
Inductive Assertions and Operational Semantics

J Strother Moore

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712-1188, USA

moore@cs.utexas.edu

Abstract. This paper shows how classic inductive assertions can be
used in conjunction with an operational semantics to prove partial cor-
rectness properties of programs. The method imposes only the proof obli-
gations that would be produced by a verification condition generator but
does not require the definition of a verification condition generation. The
paper focuses on iterative programs but recursive programs are briefly
discussed. Assertions are attached to the program by defining a predicate
on states. This predicate is then “completed” to an alleged invariant by
the definition of a partial function defined in terms of the state transi-
tion function of the operational semantics. If this alleged invariant can be
proved to be an invariant under the state transition function, it follows
that the assertions are true every time they are encountered in execution
and thus that the post-condition is true if reached from a state satisfy-
ing the pre-condition. But because of the manner in which the alleged
invariant is defined, the verification conditions are sufficient to prove in-
variance. Indeed, the “natural” proof generates as subgoals the classical
verification conditions. The invariant function may be thought of as a
state-based verification condition generator for the annotated program.
The method allows standard inductive assertion style proofs to be con-
structed directly in an operational semantics setting. The technique is
demonstrated by proving the partial correctness of a simple bytecode
program with respect to a pre-existing operational model of the Java
Virtual Machine.

1 Summary

This paper connects two well-known approaches to program verification: opera-
tional semantics and inductive assertions. The paper shows how one can adopt
the clarity and concreteness of a formal operational semantics while incurring
just the proof obligations of the inductive assertion method, without writing
a verification condition generator or other extra-logical tool. In particular, the
formal definition of the state transition function can be used directly to generate
verification conditions for annotated programs.

In this section the idea is presented in the abstract. Some details are skipped
and a deliberate confusion of states with formulas is perpetrated to convey the
basic idea. Subsequently, the method is applied to a particular formal operational

D. Geist and E. Tronci (Eds.): CHARME 2003, LNCS 2860, pp. 289–303, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



290 J S. Moore

HALT

program π
pre−condition

loop invariant

post−conditionQ(s)

R(s)

P(s)

h(s)

t

g(s)

f(s)

 assertionspathslabels

α

β

γ

Fig. 1. The One-Loop Program π with Annotations

semantics, program, annotation, mechanical theorem prover, etc., to demon-
strate that the basic idea is practical.

Consider a simple one loop program π (Figure 1) that concludes with a HALT
instruction. Assume instructions are addressed sequentially, with α being the
address or label of the first instruction and γ being the address or label of the
HALT. Let the pre- and post-conditions of the program be P and Q respectively.
The arrows of Figure 1 indicate the control flow; functions f , g, and h indicate
the compound state transitions along the arcs and t is the test for staying in the
loop. R is the loop invariant and “cuts” the only loop. The partial correctness
challenge is to prove that if P holds at α then Q holds whenever (if) control
reaches γ.

To give meaning to such programs with an operational semantics, one for-
malizes the abstract machine state and the effect of each instruction on the state.
Typically the state, s, is a vector or n-tuple describing available computational
resources such as environments, stacks, flags, etc. It is assumed here that the
state includes a program counter, pc (s), and the current program, prog (s)),
which are used to determine the next instruction. Instructions are given mean-
ing by defining a state transition function step. Typically, step (s) is defined by
considering the next instruction and transforming the state components accord-
ingly. For example, a LOAD instruction might advance the program counter and
push onto some stack the contents of some specified variable. More complicated
instructions, such as method invocation, may affect many parts of the state. The
HALT instruction is particularly simple; it is a no-op.

It is convenient to define an iterated step function:

run (k, s) =
{

s if k = 0
run (k − 1, step (s)) otherwise

and to make the convention that sk = run (k, s).



Inductive Assertions and Operational Semantics 291

Given this operational semantics, the formalization of the partial correctness
result is

Theorem: Correctness of Program π.

pc (s) = α ∧ prog (s) = π ∧ P (s) ∧ pc (sk) = γ → Q (sk).

Proof. In an operational semantics setting, theorems such as the Correctness of
Program π are proved by establishing an invariance Inv (s) with the following
three properties:

1. Inv (s) → Inv (step (s)),
2. pc (s) = α ∧ prog (s) = π ∧ P (s) → Inv (s), and
3. pc (s) = γ ∧ prog (s) = π ∧ Inv (s) → Q (s).

