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Abstract. The interest of introducing fuzzy predicates when learning
rules is twofold. When dealing with numerical data, it enables us to avoid
arbitrary discretization. Moreover, it enlarges the expressive power of
what is learned by considering different types of fuzzy rules, which may
describe gradual behaviors of related attributes or uncertainty pervading
conclusions. This paper describes different types of first-order fuzzy rules
and a method for learning each type. Finally, we discuss the interest of
each type of rules on a benchmark example.
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1 Introduction

Inductive Logic Programming (ILP) [9] provides a general framework for learn-
ing classical first-order logic rules, for which reasonably efficient algorithms have
been developed (Progol [6], FOIL [13],...). Relational learning can be presented
as a subfield of ILP that concerns the induction process on relational databases
compiled in first-order logic. In this scope, we have only to consider function-free
Horn clauses. But first-order logic cannot directly handle rules with exceptions,
which are common in practice. This has been a motivation for introducing prob-
abilities in ILP [7]. In fact, probabilities, implicitly appear in the FOIL control
procedure. Indeed, during the gain computation, the value associated to a rule
can be viewed as a confidence degree expressed in terms of “domain proba-
bilities”. Such probabilities, together with “world probabilities”, are the basic
notions of Halpern’s first-order probabilistic logic [4]. Domain probabilities are
used to capture statistical information for a fixed first-order logic interpreta-
tion. These probabilities are obtained by applying a probability measure to the
set of valuations making rules true in the interpretation. So, there is no longer
any genuine quantifier in a rule when the probability to encounter exceptions is
non-zero.

One of the difficulties of the induction of rules from examples is to manage
real numbers and imprecision when attributes are non-binary. Classical method
for handling real-valued attributes is to turn them into (symbolic) qualitative
labels by discretization. Fuzzy sets are known to provide a gradual interface
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with numerical data, by escaping the problem of sharp transitions between cate-
gories. In the propositional framework, confidence degrees have been integrated
in learning methods, together with the handling of fuzzy properties. At least
three main trends of works can be distinguished w.r.t. this latter concern. First,
neuro-fuzzy learning techniques have been developed for tuning fuzzy member-
ship functions in fuzzy rules; see [8] for a survey. The fuzzy rules, which are
produced in that way, are used for functions approximation in automatic control
problems. Another research line has been investigated with a greater concern
for the descriptive power of the fuzzy rules from the user’s point of view, by
extending Quinlan’s [12] ID3 algorithm to fuzzy decision trees, involving a fuzzy
descriptions of classes and making use of entropy measures (extended to fuzzy
sets) for building the fuzzy rules; see [1] for a survey. More recently, the use of
fuzzy membership functions has been advocated by several researcher for pro-
viding association rules in data mining with a better representation power, e.g.
[5].

Presently, the majority of the methods for learning fuzzy rules are propo-
sitional. A version of FOIL that handles membership degrees has already been
developed [15] but the rules induced still keep a classical meaning. In this pa-
per, we propose a method for inducing first-order rules that may include fuzzy
predicates. We first explain how a classical database is read in terms of fuzzy
predicates, and we further discussed different types of fuzzy rules recently intro-
duced in a learning perspective [11]. For each type of rules, the FOIL algorithm
is adapted by defining the corresponding confidence degree. The paper is or-
ganized as follows. Sections 2 provides a brief background on ILP. Section 3
presents different types of fuzzy rules and the fuzzy database. Section 4 de-
scribes our algorithm and section 5 illustrates the approach on an toy example
and a benchmark.

2 Background

We first briefly recall the standard definitions and notations. Given a first-order
language L with a set of variables V ar, we build the set of terms Term, atoms
Atom and formulas as usual. The set of ground terms is the Herbrand universe
H and the set of ground atoms or facts is the Herbrand base B ⊂ Atom. A
literal l is just an atom a (positive literal) or its negation ¬a (negative literal). A
(resp. ground) substitution σ is an application from V ar to (resp. H) Term with
inductive extension to Atom. We denote Subst the set of ground substitutions. A
clause is a finite disjunction of literals l1∨. . .∨ln also denoted {l1, . . . , ln}. A Horn
clause is a clause with at most one positive literal. A Herbrand interpretation
I is just a subset of B: I is the set of true ground atomic formulas and its
complementary denotes the set of false ground atomic formulas. Let us denote
I = 2B, the power set of B i.e. the set of all Herbrand interpretations. We can
now proceed with the notion of logical consequence.

