Efficient Symbolic Model Checking of Software
Using Partial Disjunctive Partitioning

Sharon Barner and Ishai Rabinovitz

IBM Haifa Research Laboratory, Haifa, Israel

Abstract. This paper presents a method for taking advantage of the
efficiency of symbolic model checking using disjunctive partitions, while
keeping the number and the size of the partitions small. We define a
restricted form of a Kripke structure, called an or-structure, for which
it is possible to generate small disjunctive partitions. By changing the
image and pre-image procedures, we keep even smaller partial disjunctive
partitions in memory. In addition, we show how to translate a (software)
program to an or-structure, in order to enable efficient symbolic model
checking of the program using its disjunctive partitions. We build one
disjunctive partition for each state variable in the model directly from
the conjunctive partition of the same variable and independently of all
other partitions. This method can be integrated easily into existing model
checkers, without changing their input language, and while still taking
advantage of reduction algorithms which prefer conjunctive partitions.

1 Introduction

Symbolic model checking suffers from the known problem of state explosion. This
explosion usually happens while performing the image or pre-image computation.
In order to cope with this problem, symbolic model checkers use partitioned
transition relations [§]. Using ordered conjunctive partitioning [7] is quite simple
and sometimes allows early quantification while computing the image or pre-
image; this serves to decrease the needed memory.

The RuleBase model checker [I] uses ordered conjunctive partitioning, and
previous work showed its application to general purpose software [Alfi]. In this
paper, we show how disjunctive partitioning can be used to increase the efficiency
of symbolic model checking for software.

Disjunctive partitioning, first introduced in [§], has several advantages over
conjunctive partitioning. First, both image and pre-image computations are more
efficient using disjunctive partitions, since quantification distributes over dis-
junction but not over conjunction [98]. For the same reason, distributed model
checking using disjunctive partitions is also more scalable than using conjunctive
partitioning, since each process can do the quantification on its own. As a result,
the “heavy” computation is divided by the number of processes.

Despite the advantages of disjunctive partitioning, use of the technique is
generally hindered by the difficulty in building the partitions. The method pre-
sented in [§] is efficient only for asynchronous circuits. It builds the disjunctive

D. Geist and E. Tronci (Eds.): CHARME 2003, LNCS 2860, pp. 3550, 2003.
© Springer-Verlag Berlin Heidelberg 2003

36 S. Barner and I. Rabinovitz

partitions using an interleaving model, which allows only one wire to change its
value at a time.

Both [2] and [4] suggested how to build disjunctive partitions for synchronous
circuits. In [2], we see how to decompose an FSM into smaller FSMs, and then
use this decomposition to split the conjunctive partitioned transition relation
into a disjunction of conjunctive partitioned transition relations. In [], a set
of mutually exclusive events is used to decompose the behavior of the circuit
to disjunctive partitions. Large disjunctive partitions are split into conjunctive
partitions, which results in a DNF partitioning as in [2]. Both methods need
additional information on the circuit in order to get a good decomposition.

Disjunctive partitioning is also used in [10], where each transition is a separate
disjunctive partition. The contribution of [I0] is in presenting the order in which
the transitions should be executed in order to achieve improved performance.

While all the above works are applicable to models generated for software,
applying them to software is problematic. The method of [§] is applicable to
parallel software, but does not decompose each process to disjunctive partitions.
On the other hand, [10] creates a large number of disjunctive partitions. The
methods of [2] and [4] are not automated and require additional information from
the user. We introduce a new method applicable to software models in which the
decomposition is generated automatically, without additional information from
the user. The number of disjunctive partitions created is similar to that of the
conjunctive partitions for the same model, and the BDD size of the disjunctive
partitions is comparable to that of the conjunctive partitions.

Software has the feature that in each step there is little change in the program
variables. It is quite easy to build a model for software where each step changes
only the pc (program counter), and at most, one additional state variable. We
present a modeling language called ODL, which is natural for defining such
models. We also present a method for translating from conjunctive partitions to
disjunctive partitions and vice versa. These translations can be easily adapted
by any symbolic model checker that uses conjunctive partitioning and by doing
so, may benefit from the advantages of disjunctive partitioning.

In the traditional image computation algorithm, each disjunctive partition
must represent the next value for all variables, so the disjunctive partition of
state variable x should indicate the change of x and pc, and the fact that all
other variables keep their value. The latter information might severely impact
the BDD size of the partition. In this work, we change the image and pre-image
computation in such a way that they can work on the partial disjunctive partition
of x, which represents only the changes of x and pc, and not the fact that all other
variables keep their value. Using this algorithm decreases the BDD size needed
to represent the disjunctive partitions and improves the image computation.
This method is applicable not only for software models, but also to some other
methods ([§], [2] and [4]) based on the fact that only a subset of the variables
in the model can change their value in each disjunctive partition.

