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Abstract. Many organizations and companies have to answer large
amounts of emails. Often, most of these emails contain variations of
relatively few frequently asked questions. We address the problem of
predicting which of several frequently used answers a user will choose to
respond to an email. Our approach effectively utilizes the data that is
typically available in this setting: inbound and outbound emails stored
on a server. We take into account that there are no explicit links be-
tween inbound and corresponding outbound mails on the server. We
map the problem to a semi-supervised classification problem that can be
addressed by algorithms such as the transductive support vector machine
and multi-view learning. We evaluate our approach using emails sent to
a corporate customer service department.

1 Introduction

Companies allocate considerable economic resources to communication with
their customers. A continuously increasing share of this communication takes
place via email; marketing, sales and customer service departments as well as
dedicated call centers have to process high volumes of emails, many of them con-
taining repetitive routine questions. It appears overly ambitious to completely
automate this process; however, any software support that leads to a significant
productivity increase is already greatly beneficial. Our approach to support this
process is to predict which answer a user will most likely send in reply to an
incoming email, and to propose this answer to the user. The user, however, is
free to modify — or to dismiss — the proposed answer.

Our approach is to learn a predictor that decides which of a small set of stan-
dard answers a user is most likely to choose in reply to a given inbound message.
We learn such a predictor from the available data: inbound and outbound emails
stored on an email server. We transform the email answering problem into a set of
semi-supervised text classification problems. Contrasting studies that investigate
identification of general subject areas of emails (e.g., [8]), we explore whether
text classification algorithms can identify instances of a specific frequently asked
question.
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Many approaches are known that learn text classifiers from data. The sup-
port vector machine (SVM) (e.g., [I0]) is generally considered to be one of the
most accurate algorithms; this is supported, for instance, by the TREC filtering
challenge [13]. The naive Bayes algorithm is also widely used for text classifica-
tion.

Among the known algorithms that utilize unlabeled data, the transductive
SVM and the multi-view framework apply for support vector learning. The trans-
ductive SVM [9] maximizes the distance between hyperplane and both, labeled
and unlabeled data. In multi-view learning [3], two classifiers which use different
attribute sets provide each other with labels for the unlabeled data.

The contribution of this paper is threefold. Firstly, we analyze the problem of
answering emails, taking all practical aspects into account. Secondly, we present
a case study on a practically relevant problem showing how well the naive Bayes
algorithm, the support vector machine, the transductive support vector machine,
and the co-training multi-view algorithm can identify instances of particular
questions in emails. Thirdly, we describe how we integrated machine learning
algorithms into a practical answering assistance system that is easy to use and
provides immediate user benefit.

The rest of this paper is organized as follows. In Section Bl we analyze the
problem setting. We discuss our general approach and our mapping of the email
answering problem to a set of semi-supervised text classification problems in
Section @ In Section[d, we briefly describe the transductive SVM and the multi-
view algorithm that we used for the case study that is presented in Section
In Section [f] we describe how we have integrated our learning approach into the
Responsio email management system. Section [1 discusses related approaches.

2 Problem Setting

We consider the problem of predicting which of n (manually identified) standard
answers A1, ..., A, auser will reply to an email. In order to learn a predictor, we
are given a repository {z1,...,zy} of inbound, and {yi,...,ym } of outbound
emails. Typically, these repositories contain at least hundreds, but often (at
least) thousands of emails stored on a corporate email server.

Although both inbound and outbound emails are stored, it is not trivial to
identify which outbound email has been sent in reply to a particular inbound
email; neither the emails nor the internal data structures of the Outlook email
client contain explicit links. When an outbound email does not ezactly match one
of the standard answers, this does not necessarily mean that none of the standard
answers is the correct prediction. The user could have written an answer that is
equivalent to one of the answers A; but uses a few different words.

A characteristic property of the email answering domain is a non-stationarity
of the distribution of inbound emails. While the likelihood P(x|A4;) is quite
stable over time, the prior probability P(A;) is not. Consider, for example, a
server breakdown which will lead to a sharp increase in the probability of an
answer like “we apologize for experiencing technical problems...”; or consider
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an advertising campaign for a new product which will lead to a high volume of
requests for information on that product.

What is the appropriate utility criterion for this problem? Out goal is to
assist the user by proposing answers to emails. Whenever we propose the answer
that the user accepts, he or she benefits; whereas, when we propose a different
answer, the user has to manually select or write an answer. Hence, the optimal
predictor proposes the answer A; which is most likely given x (i.e., maximizes
P(A;]x)), and thereby minimizes the probability of the need for the user to
write an answer manually. Keeping these characteristics in mind, we can pose
the problem which we want to solve as follows.

