A New Way to Introduce Knowledge
into Reinforcement Learning

Pascal Garcia

INSA de Rennes/IRISA, F-35043 Rennes Cedex, France

pascal.garcia@irisa.fr

Abstract. We present in this paper a method to introduce a priori
knowledge into reinforcement learning using temporally extended ac-
tions. The aim of our work is to reduce the learning time of the
Q-learning algorithm. This introduction of initial knowledge is done by
constraining the set of available actions in some states. But at the same
time, we can formulate that if the agent is in some particular states
(called exception states), we have to relax those constraints. We define a
mechanism called the propagation mechanism to get out of blocked situ-
ations induced by the initial knowledge constraints. We give some formal
properties of our method and test it on a complex grid-world task. On
this task, we compare our method with Q-learning and show that the
learning time is drastically reduced for a very simple initial knowledge
which would not be sufficient, by itself, to solve the task without the
definition of exception situations and the propagation mechanism.

1 Introduction

Reinforcement Learning is a general framework in which an autonomous
agent learns which actions to choose in particular situations (states) in order to
optimize some reinforcements (rewards or punitions) in the long run [1]. A fun-
damental problem of its standard algorithms is that although many tasks can be
formulated in this framework, in practice for large state space they are not solv-
able in reasonable time. There are two principal approaches for addressing these
problems: The first approach is to apply generalization techniques (e.g., [2,3]).
The second approach is to use temporally extended actions (e.g., [4,5,6,7,8,9]).
A temporally extended action is a way of grouping actions to create a new one.
For example, if the primitive actions of a problem are “make a step in a given
direction”, a temporally extended action could be “make ten steps to the north
followed by two steps to the west”. Temporally extended actions represent the
problem at different levels of abstraction.

The aim of our work is to give a method to incorporate easily some a priori
knowledge, about a task we try to solve by reinforcement learning, to speed-
up the learning time. To introduce knowledge into reinforcement learning, we
use some temporally extended actions for which the set of available actions can
change during learning. We try to reduce the blind exploration of the agent by
constraining the set of available actions. But because the a priori knowledge

N. Lavra¢ et al. (Eds.): ECML 2003, LNAI 2837, pp. 157-[I6R] 2003.
© Springer-Verlag Berlin Heidelberg 2003

158 Pascal Garcia

could be very simple, those constraints can make the agent unable to solve a
task. So we define a way to relax those constraints (with what we call the ex-
ception conditions and the propagation mechanism). The structure of this paper
is as follows. First we described our method in section 2. We give its two main
properties in section 3. In section 4 and 5 we describe a complex grid-world task
to compare our method with Q-learning [10]. We show that the learning time is
drastically reduced for a very simple initial knowledge which is not sufficient by
itself, to solve the task and so, must be updated.

2 Formalism

In this section we develop our method which we call EBRL for Exception-Based
Reinforcement Learning. To make it easier for the reader we explain it with the
help of the artificial problem presented in Figure[Il In this grid-world, the agent
has to reach the cross; he can move in eight directions (north, north-east, ...)
and some walls can be put in the grid (the agent is blocked by them).

=
—

Fig. 1. The agent (triangle) has to reach the cross to solve the task.

2.1 Procedure, Rule and Exception

We define in this sub-section the syntax in which our temporally extended ac-
tions will be written. The semantic associated with this syntax is also explained.
We represent a temporally extended action by a procedure:

Procedure_name(state,list_of_parameters) —
termination : termination condition

rule : set of actions S}
{exception : (exception condition, set of actions Sz)}%/*
next : continuation

The semantic associated with this syntax is:

— state: the state of the underlying Markov Decision Process (MDP);

— list_of_parameters: optional parameters, each parameter has a finite num-
ber of different possible values;

— termination: this is the condition of termination of the procedure. This
condition only depends on the state and the parameters;

A New Way to Introduce Knowledge into Reinforcement Learning 159

— rule: this rule produces a finite set of primitive or temporally extended
actions (procedures). This rule is applied only if the exception condition is
not fulfilled;

— exception:

e exception condition: if this condition is fulfilled, we do not use the set of
actions of the rule part, but instead, the set of actions produced by the
exception part;

e set of actions: a finite set of primitive or temporally extended
actions (procedures). This rule is applied only if the exception condi-
tion is fulfilled. We have S; C S;

— next: continuation after the execution of an action of the rule or exception
part. This part is a call to another procedure. If this procedure has pa-
rameters, they only depend on the state and the parameters of the current
procedure.