Finally we suggest two schemes for distributed model checking that use the
disjunctive partitioning.

Efficient Symbolic Model Checking of Software 37

In our work we implemented the translation from conjunctive partitioned
transition relation to disjunctive partitioned transition relation. We show that
the size of the partial disjunctive partitions is equal to, or even smaller than, the
size of the conjunctive partitions. In addition, we show that calculating reacha-
bility analysis using disjunctive partitions significantly outperforms calculation
using conjunctive partitions.

The remainder of this paper is structured as follows: Section] states the
preliminaries. Section [B] presents the generation of the model from the software
and the ODL modeling language. Section M] presents the translation between
conjunctive and disjunctive partitions, and vice versa. Section [l introduces par-
tial disjunctive partitions and their advantages, and Section [0 presents the dis-
tributed version. In Section[d we present some experimental results. We conclude
and suggest some directions for future work in Section [

2 Preliminaries

A finite program can be modeled by a Kripke structure M over a set of atomic
propositions AP. M = (S, Sy, R, L), where S is a finite set of states, Sy is a
set of initial states, R C S x S is a total transition relation, and L : S — 9AP
is a labeling function that labels each state with the set of atomic propositions
that are true in that state. The states of the Kripke structure are coded by a
set of state variables v. Each valuation to o is a state in the structure. Model
checking is a technique for verifying finite state systems represented as Kripke
structures. The basic operations in model checking are the image computation
and the pre-image computation. Given a set of states S and a transition relation
R, represented in symbolic model checking by the BDDs S(v) and R(v,7) re-
spectively, the image computation finds the set of all states related by R to some
state in S and the pre-image computation finds the set of all states such that
some state in S is related to them by R. More precisely, image(S(v), R(7,7")) =
F5(S(v) A R(v,7")) and pre_image(S(v'), R(v,v")) = 30/ (S(?') A R(v,v")). The
result of image(S(v), R(v,7")) is over ¥'. In order to get the result over v, all
BDD variables are “unprimed”.

A conjunctive partitioned transition relation is composed of a set of partitions

and_R; such that R(v,7") = A, and_R;(v,v"). In case each state variable can
be described by a single conjunctive partition (as in this work), we have that
and_R,, = (v, = f,,(v)) and thus each partition is a function of v and v
rather than o and ¢'. The image computation in this case is image(S(v)) =
F(S(0) A (A, and-Ry, (0, v7))).
Computing JzA(v) is referred to as quantifying x out of A. Early quantifica-
tion [8] can make image and pre_image computations even more efficient. Early
quantification is done by quantifying a variable x out of the intermediate BDD
result, after conjuncting the last conjunctive partition that is dependent on x.
Quantifying a variable out of the intermediate BDD may reduce the size of the
BDD and as a result make the image computation easier.

38 S. Barner and I. Rabinovitz

A disjunctive partitioned transition relation is composed of a set of dis-
junctive partitions or_R; such that R(v,7") = \/,or_R;(v,v’). In the case
where each state variable can be changed only in a single disjunctive par-
tition, we have that or_R,, = (v = fu,(®)) A(Vy # v; + y = ¥'). The
image computation when using disjunctive partitions is done by calculating
image(S(v)) = F0(S(v) A (V,, or-Ry,(v,7"))). Because existential quantifica-
tion distributes over disjunction, we have that every quantification is “early”,
and thus image(S(v)) = V,, F0(S(v) A or_R,,(v,0')). Because the quantifica-
tion is done “early” for every v in the disjunctive partitioning, all intermediate
BDD results depend only on %', while when using conjunctive partitions the
intermediate BDD results may depend both on ¢ and ©’. Thus, using disjunc-
tive partitions usually results in smaller intermediate BDDs than when using
conjuncting partitions.

Note that as opposed to a conjunctive partition, the naive disjunctive parti-
tion is dependent on the entire vector ¥/, rather than just a single v;. We return
to this point later and show how to avoid it by modifying the image computation.

Let A C S be a set of states and let £ be a set of variables. We use the
notation A|z to indicate the projection of the set A onto Z. That is:

Alz = {s € S| Ja € Asuch that s and a agree on all values of the variables in Z}.

3 Generating a Model from Software

Previous work showed the application of symbolic model checking to general
purpose software [5lf] by translating C source code to EDL (Environment De-
scription Language), a dialect of SMV [9], which is the input language to the
RuleBase model checker. EDL, like SMV, is naturally suited for building of con-
junctive partitions. That previous work was based on a specially-built parser and
was limited to a small subset of C. In this work, we build a similar model using
a full-blown compiler front-end. The most important thing about this model is
that it has the following structure.

Definition 1. An or-structure is a Kripke structure in which for every two
states s, s': if R(s,s’) then s and s’ are different from each other only in the
values of the pc and no more than a single additional state variable x.