The main theorem is then proved as follows. The inductive application of
property 1 produces

4. Inv (s) → Inv (sk).

Furthermore, instantiation of the s in property 3 with sk produces

5. pc (sk) = γ ∧ prog (sk) = π ∧ Inv (sk) → Q (sk).

We assume no instruction in π changes the program; hence prog (s) = prog (sk).
The Correctness of Program π then follows immediately from 2, 4, and 5. �

Property 1, above, is problematic; it forces the user of the methodology to
characterize all the states reachable from the chosen initial state. Contrast this
situation with that enjoyed by the user of the inductive assertion method, where
assertions are attached only to certain user-chosen cut-points, as in Figure 1.
An extra-logical process, which encodes the language semantics as formula
transformations, is then applied to the annotated program text to generate
proof obligations or verification conditions

VC1. P (s) → R (f (s)),
VC2. R (s) ∧ t → R (g (s)), and
VC3. R (s) ∧ ¬t → Q (h(s)).

If these formulas are proved, the user is then assured that if P holds initially
then Q holds when (if) the program terminates.

To render this assurance formal, i.e., write it as a formula, one must adopt
some logic of programs, i.e., a logic that allows the combination of classical
mathematical expressions about numbers, sequences, vectors, etc., with program
text and terminology. The resulting programming language semantics is extra-
logical in the sense that it is expressed as rules of inference in a metalanguage
and is not directly subject to formal analysis within the logic.1 In contrast, in the
operational approach, the semantics is expressed within the language (typically
1 See however the discussion of [3] the next section.



292 J S. Moore

as defined functions or relations on states), programs are objects in the logical
universe, and the properties of both — programs and the semantic functions and
relations – are subject to proof within the logic.

The central question of this paper is whether it is possible to have the best
of both worlds: the concreteness and clarity of an operational semantics in a
classical logical setting but the elegance and simplicity of an inductive assertion-
style proof. The central question may be put bluntly as “Is it possible to prove
the formula named ‘Correctness of Program π,’ above, directly from VC1–VC3?”
The answer is “yes.”

Recall that the proof of ‘Correctness of Program π’ required the definition
of Inv (s) satisfying properties 1–3 above. The key to constructing an induc-
tive assertion-style proof in an operational setting is the following definition of
Inv (s).

Inv (s) ≡




prog (s) = π ∧ P (s) if pc (s) = α
prog (s) = π ∧ R (s) if pc (s) = β
prog (s) = π ∧ Q (s) if pc (s) = γ
Inv (step (s)) otherwise

The logician will immediately ask whether there exists a predicate satisfying
this equivalence. The affirmative answer is provided in [10]. The logical crux
of the matter is that Inv (s) is defined with tail-recursion and there exists a
satisfying and total witness for every tail-recursive equivalence. If some loop in
the program is not cut, the equivalence may not uniquely define a predicate, but
at least one witness exists.

Inv (s) clearly has properties 2 and 3. It therefore remains only to prove
property 1. As will become apparent, the proof that Inv (s) has property 1 will
generate the verification conditions as subgoals. To drive this home, we describe
the process by which the proof is constructed rather than merely the formulas
produced. Recall Figure 1. Successive steps from a state s with pc α eventually
produce the state f (s) with pc β. Similarly, if t, then successive steps from a
state s with pc β produce g (s) with pc β, and if ¬t, then successive steps from
a state s with pc β produce h (s) with pc γ. Furthermore, repeated symbolic
expansion and simplification of the step function produce the transformations
described by f, g, and h.

Theorem: Property 1.

Inv (s) → Inv (step (s))

Proof. Consider the cases on pc (s) as used in the definition of Inv.

Case: pc (s) = α. The hypothesis, Inv (s) may be simplified to prog (s) = π ∧
P (s). Consider the conclusion, Inv (step(s)). Symbolic simplification of step (s),
given pc (s) = α and prog (s) = π, produces a symbolic state s′ with pc (s′) =
α + 1. For program π either α + 1 is β or it is none of the cut points α, β
or γ. In the latter case, Inv (step (s)) ≡ Inv (s′) ≡ Inv (step (s′)) and stepping



Inductive Assertions and Operational Semantics 293

continues until β is reached at state f (s). Hence, Inv (step (s)) ≡ R (f (s′)) (since
prog (f (s)) = π). Thus, this case simplifies to the goal

pc (s) = α ∧ prog (s) = π ∧ P (s) → R (f (s)).