Problem 1. Given is a repository X of inbound emails and a repository Y of out-
bound emails in which instances of standard answers A4, ..., A, occur. There is
no explicit mapping between inbound and outbound mails and the prior prob-
abilities P(A;) are non-stationary. The task is to generate a predictor for the
most likely answer A; to a new inbound email x.

3 Underlying Learning Problem

In this Section, we discuss our general approach that reduces the email answering
problem to a semi-supervised text classification problem.

Firstly, we have to deal with the non-stationarity of the prior P(A4;). In
order to predict the answer that is most likely given z, we have to choose
argmax; P(A;|x) = argmax;P(z|A;)P(A;) where P(x|4;) is the likelihood of
question z given that it will be answered with A; and P(A4;) is the prior proba-
bility of answer A;. Assuming that the answer will be exactly one of Ay,..., A,
we have ), P(A;) = 1; when the answer can be any subset of {A;,...,4,},
then P(A;) + P(A;) =1 for each answer A;.

We know that the likelihood P(z|A;) is stationary; only a small number
of probabilities P(A4;) has to be estimated dynamically. Equation [ averages
the time dependent priors (estimated by counting occurrences of the A; in the
outbound emails within time interval ¢) discounted over time.

Pay) = Zimo€ M P(AI)
(Ai) = ZT et
t=0

We can now focus on estimating the (stationary) likelihood P(z|A;) from the
data. In order to map the email answering problem to a classification problem,
we have to identify positive and negative examples for each answer A;.

We use the following heuristic to identify cases where an outbound email is a
response to a particular inbound mail. The recipient has to match the sender of
the inbound mail, and the subject lines have to match up to a prefix (“Re:” for
English or “AW:” for German email clients). Furthermore, either the inbound
mail has to be quoted in the outbound mail, or the outbound mail has to be sent
while the inbound mail was visible in one of the active windows. (We are able
to check the latter condition because our email assistance system is integrated

(1)
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into the Outlook email client and monitors user activity.) Using this rule, we are
able to identify some inbound emails as positive examples for Ay, ..., A,.

We also need to identify negative examples. We can safely assume that no
two different standard answers A; and A; are semantically equivalent. Hence,
when an email has been answered by A;, we can conclude that it is a negative
example for all A;, j # ¢. When the answer to an inbound email is different
from all standard answers A;, we cannot conclude that the inbound mail is a
negative example for all standard answers because the response might have been
semantically equivalent, or very similar, to one of the standard answers. Such
emails are unlabeled examples in the resulting text classification problem.

For the same reason, we cannot obtain examples of inbound emails for which
no standard answer is appropriate; hence, we cannot estimate P(no standard
answer) or P(A;) for any A;. Thus, we have a small set of positive and negative
examples for each A;. Additionally, we have a large quantity of emails for which
we cannot determine the appropriate answer.

Text classifiers typically return an uncalibrated decision function f; for each
binary classification problem; our decision on the answer to x has to be based on
the f;(xz) (Equation B). We discriminate each class A; against all other classes;
that is, we have to assume that A; is independent of all f;(z) for ¢ # j. Since we
have dynamic estimates of the non-stationary P(A4;), Bayes’ equation (Equation
B) provides us with a mechanism that combines n binary decision functions and
the prior estimates optimally.

argmax; P(A;|x) = argmax; P(A;| f1(z), ..., fn(2)) (2)
~ argmax; P(4;|fi(z)) = argmax; P(f;(x)|4;)P(4;) (3)

Equation [is only applicable for discrete f;(x), while the decision function val-
ues are really continuous. In order to estimate P(f;(z)|A4;) we have to fit a
parametric model to the data. Following [2], we assume Gaussian likelihoods
P(f;(x)|A;) and estimate the u;, p; and o; in a cross validation loop as follows.
In each cross validation fold, we record the f;(x) for all held-out positive and
negative instances. After that, we estimate u;, y; and o; from the recorded de-
cision function values of all examples. It is well known that Bayes’ rule applied
to a Gaussian likelihood yields a sigmoidal posterior; Equation [4 corresponds to
Equation Bl for continuous f;(z) and Gaussian P(f;(x)|A4;).

2_ 2 -1
Hipi g oy BETHE L 1-P(Ay)
P(Al|f7,(l')) = (1 + e o2 fl( )JF 252 +1 g P(A;) ) (4)

We have now reduced the email answering problem to a semi-supervised text
classification problem. We have n binary classification problems for which few
labeled positive and negative and many unlabeled examples are available. We
need a text classifier that returns a (possibly uncalibrated) decision function
fi + X — real for each of the answers A;.