The model we build has a state variable for each global variable in the C
code and a state variable named pc (program counter) that holds the value of
the next statement to be performed. The model also has stacks to support local
variables, functions and recursion, and some special variables to support arrays
and pointers (without pointer arithmetic). The basics of the generation process
are explained here using a simple example. Afterward, we will discuss the special
treatment for pointers and arrays.

The translation process first translates the C code to intermediate code.
There are two reasons for using intermediate code: 1. It will ease the support of
other input languages in the future. 2. It generates the pc in a way such that
for each value of pc, a maximum of one memory location changes its value. One

Efficient Symbolic Model Checking of Software 39

18: 714+ 0

19:z 4+ rl

22

24:r2 ¢ x

26 : pc < (r2 > 0)729 : 27
27 : pc « 53

2= 0; 29 :

while(x > 0) { 35:713 =z
z+ =5 37:7174+ 5
e 39: 75 < r34rd

41 :z <+ 1rd

44 : 16 < x

46 :r7 +— 16 — 1

48 1 x 17

50 : pc « 22

53 :

gR e

(a) C code of div.c (b) The intermediate code of div.c

Fig.1. Example of translation from C to intermediate code.

may object to using intermediate code because it increases the number of values
pc can get, and therefore increases the number of states in the model. While this
is true, the number of pc values is only multiplied by a small factor and herefore
adds to the state variables only 2 or 3 bits, which are negligible.

In Figure [[la we can see a fragment of a C program. The code has two global
variables called z and z. This code is translated to an assembly-like intermediate
code shown in Figure [b. In the intermediate code, there is a list of instructions,
each with a unique pc (program counter), listed at the beginning of each line.
The pc is updated to the pc of the next line if not specified otherwise. The first
two lines indicate the behavior for pc = 18 and pc = 19. This is the intermediate
code generated for line 1 in the C code (z = 0). At pc = 18 the value 0 is inserted
to r1l, and r1 is inserted to z in pc = 19 . Lines like the one for pc = 22, which
don’t have any code, are used as jump targets and only update the pc to the pc
of the next line. Lines for pc = 24 through 27 perform the while condition: first
in pc = 24 z is inserted into r2 and then in pc = 26 it is checked if it is bigger
than 0. A true answer sets the pc to 29 (enter the loop), while a false answer
sets it to the pc of the next line, which in turn sets the pc to 53 - after the loop.

Next we translate the intermediate code into a model. There are two possible
translations: The first one is to translate the intermediate code to a language
that has the style of a guarded transition system. Each transition is of the form:
pc = PCy = (X + f(X,Y,Z) A pc + PCs). The guard is always a condition
about the value of the pc (each value of the pec has exactly one transition) and
the transition changes the value of the pc and perhaps the value of one additional

40 S. Barner and I. Rabinovitz

fde fine main_rl 0

fdefine main_r2 x

fide fine main_r3 z

fdefine main_rd 5

fde fine main_r5 main_r3 + main_r4
fde fine main_r6 x

fide fine main_r7 main_r6 — 1

tdefine main_rl 0

fdefine main_r2 x

fde fine main_r3 z

tdefine main_rd 5

tdefine main_r5 main_r3 + main_r4
tdefine main_-r6 x

fde fine main_-r7 main_r6 — 1

next(pc) < case
pc=19 : 22
pc=22 : 26
pc=26 : if (main_r2 > 0)
then 29 else 27

pc =19 = (z < main_rl A pc < 22) pe= g; Z?
pc = 22 = (pc + 26) pe =29 ¢
. . pc =41 : 48
pc =26 = (pc < if (main_r2 > 0) —
pc =48 : 50
then 29 else 27) pe =150 : 22
pc =27 = (pc < 53) else : pe

pc =29 = (pc < 41)
pc = 41 = (z < main_r5 A pc < 48)
pc =48 = (x + main_r7 A pc < 50)
pc =50 = (pc + 22)

esac;

next(z) < case
pc =48 : main_r7
else : x

esac;

next(z) < case
pc=19 : main_rl
pc =41 : main-rd
else : z

esac;

(a) Model in ODL representation (b) Model in EDL representation

Fig. 2. Example of div.c translation to EDL and ODL.

state variable []. We refer to this language as ODL. The translation to ODL is
presented in Figure Bla. The other possibility is to translate the intermediate
code to EDL (Figure 2Lb). For both possibilites we model the registers using
a fidefine. In this way, the registers won’t use any bits in the model. This is
possible because the intermediate code defines and uses each register only once.

The translation to ODL is very simple. Each line in the intermediate code is
translated to a guarded expression representing the changes for this value of the
pe. For example in pc = 19, z gets main_rl (the fdefine that represents register
r1), and pc is set to 22. In the EDL code, we need to gather all the assigns of
a state variable to the same place. For instance, the code for next(z) includes
assignments for the lines for pcs 19 and 41 of Figure [[lb. Another difference is
that in ODL it is implicit that every state variable that is not mentioned, keeps
its value, while the EDL explicitly codes it.