When entering a procedure, we first test the termination condition; if it is
not fulfilled, we test the exception condition; if this condition is true, we choose
one of the exception actions and after its execution, we continue in the next
part. If the exception condition is not fulfilled, we choose one of the action of
the rule part and after its carrying out, we continue in the next part. In the
remaining of the article, we call program a finite set of procedures and main the
first procedure of the program to be executed.

2.2 Example

We illustrate, in this section, the syntax described above, to solve the artificial
problem.

main(grid configuration) —
termination : the agent is on the cross

rule : { the set of actions which make the agent get closer to the cross }
exception : (all the actions of the rule part lead to a wall, { all the primitive actions })
next : main()

The a priori knowledge is just to choose in each state of the underlying MDP
the set of actions (amongst the eight possible ones) which gets the agent closer to
the cross without taking the walls into account (there is between one and three
such actions). The exception to this rule is when all those actions lead the agent
to a wall; when this is the case, we relax the constraints and allow all actions.

2.3 Full State Representation

We use a program in interaction with an MDP. This program will help the learn-
ing agent to solve the problem represented by this MDP. We have seen that each
procedure has the state of the underlying MDP as a parameter. We define the
full state representation of a procedure as a 4-tuple (procedure_name,state,
list_of_parameters, next_list) where procedure_name is the name of the

160 Pascal Garcia

procedure, state is the state of the underlying MDP when we enter this pro-
cedure, 1list_of_parameters is the possible parameters of the procedure and
next_list is the list of procedures to be executed after the execution of
procedure_name.

2.4 Induced Semi-Markov Decision Process

In this section we describe an algorithm called construct-SMDP which constructs
a Semi-Markov Decision Process (SMDP) (see [11] and [5]), from a program P
and an underlying MDP M (similar construction can be found in [4] and [5]).
Note that this algorithm serves to demonstrate that the execution of a program
on an MDP is an SMDP. We will never have to construct explicitly this SMDP
when executing a program on an MDP. In the remaining of this article we note:

- M = (S,A,T,R) the underlying MDP where S is a set of states, A is
a set of actions, T is a Markovian transition model mapping S x A x S
into probabilities in [0, 1], R is a reward function mapping S X A x S into
real-valued rewards;

— P the program,;

— Main_parameters the set of all possible lists of values for the parameter list
of the main procedure;

— A’ the set of all the actions of the rule and exception part of all the proce-
dures of the program and, for the temporally extended actions, all possible
instantiations of their parameters;

— A'(s'), where s’ = (p,s,l,n) is a full state representation, is the set of all
actions of the rule and exception part of the procedure p. If the terminal
condition of p is fulfilled, A’(s") = termination;

— A'.(¢"), where s’ = (p, s,1,n) is the set of all actions of the rule part of the
procedure p;

— A'.(s") where ' = (p, s,l,n) is the set of all actions of the exception part of
the procedure p, if there is no exception part, A’.(s") = A’.(s"). We recall
that A’,.(s") C A'.(s);

— next(p, s,1), where p is a procedure, s a state of M and [a list of parameters,
is the procedure of the next part of p, with its instantiated parameters.

— add(e,l) returns the list with first element e and tail I. head(l) returns the
first element of [and tail(l) returns the list I without its first element.