Definition 1. Given A an atomic formula, I, σ |= A means that σ(A) ∈ I. As
usual, the extension to general formulas F uses compositionality.
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I |= F means ∀σ, I, σ |= F (we say I is a model of F ).
|= F means ∀I ∈ I, I |= F .
F |= G means that all models of F are models of G.

Stated in the general context of first-order logic, the task of induction is to find
a set of formulas H such that:

B ∪ H |= E (1)

given a background theory B and a set of observations E (training set), where
E, B and H here denote sets of clauses. A set of formulas is here, as usual,
considered as the conjunction of its elements.

Of course, one may add two natural restrictions:

– B �|= E since, in such a case, H would not be necessary to explain E.
– B ∪ H �|= ⊥: this means B ∪ H is a consistent theory.

In ILP, there are two ways for describing examples. The first describes the set of
positives examples E+ and the set of negative examples E−. The other describes
only positive examples in E and make the closed world assumption. It is this
hypothesis that we will uses along this paper. Each element of E is called an
example and we call a counter-example a fact on the target concept which is
not in E. In the setting of relational databases, inductive logic programming is
often restricted to Horn clauses and function-free formulas, E is just a set of
ground facts. Moreover, the set E itself satisfies the previous requirement but it
is generally not considered as an acceptable solution since it has no predictive
ability. Usually, rules extraction fits with the idea of providing a compression of
the information content of E.

There are two general types of algorithms, top down and bottom up algo-
rithms. Top down ones start from the most general clause and specialize it step
by step. Bottom up procedures start from a fact and generalize it. In our case, we
will use the FOIL algorithm [13] which is a top down process. The goal of FOIL
is to produce rules until all the examples are covered. Rules with conclusion part
C, the target predicate, are found in the following way:

1. take A → C as the most general clause with A = 	
2. choose the literal l such as the clause l∧A → C maximizes the gain function
3. A = l ∧ A
4. if confidence(A → C)< threshold goto 2
5. return A → C

The gain function is computed by the formula:

gain(l ∧ A → C, A → C) = n ∗ (log2(cf(l ∧ A → C)) − log2(cf(A → C)))

where n is the number of distinct examples covered by l ∧A → C. Given a Horn
clause A → C, the confidence cf(A → C) = P (A∧C)

P (A) . Confidence degrees are
computed according to the definition of domain probabilities [4]. ILP data are
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supposed to describe one interpretation under Closed World Assumption. We
call IILP this interpretation. So, given a fact f :

IILP |= f iff B ∧ E |= f.

The domain H is the Herbrand domain described by B and E. We take P as a
uniform probability on H. So we deduce that the confidence in a clause A → C,
with −→

t as vector on the n free variables, is:

cf(A(−→t ) → C(−→t ))IILP
=

|{−→x ∈ Hn | IILP |= σ[−→t /−→x ](A(−→t ) ∧ C(−→t ))}|
|{−→x ∈ Hn | IILP |= σ[−→t /−→x ](A(−→t ))}| (2)

where | | denotes cardinality. Another possible definition of a confidence degree
might be taken here as the proportion of the number of positive examples covered
by the rule w.r.t. the number of total examples (positive and negative) covered
by the rule. This confidence degree would represent the probability that a fact
deduced from the rule is true. But this definition would not take into account
the number of situations covered in the condition part of the rule, which is not
always the total number of examples covered since we are in a first-order setting.

In ILP, the goal is to learn a concept represented by a predicate. E is the
set of all facts pertaining to the target predicate. B is the set of facts pertaining
to predicates other than the target one. So the learned rules are (in the non-
recursive case) composed by predicates that appear in B for the condition part
and by the target predicate in the consequence part.

3 Induction in Fuzzy Database

3.1 Fuzzy Databases and Fuzzy Rules

We consider a first-order logic database K with fuzzy predicates (e.g., heavy,
old ...) as a set of positive facts labeled by real numbers in [0, 1]. For in-
stance in Section 5 we shall deal with a database containing facts such as
(weight(a, heavy), 0.9) which means that the car a is very representative of heavy
cars. Thus, K is made of pairs of the form (A(−→x ), µ(A(−→x ))) for −→x ∈ Hn, where
A(−→x ) is a fact, and µ(A(−→x )) is the satisfaction degree associated with the fuzzy
property A for −→x .