At first glance, it seems preferable to translate to ODL because it’s simpler
to translate C code to ODL, and it is simpler to translate ODL to disjunctive

! Note that this transition may change a different variable depending on the value of
other state variables. However, only one state variable will change its value at any
one time. For instance, an assignment of the form a[i] = 5 will change a[0] or a[l],
etc., depending on the value of i. But only one array location will change at any one
time.

Efficient Symbolic Model Checking of Software 41

partitions. But translating the C code to EDL allows us to use RuleBase to
read EDL, build the conjunctive partitions, and perform pre-model-checking
reductions. A reduction is simply a conservative abstraction, that is, one that
preserves both positive and negative truth values. Conjunctive partitions are
more natural for performing simple reductions such as constant propagation
as well as other more sophisticated reductions performed by RuleBase. Thus,
even if we did not have conjunctive partitions, we would want to build them
and translate the result of the reduction back to disjunctive partitions. Thus,
we present methods for translating from conjunctive to disjunctive partitioning
and vice versa in order to enable flexibility in our tool. In practice, using the
reductions and translating the reduced conjunctive partitioning to disjunctive
partitioning indeed proved to be useful. In addition, analyzing the translations
enables us to bound the size of the disjunctive partitions, with respect to the
conjunctive partitions.

3.1 Dealing with Pointers and Arrays

Modeling pointers and arrays creates a problem, because in general an assign-
ment to a variable X from an array or a pointer causes the variable X to be
dependent on more memory locations than an assignment from a scalar. In a
naive approach, the BDD size of the partition for X will be quite large, because
of the dependence on multiple variables. Furthermore, the large number of vari-
ables in a single partition results in many constraints on the BDD order for the
entire model, which might result in a larger BDD size not just for the partition
in question, but for the entire design.

We solve this problem by using cut-points [3]. Our translation adds four
variables for each array . For array ar we add: l_indexq,., l_arrayq,, raindex,,
and r_array,, (the prefix [/r means that the array is in the left/right side of
the assignment). We translate an assignment 2 = ar[i] to the three assignments
described in Figure[J(a), and an assignment ar[i] = x to the three assignments
described in Figure [B(b).

When using this translation on code containing assignments x = ar[i]; z =
ar[jl; y = arli]; y = ar[j];, we get that r_index,, is dependent on i and j,
r_arrayq, is dependent on r_index,, and all ar cells, and x and y are dependent
only on r_array,,-. Without cut-points, we would have had that both z and y
are dependent on 4, j and all cells of array ar.

In pointers, the problem is even more severe because there are generally more
memory locations that can be affected by a pointer dereference than cells in an
array. Still, the same idea is useful for pointers.

Note that using cut-points and fide fines for modeling registers causes a prob-
lem when translating statements like z = a[i] + a[j]. We avoid this problem by
splitting such statements into two: temp = ali]; = temp + a[j].

Our translation has another attribute. An assignment such as ala[i]] = 5 is
translated in the intermediate code into two different accesses to the array, one
to get afi] and the second to assign to alali]], so that our translation creates the
code in Figure Blc).

42 S. Barner and I. Rabinovitz

rondexrq, =1

r_indexq, =1 liindexa, =1 r.arraye, = afr-index,)

T_arrayer = arrinderqr] ||larraye = x l_indexq = r_array,

T =Tr_arrayar arll-indexqr] = l_arrayar l_array, =5
all_indexq] = l_arraya

(a) Translating x = ar[] (b) Translating ar[t] = (c) Translating alali]] =5

Fig. 3. Translation of array expressions

3.2 Splitting of Self-Assignment Statements
Assignments statements in the code can be of two kinds:

1. Self-assignment statement - Assignment to a variable x in which the assigned
value is a function of z (e.g., z+ =y or = x + w + z). Such an assignment
can be further divided into two kinds: constant self-assignment statement
where we update the variable with a constant (e.g., x = 4, + +), and
variable self-assignment statement (e.g. v+ =y, v =z x b+ c¢).

2. Foreign-assignment statement - Assignment to a variable x in which the
assigned value is not dependent on the value of z. (e.g. x = y or x = w + 2).

In order to reduce BDDs size and achaive better performance we split variable
self-assignment statements like x4+ = y into two: temp = x, x = temp + y. This
split increases the number of pc values and adds one variable (for all splits) but
improves the overall performance. The reason will be explaind in section [l
Constant self-assignment statements can remain as is.

4 Translating between Disjunctive and Conjunctive
Partitions

In this section, we show how to build the disjunctive partition of a state variable
x, or_R,(0,7"), from its conjunctive partition and_R,.(v,z’) and vice versa. Our
construction is applicable only to or-structures where each dereference, such as
arrays and pointers, is broken by a cut-point. Let pc be the state variable that
codes the program counter of the program and gy be the state variables which
are different from pc and z.