A state of the constructed SMDP is a full state representation of a procedure.
The SMDP (8", A", T',R',3) (where &', A’, T', R’ have the same meaning as
S, A, T and R respectively and [is a mapping from &’ x A’ x &’ into real value
-see [5]-) is constructed as follows:

A New Way to Introduce Knowledge into Reinforcement Learning 161

algorithm construct—SMDP(MDP : M, program : P,

discount factor : ~y €]0, 1[)

begin

S’ + {main} x S x Main_parameters x {[|}

repeat

forall t = (p,s,l,n) € S’, forall a € A’(t) do
if a =p'(') then

'« (p', 5,1 ;add(next(p, s,1),n))
S« S u{t'}
T'(t,a,t') + 1

B(t,a,t') + 1 algorithm next—state(s : s € S, n : next_list)
elseif a = termination and p # main then begin
t' < next—state(s,n) if n #[] then
S+ S'u{t'} let p(l) = head(n)
T'(tya,t') + 1 t < (p, s, L,tail(n))
B(t,a,t’) « 1 return ¢
elseif a € A then else
forall s’ € S do in this case, the program is not correct,
n’ + add(next(p, s,1),n) the program is not terminated and there is
t' < next—state(s’,n’) . no next procedure to call
S8+ 8" U {t'} endif
T'(t,a,t') « T(s,a,s") end

R/(t,a,t') + R(s,a,s’)
B(t,a,t") « v
endforall
endif
endforall
until S’ is stable (means that no new state
has been added to S’)

All unspecified value for 7/, R’ and B are set to 0
return (S, A’, 7', R, B)
end

We only consider program P and MDP M for which the construct-SMDP
algorithm terminates. The construct-SMDP satisfies the definition of an SMDP.
The Markov property is preserved because of the full state representation. This
SMDP is what the agent faces when executing P in M. Note that we do not
discount by 1 when calling a temporally extended action (procedure) and the
immediate reward is zero. Moreover, we discount by 7 and receive the imme-
diate reward of the underlying MDP when executing a primitive action so, the
solution of the constructed SMDP defines an optimal policy that maximizes the
expected discounted sum of rewards (with discount factor 7) received by the
agent executing P in M. Note that the optimal policy in the SMDP can be
sub-optimal in the underlying MDP.
Proposition 1 The construct-SMDP algorithm terminates if the MDP M is

finite and the next_list of all possible full state representation is finite.

Proof: By definition of a procedure, A’ is finite and if M is finite and the
next_list is finite for all full state representation, there is only a finite number
of possible full state representation so, after a finite number of the repeat loop,
no more new state will be added to S’. O

Definition 1 A procedure p is said to create next_list cycle if and only if p can
be reached by a temporally extended action of its rule or exception part.

Proposition 2 A sufficient condition to insure finite next_list is that there
does not exist next_list cycle procedures.

Proof: The next_list grows only when we choose in a procedure p a temporally
extended action. If we do not have next_list cycle procedures, in the next part of
p we cannot call a procedure already in next_list (else a temporally extended
action of p has reached p) and because the program is composed of a finite
number of procedures, the next_list cannot grow indefinitly. O

162 Pascal Garcia

O 1 23 4 5 6 7 R 9 o1 23 4 5 6 7T R 9

—

a) grid configuration b) exception states

o
1
2
3
Fl
5
L]
?
[l
9

Fig. 2. A wall is located between the agent and the cross.

o 1 23 4 5 & 7 R 9 01 2 3 4 5 & 7T kB 9

W m oo e ow M ==

R R

a) grid configuration b) exception states

Fig. 3. Without propagation mechanism, the agent cannot escape of the dead-end.