This is just VC1 (with two now-irrelevant hypotheses, given traditional assertions
P and R).

Case: pc (s) = β. The hypothesis Inv (s) simplifies to prog (s) = π ∧ R (s). Then
the symbolic simplification of step (s) in the conclusion produces a bifurcated
symbolic state whose program counter depends on test t. Repeated expansions
of the definition of Inv on both branches of the state eventually reach states g (s)
and h (s) at which Inv is defined. The results are VC2 and VC3, respectively.

Case: pc (s) = γ. The hypothesis Inv (s) simplifies to prog (s) = π ∧ Q (s).
But the step (s) in the conclusion simplifies to s because the instruction at γ
in π is the no-op HALT. Hence, Inv (s) ≡ Inv (step(s)) and this case is trivial
(propositionally true independent of the assertions).

Case: otherwise. Since pc (s) is not one of the cut-points, Inv (s) ≡ Inv (step(s))
by definition of Inv and this case is also trivial.

�

Hence, if the verification conditions VC1–VC3 have been proved, the proof
of property 1, the step-wise invariance of Inv, involves no assertion-specific rea-
soning. More interestingly, given the definition of Inv, the proof generates the
verification conditions by symbolic expansion of the operational semantics’ state
transition function.

Practically speaking this means that with a mechanical theorem prover and a
formal operational semantics one can enjoy the benefits of the inductive assertion
method without writing a verification condition generator or other extra-logical
tools to do formula transformations.

Another practical ramification of this paper is that it provides a simple means
to define a step-wise invariant given only the assertions at the cut points. Step-
wise invariants are frequently needed in operational semantics-based proofs of
safety and liveness properties.

2 Related Work and Discussion

McCarthy [11] made explicit the notion of operational semantics, in which “the
meaning of a program is defined by its effect on the state vector.”

The inductive assertion method for proving programs correct was implicitly
used by von Neumann and Goldstine in [4] and made explicit in the classic papers
by Floyd [2] and Hoare [5]. The first mechanized verification condition generator,
which generates proof obligations from code and attached assertions, was written
by King [8]. Hoare, of course, rendered the inductive assertion method formal by
introducing a logic of programs. From the practical perspective most program
logics are mechanized with two trusted tools, a formula generator, here called a



294 J S. Moore

VCG, and a theorem prover. It is not uncommon for the VCG to include not just
language semantics as formula transformers but also some logical simplification
(i.e., theorem proving) to keep the generated proof obligations manageable.

A notable exception is the work of Gloess [3] where the Hoare semantics of a
simple imperative programming language is formalized within the higher-order
logic of PVS and mechanically checked proofs of several programs are carried
out with PVS. As in the present work, Gloess’ proofs generate the verification
conditions. The difference however is that the formal semantics is Hoare-style
rather than operational and is thus designed to generate formulas.

This paper contains one apparently novel idea: a step-wise invariant can be
defined from the inductive assertions using the state-transition function. One
may think of this as a methodology for obtaining a state-based verification con-
dition generator from an operational semantics. By doing it on a per program
basis the method avoids the need to generate or trust extra-logical tools.

The use of inductive assertions in conjunction with a formal operational
semantics to prove partial correctness results mechanically is not new. Robert
S. Boyer and the author developed it for their Analysis of Programs course at
the University of Texas at Austin as early as 1983. In that class, an operational
semantics for a simple procedural language in Nqthm [1] was defined and the
course explored program correctness proofs that combined operational semantics
with inductive assertions. These proofs motivated the exploration of total versus
partial correctness, Hoare logics, and verification condition generation. For an
Nqthm proof script illustrating the use of inductive assertions in an operational
semantics setting, see [12].

A recent example of the use of assertions to prove theorems about a program
modeled operationally may be found in [15], where a safety property of a non-
terminating multi-threaded Java system is proved with respect to an operational
semantics for the Java Virtual Machine [14].