Definition 2. dep_states,(v) is a set of states such that for every
s € dep_states, (V) there exists s such that R(s,s’) and x has different values in
s and s'.

Intuitively, dep_states, (7) are all the states related to lines in the C program
where z is assigned a value, except for the case where x is assigned the same
value it had before the assignment.

Efficient Symbolic Model Checking of Software 43

Definition 3. dep_pcs,.(pc) is the set of pc values which are related to state-

ments in which x may change 2

Definition 4. The partial disjunctive partition of a state variable x, denoted
by por_R,(pc,x, g, 2, pc’), is the disjunctive partition or_R,(0,0") without the
requirement that the variables in § are left unchanged.

(or_Ry(v,7") = por_Ru(pe,x,y,2',pc’) Ay =)

4.1 Building Disjunctive Partitions from Conjunctive Partitions

We now show how to build each disjunctive partition from the conjuctive parti-
tion of the same state variable and the conjuctive partition of pc.

Translation for x # pc: First we show how to build or_R,(v,9") for x # pe.
1. Calculate dep_states,():
dep_states, (v) = 3z’ (and_R,(v,2") A (z # 2')).

2. Intersect the quantification of x from dep_states,(v) with the conjunctive
partitions of x and pc:

por_Ry(pc,x,y, 2", pc’) =

= (Jz(dep-states,(v))) A and-R;(v,2") A and-R.(v, pc’)

3. Intersect por_R, (7,2, pc’) with § = 7’ to indicate that the other variables
do not change:

or_R,(v,v") = por_Ry(pe,z, g, 2" ,pd) AN (§ =)

We use dep_states,,(0) in our construction and not dep_pcs,.(pc) because two
states in which the pc value is identical do not necessarily change the same state
variable. For example, consider the C statement a[i] = 5 and assume that it is
related to pc = 7. For each value of ¢ this statement changes a different state
variable. Thus, the value pc = 7, which is related to this statement, will be
in more than one disjunctive partition. If we had used dep_pcs,(pc) the state
{pc = 7;i = 2} would have been both in the partition of a[2] and a[l]. As a
result, after conjuncting the disjunctive partition of a[l] with § = ¢’ it would
have contained another transition, that does not exist in the original model and
changes only pc and not a[l] or a[2]. This transition would have been entered
to the disjunctive partition of a[l] because a[2] is in §. The quantification that
appears in por_R,(pc, x, g, x’, pc’) is discussed in detail later.

2 z may not always change its value in a certain pc. For example, when z is a cell in

an array, a[0], and the assignment is a[i] = 5, a[0] is assigned a value only if i = 0
and stays unchanged otherwise.

44 S. Barner and I. Rabinovitz

Translation for pe: Calculating por_R,.(pc, x, g, pc’) is a bit different.

1. Calculate dep_pcs,(pc) for each x # pe:
dep_pes, (pe) = dep-statesy (D)|pe

2. Calculate the set of pc values jump_pes(pe) that are related to statements
in which pc is the only state variable that is changed. These pc values are
related to statements in which there is a control branch like an i f statement.

jump_pes(pe) = [\ (dep-pes,(pe))
T#pc

3. Intersect and_R,.(v,pc’) with jump_pcs(pe) to get the value of pc’ for this
pc value.

por_Ryc(pe, z, 7, pc’) = jump_pes(pe) A and_Ry. (v, pc’)

4. Intersect por_Ry.(pc,z,y,pc’) with § = y’, where g is all variables that are
different from pc.

or_Rye(0,0") = por_Rye(pe, z,5,p) N (G =7)

Discussion: The general idea is that transitions in which only the pc changes
should be in the partition of the pec, and transitions in which both the pec and
some variable z change should be in the partition of x. Naively, this means that
a line with some assignment would appear in the partition of the variable being
assigned, while a line without an assignment would appear in the partition of
the pc. However, things are not so simple. Consider the assignment x = 5. If x
has the value 5 before the assignment, then a transition from this line changes
only the pe. If has another value before the assignment, then this line changes
both = and the pc. A naive construction of the or-partitions from the and-
partitions would put the transition from a state where = has the value 5 into the
partition of the pc, rather than into the partition of . We would like to put this
transition into the partition of x, because in this way the BDDs will be in some
sense “cleaner” - that is, we hope that the BDD size will be smaller. Two other
related problems are the case of assignments of the form z+ = y, where y has
the value 0, and the case of assignments to a[i] for some array a, where ¢ is out
of the array bounds. Our method deals with such cases as explained below.

In order to deal with assignments of the form z = 5 we quantify =z
out of dep_states,(U) before conjuncting the result of the quantification with
and_R,(v,z") and and_R,.(v,pc’). By doing so we ignore the value of x before
the assignment.