2.5 Exception State and Propagation

We call direct exception state a state for which the exception condition is fulfilled.
For example for the artificial problem and the program described in section 2.2,
the state (main, (3,3),[1,[]) (we represent the grid configuration only by the
agent’s position, see Figure Pl (a)) is said to be a direct exception state because
the rule part prescribes to go in a wall and so the exception condition is fulfilled.
We associate with a program and an underlying MDP a table £ from full state
representation to boolean. Let s’ = (p,s,l,n) € §'. If £(s') = false then, in
s’, we only use the action of the rule part of procedure p. If £(s’) = true then,
in s/, we only use the action of the exception part of procedure p. We call a
state s for which £(s) = true an exception state. Initially all entries of this
table are set to false. In the above exemple, when the agent, executing the
program in the underlying MDP, encounters the state (main, (3,3),[1,[]1), we
set £((main, (3,3),[1,[1)) to true and now, in this state, the agent will rely
only on the actions of the exception part.

After few iterations of the program we present in Figure[2 (b), in shaded cells,
the exception states (a shaded cell with coordinates (x,y) as to be interpreted
as a full state representation (main,(z,y), [1,[1). In this case, it is sufficient
to solve the task.

But this mechanism is very limited, for example, Figure[3] (a), the agent can-
not escape of the dead-end because only states (main, (6,4), [1,[1), (main, (6,5),
(1,0]) and (main,(6,6),[],[]) of the induced SMDP will become exception
states. We need a way to propagate this information back to the predecessor
states. This way of propagating exception states is called the propagation mech-
anism.

A New Way to Introduce Knowledge into Reinforcement Learning 163

Definition 2 We say that s; — so — -+ — s, s a rule part action path from
s1 to sp in M’ iff for all s; where 1 < i < n, there exists an action a € A',.(s;)
for which T (si,a, s;+1) > 0.

Definition 3 We denote by s — s’ that the action a has led to state s' starting
from state s.

We now define the property that must fulfill a propagation mechanism.

Definition 4 Let s be a state of the induced SMDP where E(s) = false. If for
each action a of A'.(s), there exists a rule part action path s % --- — s, where
E(sn) = true then, the propagation mechanism insures that after a finite number
of time steps, E(s) will become true.

For example, with any propagation mechanism, the program of the section
2.2, will now solve the dead-end example (see the properties section). An example
of exception states with a propagation mechanism is given Figure [3 (b) for the
dead-end example and after few iterations of the program.

Those propagation mechanisms can be designed by the user of our method
but, we give here, a very simple and general propagation mechanism we will use
in the result section. We call it the basic propagation mechanism:

Definition 5 Let sy and so be two states of S" where E(s1) = false and E(s2) =
true. If the agent makes a transition between sy and so then, E(s1) is set to true.

The basic propagation mechanism fulfills the propagation mechanism property
(note that the basic propagation propagates more than needed by the definition
4). Note that the basic propagation mechanism is cheap to compute, when exe-
cuting an action a in s and ending up in state s’, for example, we just have to
look at the value of £(s’) to know if we have to propagate. The size of the table
£ is always less than the size of the Q-table and each entry is just a boolean.

2.6 Learning

For a learning agent interacting with a Semi-Markov Descision Process, there
exists a learning algorithm, called SMDP Q-learning which updates a state-
action value function) - which maps state-action pairs into real values (where
actions can be primitive or temporally extended) - at every time period with the
formula:
Q(st,at) « Q(st,a:) +afre + Br max Q(se41,a) — Q(s¢,ar))
a€A’(st41)

where a; is the action (primitive or temporally extended) taken by the agent in
st (a state of the SMDP) , s;11 is the new state after executing a; in sq, r4 is the
reward and (; the discount factor received by the agent and « is the learning
rate. This learnt QQ-function converges to the optimal Q-function under technical
conditions similar to those for conventional Q-learning (see [5]).

164 Pascal Garcia

3 Properties

We give in this section two properties of the FBRL method. We illustrate them
with our artificial problem. We suppose in this section that every action gets
executed in every state infinitely often.

Definition 6 We say that s1 — sy — -+ — 8, 1s an exception part action path
from s1 to s, in M’ iff for all s;,s;+1 where 1 < i < n, there exists an action
a € A'(s;) for which T'(s;,a,8;+1) > 0.