We considered a Naive Bayes classifier and the support vector machine
SVM'i9ht [9]. Both classifiers use the bag-of-words representation which con-
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siders only the words occurring in a document, but not the word order. As pre-
processing operation, we tokenize the documents but do not apply a stemmer.
For SVMY9"t e calculate tf.idf vectors.

4 Using Unlabeled Data

We briefly sketch two approaches that allow to utilize unlabeled data for support
vector learning: the transductive SVM, and the co-training algorithm.

4.1 Transduction

In order to calculate the decision function for an instance x, the support vector
machine calculates a linear function f(x) = wz + b. Model parameters w and b
are learned from data ((z1,41), -, (Tm, Ym)). Note that Tuy%i b is the distance
between plain (w, b) and instance z;; this margin is positive for positive examples
(y; = +1) and negative for negative examples (y; = —1). Equivalently, yl(ﬁxl +
b) is the positive margin for both positive and negative examples.

The optimization problem which the SVM learning procedure solves is to
find w and b such that y;(wz; 4+ b) is positive for all examples (all instances lie
on the “correct” side of the plain) and the smallest margin (over all examples)
is maximized. Equivalently to maximizing yz(ﬁxl +b), it is usually demanded

that y;(wx; +b) > 1 for all (x;,y;) and |w| be minimized.

Optimization Problem 1 Given data ((z1,91),- .-, (Tm,Ym)); over all w, b,
minimize |w|?, subject to the constraint V™ y;(wx; +b) > 1.

The SVM! 9" software package [9] implements an efficient optimization algo-
rithm which solves optimization problem 1. The transductive support vector
machine (TSVM) [10] furthermore considers unlabeled data. This unlabeled data
can (but need not) be new instances which the SVM is to classify. In transduc-
tive support vector learning, the optimization problem is reformulated such that
the margin between all (labeled and unlabeled) examples and hyperplain is max-
imized. However, only for the labeled examples we know on which side of the
hyperplain the instances have to lie.

Optimization Problem 2 Given labeled data ((z1,y1), .-, (Tm,Ym)) and un-
labeled data (x3,...,x}); over all w, b, (yi,...,y;), minimize |w|?, subject to
the constraints V™ y;(wz; + b) > 1 and V™ yF(wxf +b) > 1.

The TSVM algorithm which solves optimization problem 2 is related to the
EM algorithm. TSVM starts by learning parameters from the labeled data and
labels the unlabeled data using these parameters. It iterates a training step
(corresponding to the “M” step of EM) and switches the labels of the unlabeled
data such that optimization criterion 2 is maximized (resembling the “E” step).
The TSVM algorithm is described in [9].
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Table 1. Co-training algorithm.

Given positive examples (z1,z2,+), negative examples (z1,z2, —) and unlabeled ex-
amples in two different views Vi and Va; number of iterations k.

1. Loop for k iterations

(a) Train fi1 and f2 using the labeled positive and negative examples.

(b) Let fi and f> select the positive and negative example for which they make
the most confident prediction. Remove the examples from the unlabeled data
and add them to the labeled data.

2. Return the combined classifier f(z) = fi1(z1) + f2(x2).

4.2 Multi-view Learning

Blum and Mitchell [3] have proposed the multi-view approach to utilizing unla-
beled data. In multi-view learning, the available attributes V' are split into two
subsets V7 and V5 such that V3 UV, =V and V4 NV, = (). A labeled example
(x,a) is then viewed as (21, x2,a) where x; contains the values of the attributes
in V7 and x5 the values of attributes in V5.

The co-training algorithm is the most prominent multi-view algorithm. The
idea of co-training is to learn two classifiers fi(z1) and fa(z2) which bootstrap
each other by providing each other with labels for the unlabeled data. Co-training
is applicable when either attribute set suffices to learn the target f — i.e., there
are classifiers fi and fo such that for all z: fi(z1) = fa(x2) = f(x) (the com-
patibility assumption). When the views are furthermore independent given the
class labels — P(z1|f(z),x2) = P(x1|f(x)) — then co-training converts unlabeled
examples into randomly drawn labeled examples [3].