The need to deal with assignments of the form z+ = y (for which y = 0 may
cause a problem in a naive construction) is the source of the splitting of variable
self-assignment statements into two, as described in above. This way, we
avoid dealing with such assignments in the construction itself.

Efficient Symbolic Model Checking of Software 45

The problem with assignments such as afi] = 5 needs some explanation.
Consider an array a0..2] of size three and a statement a[i] = 5, where i equals
7. Because a[7] is not a real variable in the program, there is no corresponding
state variable in our model (otherwise the model would have been unbounded).
Thus, in such a case, in our model only the pc is changed, and the conjunctive
partitioned transition relation contains a transition which changes only the pc.
But this statement is related to transitions that do change variable values (for
i < 3), and thus does not “belong” in the partition for the pc (according to our
notion of “cleanness”). It is possible to overcome this problem by adding a new
over flow variable to the model, the disjunctive partition of which will capture
this behavior.

Finally, we note that in the general case, our translation does not work for
statements such as a[i] = a[5] or a[a[i]] = a[i] + 1. However, when the model is
generated, as we suggested in section Bl such statements are always split up
into several statements and therefore the problem is avoided.

4.2 Building Conjunctive Partitions from Partial Disjunctive
Partitions

We previously discussed how to build a disjunctive partition from a conjunctive
partition. In this subsection, we present the translation in the opposite direction.

1. We first calculate dep_pcs,.(pc) simply by looking at the pcs that appear in
por_R. (0,2, pc’)

dep_pcsy(pe) = por Ry (v, 2", pc’)|pe

2. Now we can calculate and_R,(7,2"). It is formed from a union of two sets:
the states in which x changes its value and the states in which x saves its
value.

and_R.(v,z") = (3pc (por-R.(v,2', pc')) V (dep_pcs,(pc) A x = ')

3. Now we can calculate and_R,.(7, pc’). It is calculated by gathering the tran-
sition pc to pc’ in all the partial disjunctive partitions of the variables and
conjuncting it with por_R,.(v, pc’).

and_Rye(v,pc’) = por_Rpe(v,pc’) V (\/ por_Ry(0,pc, ") (pe.pery)
T#pc

5 Using Partial Disjunctive Partitions

In the previous section, we showed how to calculate disjunctive partitions. Using
this, we can take advantage of the superior efficiency of disjunctive partitioning.
However, if the sizes of the disjunctive partitions are larger than the correspond-
ing conjunctive partitions it is not certain that we have gained anything. In this

46 S. Barner and I. Rabinovitz

section we examine the answer to this question. First let’s look at or_R,(7,7’).
By definition, or_R,(v,7") = por_R.(pc,z,y,pc’, ') A (g = 7'). It is possible to
build an example in which |or_R,(9,7")| = O(n- |por_R.(pc, z, §,pc’, 2')|), where
n is the number of state variables. An example is the assignment x < y, where
x is the first variable in the BDD order after pc and y is the last state variable
in the BDD order.

In order to avoid this factor, we do not calculate or_R,(7,v"). We calculate
only por_R.(pc, z,7, 2’ ,pc’) and rewrite the procedures that calculate image and
pre_image operations in such a way as to use por_R, (pc, x,y,2’, pc’) instead of
or_R.(v,7"). In the next subsection, we present the new algorithm for image and
pre_image computation and prove its correctness. After, that we will bound the
size of por_R.(pc,x, 5,2, pc’).

5.1 Image and Pre_Image Computations Using Partial Disjunctive
Partitions

When computing image(pre_image) using disjunctive partitions, it is possible to
calculate the image(pre_image) on each disjunctive partition independently and
then union the results. In this subsection, we introduce how to compute image
or pre_image when only por_R,(pc,x, 5, pc’,x') is given for each variable z.

Lemma 1. pre,image(S(pc’, :LJ7 gl>7 Orfo (pC, T, g7 pcla xla g/)) =

pre*/lmage(s(pcl7 xl? g)’por*Rl(pC’ x) y?pc/7 x/))

From this lemma, we get a simple algorithm that in the first step unprimes 3’
in S(pc/,2’,7’") (linear in the size of the BDD), and then performs the ordinary
pre_image algorithm on the result. The proof of this lemma is given in the full
version of this paper.

Lemma 2. image(S(pc, x,§),or_Ry(pc,x,§,pc’, 2, 7)) =

ima’ge(s(pc7 x7 gl)7pOT*R-'L (pc7 x’ g/’ pc,’ Jj/))

Here again, we have a simple algorithm. First prime g in S(pc,z,y) and in
por_R.(pc, x, 7, pc’, 2') and then calculate the image using the results. The proof
is almost the same as of the previous lemma.

5.2 Bounding the Size of the Partial Disjunctive Partitions

In this subsection, we bound the size of partial disjunctive partitions. The proofs
of these claims are long, technical, and tedious. Proof sketches are given in the
full version of this paper. Despite the relatively large upper bound, in practice,
these extreme examples are rare. See Section [{] for experimental results.