There exist at least two reasons for introducing fuzzy predicates in univer-
sally quantified rules. This may be for making them either more flexible or more
expressive. Indeed, a fuzzy predicate can be viewed as a family of ordinary pred-
icates whose characteristic functions are the level cut functions µFα

associated
to the fuzzy set membership function µF , namely µFα(−→x ) = 1 iff µ(F (−→x )) ≥ α
and µFα

(−→x ) = 0 otherwise. Thus a rule “A(−→t ) → C(−→t )” is naturally associ-
ated with the crisp rules “Aα(−→t ) → Cβ(−→t )”. Note that, if Aβ(−→t ) holds then
Aα(−→t ) also holds for α ≤ β. So we may only consider the crisp approximations
“Aα(−→t ) → Cα(−→t )”.
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Then, if we are concerned with flexibility, a possible understanding of the
fuzzy rule “A(−→t ) → C(−→t )” can be

∀−→x ,∃α Aα(−→x ) → Cα(−→x ), (3)

i.e. there exists a crisp understanding of the fuzzy rule which covers each example
(but it is not necessary the same for each example since α depends on −→x ). This
is a kind of rule yet considered in [10]. By flexible rules, we mean here rules
which are robust since their predicates can be adapted to borderline situations.

If we are concerned with expressivity, we may look for fuzzy rules such that
the rule holds for each of its level cut counterpart. This means that we have

∀−→x ,∀α Aα(−→x ) → Cα(−→x ). (4)

This is clearly more restrictive than (3) since the fuzzy rule is equivalent to a
set of ordinary rules with nested predicates and summarizes it into a unique
fuzzy rule. In fact (4) is nothing but a gradual rule [3] expressing “The more −→x
satisfies A, the more −→x satisfies C” (since they are modeled by a constraint of
the form µ(A(−→x )) ≥ µ(C(−→x ))).

Gradual rules are one of the four basic kinds of fuzzy rules [3]. Two of them,
namely gradual rules and certainty rules, are based on implication connectives
and express constraints on the possible models of the world. The two other types,
named possibility rules and antigradual rules, rather express that some values
are guaranteed to be possible (i.e. that they exist in the base of examples). For
instance, let us take possibility rules of the form “The more −→x is A, the more
all the interpretations which makes C true (truth becomes a matter of degree
when C is fuzzy) are guaranteed to be possible ”. This means in practice that
“The more −→x is A, the more there are examples for any possible interpretation
of C”. Note that this rule cannot have any “classical” counter-example since we
are interested in the distribution of the membership degrees in the database.

In the following, we only consider gradual and certainty rules. Certainty rules
contrast with possibility rules, and express that “the more −→x is A, the more
certain −→x is C”. Let us first consider the case where “A” is a fuzzy predicate
and “C” is an ordinary predicate. This expresses that “the more −→x is A, i.e. the
greater α such that A(−→x ) ≥ α, the smaller the number of exceptions of the rule
Aα(−→t ) → C(−→t )”. Indeed when α decreases, the number of exceptions cannot
but increase since the scope of Aα is then enlarged. When C is also a fuzzy
predicate, in order to preserve this understanding of the rule, we are led to look
for rules of the form

∀−→x ,∀α Aα(−→x ) → C1−α(−→x ), (5)

since when α increases C1−α cover more cases.

3.2 Application to ILP

It is well known that algorithms for learning rules have difficulties for handling
real-valued attributes. In fact, numerical values may lead to an infinite hypothesis
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space. In relational learning, this problem is deeper since the hypothesis space is
already large. The difficulties grow up when real numbers appears in the concept
we want to learn. Real numbers are essentially treated in two way: either by
introducing constraints or by discretization.

Introducing constraints in first order logic consists in the use of several op-
erators such as inequalities or mathematical functions (average, ...) [14]. Rules
induced by this method may suffer of a lack of expressivity and generality. Fur-
thermore, algorithms dealing with constraints go out of the scope of the standard
resolution process in first-order logic.