As Vi, we use randomly drawn 50% of the words occurring in the training
corpus; V3 contains the remaining words. fi(z1) and f2(z2) are trained from the
labeled examples. Now f; selects two examples from the unlabeled data that it
most confidently rates positive and negative, respectively, and adds them to the
labeled examples. If the representations in the two views are truly independent,
then the new examples are randomly drawn positive and negative examples for
f2. Now fs selects two unlabeled examples, the two hypotheses are retrained,
and the process recurs. The algorithm is presented in Table [T

The compatibility and independence assumptions are usually violated in
practice. However, empirical studies [14/11] show that co-training can never-
theless improve performance. In particular, text classification problems seem to
be particularly suited for co-training [T5]. In our experiments, we use co-training
in association with SVM!9ht,

5 Case Study

The data used in this study was provided by the TELES European Internet
Academy, an education provider that offers classes held via the internet. In
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order to evaluate the predictors, we manually labeled all inbound emails within
a certain period with the matching answer. Table [2] provides an overview of the
data statistics. Roughly 72% of all emails received can be answered by one of
nine standard answers. The most frequent question “product inquiries” (requests
for the information brochure) already covers 42% of all inbound emails.

Table 2. Statistics of the TEIA email data set.

Frequently answered question|emails|percentage
Product inquiries 224 42%
Server down 56 10%
Send access data 22 4%
Degrees offered 21 4%
Free trial period 15 3%
Government stipends 13 2%
Homework late 13 2%
TELES product inquiries 7 1%
Scholarships 7 1%
Individual questions 150 28%
Total 528 100%

We briefly summarize the basic principles of ROC analysis which we used to
assess the decision functions [BI7]. The receiver operating characteristic (ROC)
curve of a decision function plots the number of true positives against the number
of false positives. By comparing the decision function against a decreasingly large
threshold value we observe a trajectory of classifiers described by the ROC curve.

The area under the ROC curve is equal to the probability that, when we
draw one positive and one negative example at random, the decision function
assigns a higher value to the positive example than to the negative. Hence, the
area under the ROC curve (the AUC performance) is a very natural measure of
the ability of a decision function to separate positive from negative examples.

In order to estimate the AUC performance and its standard deviation for
a decision function, we performed between 7 and 20-fold stratified cross vali-
dation and averaged the AUC values measured on the held out data. In order
to plot the actual ROC curves, we also performed 10-fold cross validation. In
each fold, we filed the decision function values of the held out examples into one
global histogram for positives and one histogram for negatives. After 10 folds,
we calculated the ROC curves from the resulting two histograms.

First, we studied the performance of a decision function provided by the
Naive Bayes algorithm (which is used, for instance, in the commercial Auton-
omy Answer system) as well as the support vector machine SVM!9"t [9]. We
use the default parameter settings for SVM' 9", Figure [[] shows that the SVM
impressively outperforms Naive Bayes in all cases except for one (TELES prod-
uct inquiries). Remarkably, the SVM is able to identify even very specialized
questions with as little as seven positive examples with between 80 and 95%
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AUC performance. It has earlier been observed that the probability estimates
of Naive Bayes approach zero and one, respectively, as the length of analyzed
document increases [2]. This implies that Naive Bayes performs poorly when not

all documents are equally long, as is the case here.
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Fig. 1. ROC curves for nine most frequently asked questions of naive Bayes and the

support vector machine.

In the next set of experiments, we observed how the transductive support
vector machine improves performance by utilizing the available unlabeled data.
We successively reduce the amount of labeled data and use the remaining data
(with stripped class labels) as unlabeled and hold-out data (we use the same set-
ting for the co-training experiments described in the following). We average five
re-sampled iterations with distinct labeled training sets. We compare SVM per-
formance (only the labeled data is used by the SVM) to the performance of the
transductive SVM (using both labeled and unlabeled data). Table [3] shows the
results for category “general product inqueries”; Table @]for “server breakdown”.

When the labeled sample is of size at least 24 + 33 for “general product in-
queries”, or 10 + 30 for “server breakdown”, then SVM and transductive SVM
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Table 3. SVM and transductive SVM, “general product inqueries”.

Labeled data  |[SVM (AUC) [TSVM (AUC)
24 pos + 33 neg|0.87 £+ 0.0072 |0.876 + 0.007
16 pos + 22 neg|0.855 £ 0.007 [0.879 £ 0.007
8 pos + 11 neg |0.795 £ 0.0087|0.876 £ 0.0068

Table 4. SVM and transductive SVM, “server breakdown”.