Since every variable is dependent on pc, it seems wise to place pc as the first
state variable in the BDD ordering. All of the following lemmas assume that the
BDD ordering follows this idea.

Efficient Symbolic Model Checking of Software 47

We define po?,\Rw (0, 2") to be por_R, (v, ', pc") without the condition on the
value of pc’:

—

por_R,(v,2') = (3x(dep_states(x,v))) A and_R, (v, z").

We can now rewrite the definition of por_R, (v, 2’, pc’) using po?j%z (v, 2):

por_R, (0,2, pc’) = por Ry (v,2') A and_Ry.(v, pc').

The following lemmas will first bound the size of po?j%m(@,x’) and only then
the size of por_R, (0,2, pc’).

6 Scalability for Distributed Model Checking

We now turn to the scalability of disjunctive partitioning. We claim that sym-
bolic model checking with disjunctive partitioning is not only more efficient than
with conjunctive partitioning, it also scales better. This is a direct result of the
fact that quantification distributes over disjunctive partitioning, but not over
conjunctive partitioning. Since image(S(v)) = \/, 30(S(0) Aor_R,(v,7")), when
using disjunctive partitions or partial disjunctive partitions we can calculate the
image using one partition on each processor including quantification and then
union the results of all processors. Because the image computation may be ex-
ponential in the number of BDD nodes and the union operation is linear in the
number of BDD nodes, distributing the partitions between n processors divides
the “heavy” work by n. Note that when image computation is done distributively
using conjunctive partitions it requires another step in which the partial results
are “anded” together before quantification. Thus, the work done after all the
processors have calculated their results may still be exponential in the number
of BDD nodes. We now suggest two distributed algorithms for disjunctive par-
titions. The first algorithm is simple and uses a master and several slaves. The
master will send S(7) to all the slaves and start sending each idle slave a dis-
junctive partition. Each slave that gets a disjunctive partition will perform the
image computation with this partition and union it with previous computations
it made. When there are no more partitions and all slaves are idle, the master
will gather all the slaves’ results and union them. Reachability computation is
then performed by repeated image computations of the former algorithm. One
drawback with this scheme is that while the server computes the union of all the
slaves’ results, the slaves are idle.

The second algorithm avoids this problem. In this algorithm, each process P;
is responsible for several partitions T R;, and has its own reachability set R.S;.
There is also a (shared) queue of sets of states and each process has two pointers
to this queue: a shared pointer for entering sets to the queue and a private one for
reading from the queue. As a result, all processors read all the sets that enter the
queue. At the beginning the queue has the initial set of states. Each process P;,
at each iteration takes the next set S from the queue (according to its pointer),
removes from it the parts it already handled S = S\ RS; and adds the result to

48 S. Barner and I. Rabinovitz

Example Num of vars| Conjunctive partitions Disjunctive partitions
Reachability|Maximal step|Reachability|Maximal step
time time time time
simple 505 11024 s 95.7 s 23.5s 0.54 s
factorial 159 31.8s 09 s 0.11 s 0.01 s
insert sort 197 264.6 39s 15.23 s 0.08 s
quick sort 282 10197 s 10 s 172 s 0.8s
merge sort 654 952 s 777 s 0.62 s 0.04 s
pointer quick sort 693 1546 s 5.8 s 57 s 1.8s
pointer merge sort 716 >8h > 99 s 78 s 0.25 s

Fig. 4. Comparison of reachability computation using conjunctive partitions against
using partial disjunctive partitions.

RS;, then calculates the image of S using T'R; getting image; = image(S, TR;).
In order to continue only with the new states, the reachable states are removed
from image; getting new; = image; \ RS;. In the case where new; # 0, it is put
in the next entry of the queue. When all processors are trying to read from the
queue and they are all pointing to an empty slot in the queue, the algorithm has
ended. At the end, each process has the whole reachability set because it saw all
the image computation results of all processes in the queue and no new set of
states is entered to the queue.

7 Experimental Results

We implemented the translation from conjunctive partitioned transition relation
to partial disjunctive partitioned transition relation in the IBM model checker
RuleBase [I]. We compared reachability analysis using conjunctive partitions
with reachability analysis using partial disjunctive partitions on models that
were translated from software programs. These software programs were written
in C and contain pointers and arrays. In both cases, we applied dynamic BDD
reordering. In order to obtain a fair comparison between these algorithms, we
ran each one twice. In the first run, the algorithm reordered the BDD with no
time limit in order to find a good BDD order. The initial order of the second
run was the BDD order found by the first run. The partial disjunctive parti-
tioning outperforms the conjunctive partitioning with respect to execution time,
as shown in Figure @l We compared the sizes of partial disjunctive partitions
with those of conjunctive partitions under the same BDD order. The table in
Figure Bl shows the maximal and minimal ratios between a specific variable par-
tial disjunctive partition size and its conjunctive partition size. We specifically
note the ratio of the pc variable and the size of its partial disjunctive partition.
In addition, we show the maximal conjunctive partition and maximal partial
disjunctive partition not including pc. We observed that the partial disjunctive
partitions were in the same order of magnitude or even smaller than the con-
junctive partitions. This was achieved by the use of partial disjunctive partitions
instead of ordinary disjunctive partitions. In our experiments we found that the

