted to the classification case and K = 1 or other very small values of
K are used. Here we have shown that these models work particularly well for proba-
bility estimation. Relative frequency estimates from different schemata are effectively
weighted based on counts of feature subsets and distance-weighting. It is especially sur-
prising that these models performed better than log-linear models. Log-linear/logistic
regression models are the standardly promoted statistical tool for these sorts of nominal
problems, but actually we find that simple memory-based models performed better. The
log-linear models we have surveyed perform more abstraction (by just including some
features) and are less easily controllable for overfitting; abstracting away information is
not expected to work well for natural language according to [7].

4 Log-Likelihoods and Accuracy

Our discussion up to now included only parse selection results. But what is the rela-
tion to the joint likelihood of test data (likelihood according to a model of the correct
parses) or the conditional likelihood (the likelihood of the correct parse given the sen-
tence)? Work in smoothing for language models optimizes parameters on held-out data
to maximize the joint likelihood, and measures test set performance by looking at per-
plexity (which is a monotonic function of the joint likelihood) [4]. Results on word
error rate for speech recognition are also often reported [10], but the training process
does not specifically try to minimize word error rate (because it is hard). In our exper-
iments we observe that much heavier smoothing is needed to maximize accuracy than
to maximize joint log-likelihood.

We show graphs for the model JM for the joint log-likelihood averaged per ex-
pansion, and the conditional log-likelihood averaged per sentence in Figure 5 (a). The
corresponding accuracy curve is shown in Figure 3 (a). The graph in 5 (b) shows joint
and conditional log-likelihood curves for model KNN4; its accuracy curve is in Figure
4 (a).

418 Kristina Toutanova, Mark Mitchell, and Christopher D. Manning

JMFW Data Log-likelihoods

-7,0

-6,0

-5,0

-4,0

-3,0

-2,0

-1,0

0,0

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

interpolation weight

lo
g

-l
ik

el
ih

o
o

d

joint log-likelihood conditional log-likelihood

k-NN Data Log-likelihoods

-3,5

-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0 5000 10000 15000

K

A
ve

ra
g

e
L

o
g

-l
ik

el
ih

o
o

d

Joint Log-likelihood Conditional Log-likelihood

(a) (b)

Fig. 5. JM (a) and k-NN using INV4(b)

The pattern of the points of maximum for the test data joint log-likelihood, condi-
tional log-likelihood and parse selection accuracy is fairly consistent across smoothing
methods. The joint likelihood increased in the beginning with smoothing up to point,
and then started to decrease. The accuracy followed the pattern of the joint likelihood,
but the peak performance was reached long after the best settings for joint likelihood
(and before the best settings for conditional likelihood). This relationship between the
maxima — first joint log-likelihood, followed by the accuracy maximum holds for all
surveyed models. This phenomenon could be partly explained by reference to the in-
creased significance of the variance in classification problems [9]. Smoothing reduces
the variance of the estimated probabilities. In models of the kind we study here, where
many local probabilities are multiplied to obtain a final probability estimate, assuming
independence between model sub-parts, the bias-variance tradeoff may be different and
over-smoothing even more beneficial. There exist smoothing methods that would give
very bad joint likelihood but still good classification as long as the estimates are on the
right side of the decision boundary. We can also note that, for the models we surveyed,
achieving the highest joint likelihood did not translate to being the best in accuracy. For
example, the best joint log-likelihood was achieved by DecTreeWBd followed very
closely by WBd. The joint log-likelihood achieved by linear k-NN was worse and the
worst was achieved by general k-NN (which performed best in accuracy). Therefore fit-
ting a small number of parameters for a model class to optimize validation set accuracy
is worth it for choosing the best model.

Another interesting phenomenon is that the conditional log-likelihood continued
to increase with smoothing and the maximum was reached at the heaviest amount of
smoothing for almost all surveyed models — JM, WBd, DecTreeWBd, and KNN3.
For the other forms of k-NN the conditional log-likelihood curve was more wiggly and
peaked at several points going up and down. We explain this increase in conditional
log-likelihood with heavy smoothing by the tendency of such product models to be
over-confident. Whether they are wrong or right, the conditional probability of the best
parse is usually very close to 1. The conditional log-likelihood can thus be improved by
making the model less confident. Additional gains are possible even long after the best
smoothing amount for accuracy.

Optimizing Local Probability Models for Statistical Parsing 419

Jelinek-Mercer Fixed Weight

0,73

0,77

0,81

0,85

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

interpolation weight

Accuracy

-1

-0,8

-0,6

-0,4

-0,2

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
dJoint Log-likelihood Conditional Log-likelihood

(a)

Witten-Bell Varying d

0,73

0,77

0,81

0,85

0 5 10 15 20 25 30 35 40

d

Accuracy

-1

-0,8

-0,6

-0,4

-0,2

0 5 10 15 20 25 30 35 40

dJoint Log-likelihood Conditional Log-likelihood

(b)

Fig. 6. PP Attachment Task: Jelinek-Mercer with Fixed Weight λ for the higher order model(a)
and Witten-Bell WBd for varying d (b)