The second way is to use discretization and clusterization for transforming
continuous information into qualitative information. Then, information can be
directly treated in the classical logic setting. This method is the most currently
used since it allows to cope with numerical values and to improves the readability.
Since the clusters are usually defined in an arbitrary way before the induction
process, the rules which are produced depend on the quality of the clusters.
These clusters are often represented by predicates having an imprecise meaning.
For example in the auto-mpg data in UCI, the mpg (city fuel consumption
in miles per gallons) value can be represented in terms of the predicates “low
consumption”, “medium consumption” and “ high consumption”. In this case,
fuzzy labels, represented by fuzzy sets, are more appropriate for describing the
mpg values since they avoid arbitrary thresholds between low and medium (see
Fig. 1 for description).
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Fig. 1. Fuzzy cluster of mpg

Finally, using fuzzy predicates allows to relax the rigidity of crisp clustering
and keeps the readability of the induced rules. Moreover, the different types of
fuzzy rules we have described allow a better description and provide new types of
summarization of the data. Flexible rules can be viewed as a fuzzy adaptation
of a crisp rules in the sense that there exists a reading of the fuzzy predicates,
corresponding to a high level-cut of its fuzzy representation, which leads to a
meaningful rule w.r.t. data. Gradual rules and Certainty rules are new type
of rules, which describe new implicative properties of the data. In the case of



Enriching Relational Learning with Fuzzy Predicates 405

ILP, the goal is to find an hypothesis which is sound and complete with respect
to the examples. The hypothesis is sound if it does not cover facts on the target
concept which are false in the interpretation defined by the background and the
examples.It is complete if it covers all facts on the target concept which are
true in the latter interpretation. In the case of fuzzy ILP, the definition of an
example covered by a rule will depend on the type of the fuzzy rule and of the
membership degrees of facts validating the rules.

4 Algorithm

In the FOIL algorithm, the guidelines for the process are: the confidence degree,
the halting condition and the number of distinct examples covered by the rule.
We consider that an example is covered by a fuzzy rule if it is itself covered
by the classical counter-part of the rule.So we describe these guidelines for each
kind of rules (see [10] [11] for details).

Flexible Rules. This first type of meaning for a fuzzy rule “A(−→t ) → C(−→t )”
is close to the one of a classical rule. Of course, we are now expecting that
the satisfaction degrees of A(−→x ) and C(−→x ) are as high as possible. So we can
introduce classical interpretations associated with each α-cut.

Definition 2. An α-interpretation Iα, given a fact f, is defined by:

Iα |= f iff B ∧ E |= f and µ(f) ≥ α

In this type of interpretations, only facts having a satisfaction degree greater
than α are true. Now we have to compute the confidence degree of the rule in
the classical way (using (2)) for each α-interpretation. According to the intended
meaning of the fuzzy rule, we must favor the confidence degrees of the rule com-
puted in high α-interpretations. Indeed, we prefer the examples be covered with
a high degree of satisfaction. The following definition, which is an adaptation in
term of first-order logic of the one proposed by [2], takes this into account:

cfflex(A(−→t ) → C(−→t )) =
∑

αi

(αi − αi+1) ∗ cf(A(−→t ) → C(−→t ))Iαi

where α1 = 1, ..., αt = 0 is the decreasing list of the satisfaction degrees that
appear in the database. This confidence degree corresponds to the discretization
of a Choquet integral of the confidence degrees on α-interpretations. We deduce
the number of distinct examples covered:

nflex(A(−→t ) → C(−→t )) =∑
αi

(αi − αi+1) ∗ |{−→x1 ∈ Hq, ∃−→x2 ∈ Hr | Iαi
|= σ[−→t1 ,

−→
t2/−→x1, −→x2](A ∧ C)}|

Gradual Rules. In this case, the values of the satisfaction degrees are only
useful for comparing satisfaction degrees in condition and conclusion parts. So,
we do not privilege the confidence degree in high α-interpretation as previously.
cfgrad(A(−→t ) → C(−→t )) =

|{−→x ∈Hn | IILP |=σ[
−→
t /−→x ](A∧C),µ(σ[

−→
t /−→x ]C)≥µ(σ[

−→
t /−→x ]A)}|

|{−→x ∈Hn | IILP |=σ[
−→
t /−→x ](A)}|
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When the valuation of the condition part of the rule is a conjunction of grounds
literals, the satisfaction degree of this conjunction is the minimum of the degree
of each literal. We deduce the number of distinct examples covered:
ngrad(A(−→t ) → C(−→t )) = |{−→x1 ∈ Hq, ∃−→x2 ∈ Hr |