Definition 7 For a procedure p, we note S', C S’ the set of states of the form
(p7 57 l? n) :

Definition 8 For a procedure p, we note B, C S’ the set of states of the form
(p, s,1,n) for which there exists an exception part action path in M’ leading to
a state s’ for which the termination condition of the procedure p is fulfilled.

Theorem 1 For a procedure p, if for each s € §',,, for each action a € A',.(s),
there exists a rule part action path s = --- — s’ leading to a state s’ for which,
either the termination condition of the procedure p is fulfilled or, s' is a direct
exception state then, for each state of By, the agent executing the procedure p
can reach a state in S’), for which the terminal condition of the procedure p is

fulfilled.

Proof:

a) For all s € &', by hypothesis,

e Either there exists, for an action a € A’.(s), a rule part action path
s % ... — & for which s fulfills the termination condition of p. As
A’.(s) C A'.(s) using either set of actions (A’,.(s) or A’.(s), depending
of the value of £(s)) we can reach the terminal condition of p.

e Or, for all a € A’,.(s) there exists a rule part action path s % --- — s’ for
which £(s’) = true and so, by definition of the propagation mechanism,
E(s) will become true after a finite number of iterations.

b) Let s; € B, then, by definition, there exists an exception part action path
$1 — 89 — -+ — 8, where s, is a state for which the termination condition
of the procedure p is fulfilled. For all s; in this path where 1 < i < n, If
E(s;) = false then by a), the agent can reach a state s’ from s; for which
the terminal condition of the procedure p is fulfilled or £(s;) will become
true after a finite number of time steps. But, if £(s;) = true then, there
exists an exception part action which leads to s;4;. O

For example we can prove with this theorem that the program defined in
section 2.2, with a propagation mechanism, will get the agent to the cross, if it
is possible to go to it in the underlying MDP using all the primitive actions. This
is true even if the actions are stochastics (p% of the time, the action is executed
correctly and (1—p)% of the time a randomly chosen action is executed instead).

A New Way to Introduce Knowledge into Reinforcement Learning 165

Definition 9 We note £(M’) the SMDP obtained from M’ in which for each
state s € 8" if £(s) = true, we only use the actions of A'c(s) else, we only use
the actions of A',.(s).

Proposition 3 After a finite number of time steps, £ does not change anymore.
We then note the & table by Ey.

Proof: The table £ has a finite number of entries and for a state s for which
E(s) = false by the definition of the direct exception states and the propagation
mechanism, either £(s) remains false or after a finite number of time steps E£(s)
becomes true. O

Theorem 2 SMDP Q-learning, applied to an agent executing P in M with ex-
ception table £, will converge to the optimal policy in Ef(construct-SMDP(M, P,
) w.p.1. if Yo =00 and Y a* < <.

Proof: £;(construct-SMDP(M, P,~)) is a finite SMDP fulfilling the precondi-
tions of the theorem 2 of Parr, R. [5]. O

This theorem tells us that we will obtain the best policy in the SMDP ob-
tained by the agent executing the program in the underlying MDP. This policy
could be non optimal in the underlying MDP. Note that we can increase the
search space and possibly the quality of the solution by relaxing the constraints
in the states for which £(s) = false. In doing so, for the problem of section
2.2 and for the problem of the following section, we are guaranted to find the
optimal solution in the underlying MDP.

4 Example

We will use a task very similar to the Sokoban game to illustrate our method
because of its complexity.

We put an agent (who can move in 8 directions: north, north-east, east, ...) in
a grid. A ball, a goal and walls are placed in the grid. The aim of the agent is
to push the ball into the goal (see Figure [(a), where the agent, the ball, the
goal and the walls are represented by a triangle, a filled circle, a cross and filled
cells respectively). We assume the agent knows the ball and goal location. As
the agent can only push the ball but not pull it, there are many situations in
which the ball can become stuck or can have a limited set of cells in which it can
be moved. The actions are stochastics: 90% of the time the action is executed
correctly and 10% of the time another randomly chosen action is executed.