One could think that this phenomenon may be specific to our task — selection of the
best parse from a set of possible analyses, and not from all parses to which the model
would assign non-zero probability. To further test the relationship between likelihoods
and accuracy, we performed additional experiments on a different domain. The task is
PP (prepositional phrase) attachment given only the four words involved in the depen-
dency — v, n1, p, n2, such as e.g. eat salad with fork. The attachment of the PP phrase
p, n2 is either to the preceding noun n1 or to the verb v. We tested a generative model
for the joint probability P (Att, V, N1, P, N2), where Att is the attachment and can
be either noun or verb. We graphed the likelihoods and accuracy achieved when using
Jelinek-Mercer with fixed weight and Witten-Bell with varying parameter d, as for the
parsing experiments. Figure 6 shows curves of accuracy, (scaled) joint log-likelihood
and conditional log-likelihood. We see that the pattern described above repeats.

5 Summary and Future Work

The problem of effectively estimating local probability distributions for compound deci-
sion models used for classification is surprisingly unexplored. We empirically compared
several commonly used models to memory-based learning and showed that memory-
based learning achieved superior performance. The added flexibility of an interpola-
tion sequence not limited to a linear feature sets generalization order paid off for the

420 Kristina Toutanova, Mark Mitchell, and Christopher D. Manning

task of building generative parsing models. Further research is necessary studying the
performance of memory-based models — such as comparing to Kneser-Ney and Katz
smoothing, and fitting the k-NN weights on held-out data.

Our experimental study of the relationship among joint and conditional likelihood,
and classification accuracy conveyed interesting regularities for such models. A more
theoretical quantification of the effect of the bias and variance of the local distributions
on the overall system performance is a subject of future research.

References

1. D. M. Bikel, S. Miller, R. Schwartz, and R. Weischedel. Nymble: a high-performance learn-
ing name-finder. In Proceedings of the Fifth Conference on Applied Natural Language Pro-
cessing, pages 194–201, 1997.

2. E. Black, F. Jelinek, J. Lafferty, D. M. Magerman, R. Mercer, and S. Roukos. Towards
history-based grammars: Using richer models for probabilistic parsing. In Proceedings of
the 31st Meeting of the Association for Computational Linguistics, pages 31–37, 1993.

3. E. Charniak. A maximum entropy inspired parser. In NAACL, 2000.
4. S. F. Chen and J. Goodman. An empirical study of smoothing techniques for language

modeling. In Proceedings of the Thirty-Fourth Annual Meeting of the Association for Com-
putational Linguistics, pages 310–318, 1996.

5. M. Collins. Three generative, lexicalised models for statistical parsing. In Proceedings of
the 35th Meeting of the Association for Computational Linguistics and the 7th Conference
of the European Chapter of the ACL, pages 16 – 23, 1997.

6. W. Daelemans. Introduction to the special issue on memory-based language processing.
Journal of Experimental and Theoretical Artificial Intelligence, 11:3:287—292, 1999.

7. W. Daelemans, A. van den Bosch, and J. Zavrel. Forgetting exceptions is harmful in language
learning. Machine Learning, 34:1/3:11—43, 1999.

8. I. Dagan, L. Lee, and F. Pereira. Similarity-based models of cooccurrence probabilities.
Machine Learning, 34(1-3):43–69, 1999.

9. J. Friedman. On bias variance 0/1-loss and the curse-of-dimensionality. Journal of Data
Mining and Knowledge Discovery, 1(1), 1996.

10. J. T. Goodman. A bit of progress in language modeling: Extended version. In MSR Technical
Report MSR-TR-2001-72, 2001.

11. D. Klein and C. D. Manning. Accurate unlexicalized parsing. In Proceedings of the 41st
Annual Meeting of the Association for Computational Linguistics, 2003.

12. L. Lee. Measures of distributional similarity. In 37th Annual Meeting of the Association for
Computational Linguistics, pages 25–32, 1999.

13. D. M. Magerman. Statistical decision-tree models for parsing. In Proceedings of the 33rd
Meeting of the Association for Computational Linguistics, 1995.

14. S. Oepen, K. Toutanova, S. Shieber, C. Manning, D. Flickinger, and T. Brants. The LinGo
Redwoods treebank: Motivation and preliminary applications. In COLING 19, 2002.

15. C. Pollard and I. A. Sag. Head-Driven Phrase Structure Grammar. University of Chicago
Press, 1994.

16. A. Ratnaparkhi. A linear observed time statistical parser based on maximum entropy models.
In EMNLP, pages 1—10, 1997.

17. I. H. Witten and T. C. Bell. The zero-frequency problem: Estimating the probabilities of
novel events in adaptive text compression. IEEE Trans. Inform. Theory, 37,4:1085—1094,
1991.

18. J. Zavrel and W. Daelemans. Memory-based learning: Using similarity for smoothing. In
Joint ACL/EACL, 1997.

	1 Introduction
	2 Memory-Based and Deleted Interpolation Models
	2.1 Deleted InterpolationModels
	2.2 (A Kind of) Memory-Based Learning Models

	3 Experiments
	3.1 Linear Feature Subsets Order
	3.2 General k-NN, Decision Trees, and Log-Linear Models

	4 Log-Likelihoods and Accuracy
	5 Summary and Future Work
	References