IILP |= σ[−→t1 ,
−→
t2/−→x1, −→x2](A ∧ C, µ(σ[−→t1/−→x1]C) ≥ µ(σ[−→t1 ,

−→
t2/−→x1, −→x2]A)}|

Type 1 Certainty Rules. The meaning of the fuzzy rule “A(−→t ) → C(−→t )” is
then “the more −→x is A, the more certain −→x is C”. For these rules we are not
interested in the satisfaction degrees of the consequence parts. This type of rule
will be referred to as type 1 certainty rules in the following. The α-cut for these
rules correspond to the following type of classical interpretation:

Definition 3. An α-certainty interpretation, given a fact f, is defined by:

Iα−cert |= f iff (B |= f and µ(f) ≥ α) or E |= f

With this kind of rules, confidence degrees are expected to be high for high
α-certainty interpretation. The idea is that we can be more permissive with
respect to exceptions for the classical counterparts of the rule “A(−→t ) → C(−→t )”
corresponding small values of α. So, we are led to use the following Choquet
integral.

cfcert1(A(−→t ) → C(−→t )) =
t∑

αi

(αi − αi+1) ∗ cf(A(−→t ) → C(−→t ))Iαi−cert

We deduce the number of distinct examples covered:
ncert1(A(−→t ) → C(−→t )) =∑

αi
(αi − αi+1) ∗ |{−→x1 ∈ Hq, ∃−→x2 ∈ Hr | Iα cert |= σ[−→t1 ,

−→
t2/−→x1, −→x2](A ∧ C)}|

Type 2 Certainty Rules. The above definition is modified in the following
way for taking care of the satisfaction degree of the consequence of the rules.
This type of rule will be referred to as type 2 certainty rules in the following

cfcert2(A(−→t ) → C(−→t )) =
|{−→x ∈Hn | IILP |=σ[

−→
t /−→x ](A∧C),µ(σ[

−→
t /−→x ]C)>1−µ(σ[

−→
t /−→x ]A)}|

|{−→x ∈Hn | IILP |=σ[
−→
t /−→x ](A)}|

We deduce the number of distinct examples covered:
ncert2(A(−→t ) → C(−→t )) = |{−→x1 ∈ Hq, ∃−→x2 ∈ Hr |

IILP |= σ[−→t1 ,
−→
t2/−→x1, −→x2](A ∧ C), µ(σ[−→t1/−→x1]C) > 1 − µ(σ[−→t1 ,

−→
t2/−→x1, −→x2]A)}|

Thus, we can use the FOIL algorithm for inducing various kinds of first-order
fuzzy rules by adapting confidence degree and cardinality with the type of rules
we want to learn.

5 Results

5.1 Illustrative Example

Let us consider a database that describes 21 houses in a town. First we have
some fuzzy relational predicates such as (close(x, y), α) which means that the
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house x is close to the house y with a membership degree α, or (know(x, y), α′)
which means that the owner of house x knows the owner of the house y at a
degree α′ (from 0 for unknown to 1 for friends). The houses are also described
with some nearly propositional fuzzy predicates such as price(x, expensive) or
size(x, small).

So, in this context, we can find fuzzy rules of each type with a good confidence
degree. For example, we find the flexible rule

close(x, y), price(y, expensive) → price(x, expensive),

with 0.81 of confidence degree, because we can reasonably expect that a house
which is close to an expensive one, is expensive as well (since expensive houses
are often located in the same area). A typical gradual rule is

size(x, large) → price(x, expensive),

i.e. “the larger the house, the more expensive”, which describes the fact that price
grows up with size. Its confidence degree is 0.80. A good example of certainty
rules is

close(x, y) → know(x, y)

with 0.95 of confidence degree if the rule is viewed as type 1 certainty rule and
0.88 of confidence degree if the rule is viewed as type 2 certainty rule. This
rule means “the closer the houses, the more we are sure that the owners know
together”. The fact that owners of very close houses have a high probability to
know each other is realistic. This probability can decrease when the distance
between the houses grow up. As ending remark, we may observe that all these
rules are obviously subject to exceptions and, despite their interest, they cannot
be obtained in any way by a classical ILP machine.

5.2 Benchmark

As a benchmark, we use the “auto-mpg” database from UCI 1. This database is
constituted with informations about cars and the concept we want to learn is the
city-cycle fuel consumption in miles per gallon. There are 398 instances of cars
described by 9 attributes of which 5 are continuous, including the concept to be
learn. This database con be represented in propositional logic but is sufficient to
illustrate the interest of the approach. First, the database has been “discretized”
with fuzzy sets. Moreover, we also built three crisp discretizations corresponding
to i) the crisp partition of the attribute domain which is the closest to the fuzzy
partition, ii) the support of the fuzzy sets, iii) the core of the fuzzy sets. Then,
we learn the class of city-cycle fuel consumption according to the crisp and fuzzy
set for all the types of fuzzy rules.