4.1 Task Program

We write in our formalism a program to help the agent solve a given grid con-
figuration, this program is described in Figure 4.

The program is broken-down into two sub-tasks: firstly, go to the ball and
secondly push the ball to the goal location. The {go to ball actions} set of the

166 Pascal Garcia

main(state) —

termination : the ball is in the goal location push_north(state, [last_ball_location]) —
rule : Go_to_ball() termination : ball has been pushed
next : Go_to_goal() rule : let (z,y) the cell to go, to push to
the north.
go_to_ball(state) — if can go to (z,y) then
termination : the agent is next to the ball go_to([last_ball_location;x;yl) else
rule : {go to ball actions} learn_to_go_to([x;yl)
exception : (all the actions in {go to ball actions} prescribe next : push([last_ball_location])
to go into a wall,{all the primitive actions})
next : go_to_ball() go_to(state, [last_ball_location;x;y]) —
termination : ball has been pushed or agent on (z,y)
go_to_goal(state) — rule : {go to actions}
termination : the ball is in the goal location next : go_to([last_ball_location;x;y])
rule : if the agent is next to the ball then
{go to goal actions} else go_to_ball() learn_to_go_to(state, [last_ball_location;x;y]l) —>
exception : (all the actions in {go to goal actions} prescribe termination : ball has been pushed or agent on (z,y)
to push the ball in a wall or the cell where the rule : {learn to go to actions}
agent has to go to push the ball in this exception : (all the actions in {learn to go to actions}
direction is a wall, prescribe to go into a wall,
{push_north([ball_location]), {all the primitive actions})
push_north_east ([ball_locationl), ...}) next : learn_to_go_to([last_ball_location;x;yl)
next : go_to_goal()

Fig. 4. Program to help the agent to solve the task, see the text for details about the
rule parts.

go_to_ball procedure is the set of actions which make the agent get closer to the
ball without taking the walls into account (there is between one and three such
actions for a given state). The {go to goal actions} set of the go_to_goal proce-
dure is the set of procedures amongst push_north, push_north_east, ... which
would make the ball get closer to the goal if there are no walls (there is between
one and three such procedures). Note that in the rule part of the go_to_goal pro-
cedure, we test if the agent is next to the ball, this is because the actions could be
stochastics. We only write the code for push_north because push_north_east,

., are similar. In push_north, we test if we can go to the (z,y) cell. We just
look at the 8 cells around the ball and test if there is a path using only those
8 cells; the {go to actions} set contains the action to take to go to (x,y) using
those 8 cells when there is a path using only those 8 cells. The {learn to go to
actions} set of the learn_to_go_to procedure is the set of actions which make
the agent get closer to the ball without taking the walls into account. The push
procedure terminates if the agent is not next to the ball and else pushes the ball.
We can notice that the program gives explicitly only a very high level knowledge.
It does not know how to avoid obstacles.

5 Results

In this section, we test our method on the grid configuration, presented in Figure
(a), which is quite difficult for the a priori knowledge given by the program.
If we use the program without propagation mechanism, this task could not be
solved. An epoch consists of 800 primitive actions, —0.01 reinforcement is given
on each transition in the grid except when the ball is pushed into the goal location
where a reinforcement of 10 is given. We use an e-greedy policy of parameter
0.9, the discount factor ~ is 0.999 and the learning rate « is 0.1. We plot two
curves (Figure[H (b)), one for the Q-learning algorithm and one for our method.
Each 10 epochs we set the policy to the greedy one and plot the results which
are averaged over ten runs and smoothed. The mean first time the greedy policy

A New Way to Introduce Knowledge into Reinforcement Learning 167

S
our method
EunREEE B I e —
5 Al
[l

] T 4
] T
l
T
T "

0 50000 100000 150000 200000 250000 300000

25x25 grid number of epochs
results

T

%

I
T

:F:

sum of rewards

]

i

Fig. 5. Comparaison between Q-learning and our method.

solves the task is after 458 epochs with our method and after 248621 epochs
for the @-learning one. The number of states memorized at the end of this
experimentation is 138214 for our method and 248948 for the @-learning one.
Note that the basic propagation is quite expansive in the number of memorized
states but, explores a larger state space and so can find a better solution. Using
various grid configurations, we noted that the learning time with our method
depends more on the difficulty of the grid compare to the initial knowledge than
on the state space size. Moreover, we also came to the conclusion that the larger
the state space the better our method compared to Q-learning.