Efficient Symbolic Model Checking of Software 49

|Relations between partitions size| Partitions size
Examples Vars| Min Max pc Disj | Max | Max
disj/conj|disj/conj| disj/conj pc | conj | disj
simple 505 0.65 1.54 1.00| 8101|10788|10777
factorial 159 0.53 1.27 1.00| 3562| 1447| 1433
insert sort 197 0.58 1.38 0.98] 3201| 360[390
quick sort 282 0.53 1.34 1.00{12595| 1422| 1124
merge sort 654 0.47 1.49 1.00| 7925| 8346| 8341
pointer quick sort | 693 0.46 1.71 1.00{17650|62225|52155
pointer merge sort| 716 0.35 1.30 0.99| 6861|66987|32145

Fig.5. Comparison between size of conjunctive partitions and partial disjunctive
partitions.

size of each ordinary disjunctive partition (or_R,(7,7")) was up to 84 times the
size of it corresponding partial disjunctive partition.

8 Conclusions and Future Work

Using partial disjunctive partitions seems to be a successful and natural scheme
for software models. In this work, we show how to apply disjunctive partitioning
to software models while keeping the partitions small. We also show how to
enhance the image and pre-image computation to support our partial disjunctive
partitions and make model checking algorithms more efficient. However, this is
only the beginning and there are a number of directions for future work. As
we note above, we handle variables with a large number of bits by creating a
single partition for each variable containing the behaviors of all its bits. Future
work will explore the possibility of implementing the DNF partitioned transition
relation [4], where the disjunctive partition of a state variable is composed of
conjunctive partitions of its bits.

As we claimed in Section[6], disjunctive partitioned transition relation is nat-
ural for distributed algorithms. It seems wise to implement and explore both
algorithms presented in that section. Special attention should be given to find-
ing a good distribution of the disjunctive partitions over the processes in order
to achieve good load balancing.

Acknowledgments. We thank Cindy Eisner, Yoad Lustig and Ziv Nevo for
many helpful discussions.

References

1. L. Beer, S. Ben-David, C. Eisner, and A. Landver. RuleBase: an industry-oriented
formal verification tool. In Proc. DAC96, pp. 655—660, 1996.

2. G. Cabodi, P. Camurati, L. Lavagno, and S. Quer. Disjunctive partitioning and
partial iterative squaring: an effective approach for symbolic traversal of large
circuits. In Proc. DAC97, pp. 728-733, 1997.

50

4.

S. Barner and I. Rabinovitz

G. Cabodi, P. Camurati, and S. Quer. Auxiliary variables for extending symbolic
traversal techniques to data paths. In Proc. DAC94, pp. 289-293, 1994.

W. Chan, R. Anderson, P. Beame, and D. Notkin. Improving efficiency of symbolic
model checking for state-based system requirements. In Proc. ISSTA98, 1998.

C. Eisner. Model checking the garbage collection mechanism of SMV. In S. D.
Stoller and W. Visser, editors, Electronic Notes in Theoretical Computer Science,
volume 55. Elsevier Science Publishers, 2001.

C. Eisner and D. Peled. Comparing symbolic and explicit model checking of a
software system. In Proc. SPIN2002, LNCS 2318, pp. 230—-239, 2002.

D. Geist and I. Beer. Efficient model checking by automated ordering of transition
relation partitions. In Proc. CAV94, LNCS 818, pp. 299-310, 1994.

J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with parti-
tioned transition relations. In A. Halaas and P.B. Denyer, editors, International
Conference on Very Large Scale Integration, pp. 49-58, 1991.

K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

. M. Solé and E. Pastor. Traversal techniques for concurrent systems. In Proc.

FMCAD 2002, LNCS 2517, pp. 220-237, 2002.

	Introduction
	Preliminaries
	Generating a Model from Software
	Dealing with Pointers and Arrays
	Splitting of Self-Assignment Statements

	Translating between Disjunctive and Conjunctive Partitions
	Building Disjunctive Partitions from Conjunctive Partitions
	Building Conjunctive Partitions from Partial Disjunctive Partitions

	Using Partial Disjunctive Partitions
	Image and Pre_Image Computations Using Partial Disjunctive Partitions
	Bounding the Size of the Partial Disjunctive Partitions

	Scalability for Distributed Model Checking
	Experimental Results
	Conclusions and Future Work