1 http://www.ics.uci.edu/ mlearn/MLRepository.html
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Types of rules nbr of rules coverage avg cf
classical rules 8 0.77 0.84
classical rules with the core 11 0.59 0.87
classical rules with the support 10 0.85 0.80
flexible rules 3 0.51 0.84
gradual rules 4 0.47 0.91
type 1 certainty rules 2 0.62 0.75
type 2 certainty rules 2 0.59 0.76

Here are examples of rule induced by the algorithm for each type of them (classi-
cal rules are one induced on the discretisation corresponding to the crisp partition
of the attribute domain which is the closest to the fuzzy partition).
Classical rules

cylinders(A, 8) → mpg(A, low)
flexible rules

displacement(A, low), weight(A, medium) → mpg(A, medium)
gradual rules

weight(A, high) → mpg(A, low)
type 1 certainty rules

cylinders(A, 6), weight(A, high) → mpg(A, low)
type 2 certainty rules

cylinders(A, 6), weight(A, high), origin(A, 1), acceleration(A, low),
horsepower(A, low) → mpg(A, low)
As expected, the coverage score of classical rules is between the score of

classical rules with the core of fuzzy sets and classical rules with the support
of fuzzy sets. It is due to the fact that, with the core of the fuzzy rules, the
examples that are in the boundary of the crisp classes are not treated. On the
contrary, with the support of fuzzy sets, the example of that are in the boundary
of the crisp classes can belong to two classes. The smaller score of fuzzy rules
w.r.t. coverage is due to the fact that fuzzy rules are harder to find than classical
ones. This result is expected because fuzzy rules are more constrained since they
take into account the membership degree of the valuations of each predicate. In
fact, confidence degrees of classical rules do not rely on the distance of the data
to the boundaries of the discretized sets. For example, let us consider a classical
rule F with a good confidence degree, and its fuzzy flexible counterpart F ′. If
many example of F are borderline w.r.t. fuzzy sets, the confidence degree of F ′

will be lower than the one of F . On the contrary, if many counter-examples of F
are borderline, the confidence degree of F ′ will be greater than the one of F . So,
the confidence degree of fuzzy flexible counterpart of a rule is a good indicator
of the robustness of the classical rule w.r.t. small variation of the boundaries of
the sets.

Type 1 certainty rules focus on membership degrees of the conditional parts
of the rules. Gradual and certainty rules show how conditions and conclusions
parts evolve together. These rules have a meaning far from the classical one and
the rules that we find have not necessarily a crisp counterpart or approximation.
The fuzzy rules that handle certainty tend to favor the non-fuzzy predicates in
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condition part because they leave more freedom with respect to the satisfaction
degree of covered examples. Note that some rules could be described in propo-
sitional logic, but here the instantiations are automatically generated by the
algorithm. As shown in some rules, the algorithm can mix fuzzy predicates and
non-fuzzy predicates.

6 Conclusion

In this paper, we have provided a formal framework and a procedure for dealing
with fuzzy predicates and learning fuzzy first-order rules of different kinds in
the case of relational databases. Since the confidence degree computation is a
weighted version of FOIL’s one, it is easy to deduce that the complexity of our
algorithm is the same as the FOIL’s one. The definition of confidence degrees
for each kind of rules allows us to take into account the fuzzy predicates in
the algorithms that use confidence degrees for guiding the learning process. It
is obvious that using fuzzy predicates for managing real-valued data instead of
using crisp discretization or constraint-based induction is a good compromise
between the readability of the rules and the flexibility of the discretization.
Moreover, fuzzy predicates allow to extract new kinds of relations.

Through the example, we see that fuzzy rules are often too constrained for
covering all the examples of the target concept, but they convey information on
the robustness of the rules w.r.t. borderline examples. So, it can be useful to
learn fuzzy rules together with classical ones.

In this paper, we focus on the search of different kinds of fuzzy rules and the
definition of confidence degrees associated to each of them. In further works, it
will be interesting to show how much fuzzy discretization is efficient in a learning
point of view. More generally, a formal definition of ILP that handles all the types
of rules must be defined. In this context, automatic deduction mechanisms may
be developed for testing the efficiency of fuzzy rules in terms of classification.
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