6 Conclusion

We have presented in this paper a method to introduce knowledge into rein-
forcement learning to speed-up learning using temporally extended actions. Our
work can be related with the Parti-game algorithm of Moore [12] where a greedy
controler helps the agent to reach a goal state. To deal with getting trapped, the
Parti-game algorithm divides more and more thinly the state space to circum-
vent becoming trapped. Our method do not divide the state space, the resolution
of the state space is given but the number of choices to be made in each state is
variable. With variable resolution we can potentially store less states but note
that if the a priori knowledge allows only one action in a given state, this state
does not have to be stored (no choice has to be made in this state). We can
formulate in our method that more than one action seems good a priori and
so test different potentially good paths to the goal before increasing the search
space. Moreover, we do not assume that the dynamic of the environment is
deterministic, we can learn arbitrary reward functions and we do not need to
learn a greedy controller. One of the main drawback of constraining the number
of available actions is that it can be difficult to guarantee that with this a priori
knowledge the agent can still solve the task. In this paper, we formulate and
prove a theorem which can be used to guarantee that a given task can still be

168 Pascal Garcia

solved with our method. We tested our method on a complex grid-world task and
showed that the learning time is drastically reduced compared to Q-learning. We
currently test our method in a continuous state space.

References

1. Sutton, R.S. & Barto, A.G. (1998). Introduction to Reinforcement Learning. MIT
Press/Bradford Books.

2. Singh, S.P., Jaakkola, T. & Jordan, M.I. (1995). Reinforcement Learning with Soft
State Aggregation (pp. 361-368). NIPS 7. The MIT Press.

3. Tsitsiklis, J.N & Van Roy, B. (1997). An analysis of temporal-difference learning
with function approzimation (42(5):674-690). IEEE Transactions on Automatic
Control.

4. Sutton, R.S., Precup, D. & Singh, S. (1999). Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in Reinforcement Learning (112:181-211).
Artificial Intelligence.

5. Parr, R. (1998). Hierarchical control and learning for Markov decision processes.
PhD thesis, University of California, Berkeley, California.

6. Dietterich, T.G. (2000). An Overview of MAXQ Hierarchical Reinforcement Learn-
ing (pp. 26-44). SARA.

7. Randlov, J. (1999). Learning Macro-Actions in Reinforcement Learning. NIPS 11,
MIT Press.

8. Stone, P. & Sutton, R.S. (2001). Scaling Reinforcement Learning Toward RoboCup
Soccer. Proceedings of the 18th International Conference on Machine Learning.

9. Menache, I., Mannor, S. & Shimki, N. (2002). Q-Cut - Dynamic Discovery of Sub-
goals in Reinforcement Learning (pp. 295-306). European Conference on Machine
Learning. LNAT 2430.

10. Watkins, C.J.C.H. (1989). Learning from Delayed Rewards. PhD Thesis. University
of Cambridge, England.

11. Puterman, M.L. (1994). Markov Decision Processes. Wiley, New York.

12. Moore, A.W. & Atkeson, C.G. (1995). The Parti-game Algorithm for Variable
Resolution Reinforcement Learning in Multidimensional State-spaces. Advances in
Neural Information Processing Systems.

	1 Introduction
	2 Formalism
	2.1 Procedure, Rule and Exception
	2.2 Example
	2.3 Full State Representation
	2.4 Induced Semi-Markov Decision Process
	2.5 Exception State and Propagation
	2.6 Learning

	3 Properties
	4 Example
	4.1 Task Program

	5 Results
	6 Conclusion
	References