Labeled data  [SVM (AUC) |TSVM (AUC)
10 pos + 30 neg|0.889 £ 0.0088]0.878 £ 0.0088
5 pos + 15 neg (0.792 + 0.01 |0.859 £ 0.009
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Fig. 2. Change of AUC performance with increasing numbers of co-training iterations.

perform equally well. When the labeled sample is smaller, then the transductive
SVM outperforms the regular SVM significantly. We can conclude that transduc-
tion is beneficial and improves recognition significantly if (and only if) only few
labeled data are available. Note that the SVM with only 8411 examples (“gen-
eral product inqueries”) or 5+15 examples (“server breakdown”), respectively,
still outperforms the naive Bayes algorithm with all available data.

Finally, we want to study how the performance changes when we use co-
training in association with the Support Vector Machine. Figure 2] shows the
AUC performance against the number of co-training iteration. The results re-
semble those obtained with the TSVM: Co-training improves performance only
when at most 16 positive examples are available for product inqueries and when
at most 5 positive examples are available for server breakdown. The benefit of
both, co-training and transduction is greatest, when only few labeled data are
available. Transduction outperforms co-training for product inqueries; transduc-
tion and co-training perform similar for server breakdown.

6 The Responsio Email Management System

We integrated the learning algorithms into an email assistance system. The key
design principle is that, once the standard answers are entered, it does not require
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Fig. 3. When an email is read, the most likely answer is displayed in a special field in
the Outlook window. On clicking the “Auto-Answer” button, a reply window with the
proposed answer text is created.

any extra effort from the user. The system observes incoming emails and replies
sent, but does not require explicit feedback. Responsio is an add-on to Microsoft
Outlook. The control elements (Figure[3)) are loaded as a COM object.

When an email is selected, the COM add-in sends the email body to a second
process which identifies the language of the email, executes the language specific
classifiers and determines the posterior probabilities of the configured answers.
The classifier process notifies the COM add-in of the most likely answer which
is displayed in the field marked. When the user clicks the “auto answer” button
(circled in Figure Bl), Responsio extracts first and last name of the sender, iden-
tifies the gender by comparing the first names against a list, and formulates a
salutation line followed by the proposed standard answer. The system opens a
reply window with the proposed answer filled in.

Whenever an email is sent, Responsio identifies whether the outbound mail
is a reply to an inbound mail by matching recipient and subject line to sender
and subject line of all emails that are visible in one of the Outlook windows.
When the sent email includes one of the standard answers, the inbound mail
is filed into the list of example mails for that answer. These examples can be
viewed in the Responsio manager window. It is also possible to manually drag
and drop emails into the example folders. Whenever an example list changes,
the training unit starts a process with the learning algorithm.

7 Discussion and Related Results

We have discussed the problem of identifying instances of frequently asked ques-
tions in emails, using only stored inbound and outbound emails as training data.
Our empirical data shows that identifying a relatively small set of standard ques-
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tions automatically is feasible; we obtained AUC performance of between 80 and
95% using as little as seven labeled positive examples. The transductive support
vector machine and the co-training algorithm utilize the available unlabeled data
and improve recognition rate considerably if and only if only few labeled training
examples are available. The drawback of both semi-supervised algorithms is the
increase in computation time from few seconds to several minutes. For use in a
desktop application, efficiency is a crucial factor.

A limitation of the available data sources is that we cannot determine ex-
amples of emails for which no A; is appropriate (we cannot decide whether two
syntactically different answers are really semantically different). Therefore, we
can neither estimate P(no standard answer) nor P(A;) for any A4;.

Information retrieval offers a wide spectrum of techniques to measure the
similarity between a question and questions in an FAQ list. While this approach
is followed in many FAQ systems, it does not take all the information into account
that is available in the particular domain of email answering: emails received in
the past. An FAQ list contains only one single instance of each question whereas
we typically have many instances of each questions available that we can utilize
to recognize further instances of these questions more accurately.

The domain of question answering [20] is rather loosely related to our email
answering problem. In our application domain, a large fraction of incoming ques-
tions can be answered by very few answers. These answers can be pre-configured;
the difficulty lies in recognizing instances of these frequently asked questions ro-
bustly, even in very ungrammatical emails. Question answering systems solve a
problem that is in a way more difficult: selecting an answer sentence from a large
corpus (such as an encyclopedia) for arbitrary questions.

Several email assistance systems have been presented. [SI4IT9[7] use text clas-
sifiers in order to predict the correct folder for an email. In contrast to these
studies, we study the feasibility of identifying instances of particular questions
rather than general subject categories.

Related is the problem of filtering spam email. Keyword based approaches,
Naive Bayes [IJI6/T8/12] and rule-based approaches [6] have been compared.
Generating positive and negative examples for spam requires additional user
interaction: the user might delete interesting emails just like spam after reading
it. By contrast, our approach generates examples for the email answering task
without imposing additional effort on the user.
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