However, in the earlier work the invariant explicitly included an assertion for
every value of the pc. (The invariant must recognize every reachable state and
so must handle every pc; the issue is whether it does so explicitly or implicitly.)

An alternative way to combine inductive assertions at selected cut points
with an operational semantics in a classical formal setting is to formalize and
verify a VCG with respect to the operational semantics. In [6], for example,
an HOL proof of the correctness of a VCG for a simple procedural language is
described. The work includes support for mutually recursive procedures. Formal
proofs of the verification conditions could, in principle, be used with the theorem
stating the correctness of the VCG, to derive a property stated operationally.
But the method described here does not require the definition of a VCG much
less a proof of its correctness.

Logically speaking, a crucial aspect of the novel idea here is that the step-
wise invariant is defined using tail recursion. The admission of a new function or
predicate symbol via recursive definition is generally handled by a definitional
principle that insures the existence (and often the uniqueness) of the defined con-
cept. In many logics, this requires a termination proof. Admitting Inv under such



Inductive Assertions and Operational Semantics 295

a definitional principle would require a measure of the distance to the next cut
point and a proof that the distance decreases under step. That imposes a proof
burden not generally incurred by the user of the inductive assertion method.
(Every loop must be cut for the inductive assertion method to be effective; the
question is whether that must be proved formally or merely demonstrated by
the successful generation of the verification conditions.)

The technique used here exploits the observation that Inv is tail-recursive and
hence admissible without proof obligation, given the work of Manolios and Moore
[10] in which it was proved that every tail-recursive equation may be witnessed
by a total function. The tail-recursive function may not be uniquely defined by
the equation — this might occur if insufficient cut points are chosen. Such a
failure is manifested by an infinite loop in the process of generating/proving the
step invariance. This is the same behavior a VCG user would experience in the
analogous situation.

The technique here is similar in spirit to one used by Pete Manolios [private
communication] to attack the 2-Job version of the Apprentice problem [15].
There, he defined the reachable states of the Apprentice problem as all the states
that could be reached from certain states by the execution of a fixed maximum
number of steps.

See [13] for a long version of this paper, including all proof scripts.

3 A Demonstration of the Method

To illustrate the technique a mechanized formal logic and an operational seman-
tics must be introduced. In this paper we use the ACL2 logic [7]. In this logic,
function application is denoted as in Lisp, e.g., run (k, s) is written (run k s).

For the demonstration we choose a pre-existing operational semantics for a
significant fragment of the JVM [9]. The model is called M5 [14] and it was
chosen simply because it was available and it was realistic.

The M5 model is fairly complex, requiring about 250 ACL2 definitions con-
suming about 3000 lines of formalism on top of ACL2’s extensive support for
discrete mathematics. In addition to many other JVM data types, M5 supports
Java’s 32-bit twos complement integer arithmetic, here called “int arithmetic,”
in which overflow is not signaled; adding one to the most positive int produces
the most negative int. M5 models 138 bytecode instructions including those for
the creation and initialization of instance objects in the heap, manipulation of
static and instance fields, the invocation of static, special, and virtual methods,
Java’s inheritance rules for method resolution, the creation of multiple threads,
and synchronization via monitors. The model is operational in the sense that it
can be executed on the output of Sun’s javac compiler (after transformation of
the class files into ACL2 constants).

The M5 model of the JVM is a good example of an abstract machine that
is sufficiently complicated that writing a VCG for it a serious and error-prone
undertaking.



296 J S. Moore

M5 is formalized by defining step and run functions as above. The state
includes a thread table containing stacks of method invocation frames, a heap,
and a class table of loaded classes. Each frame contains a pc, bytecoded program,
local variables, and operand stack. The M5 step function takes two arguments
instead of just one: (step th s) is the state obtained by stepping thread th in
state s. The run function, instead of taking the number of steps, takes a list of
thread identifiers, called a schedule, and steps those threads sequentially.

Symbolic simplification of this semantics is central to the idea proposed here.
Consider the following bytecode sequence (in the M5 parsed byte-stream format):
(ILOAD 1) (ICONST 1)(IADD)(ISTORE 1). This sequence pushes the value of lo-
cal variable 1 on the operand stack, pushes the constant 1, pops the first two
items off the stack and pushes their int sum, and pops the stack into local
variable 1. That is, the sequence corresponds to the Java assignment a = a+1;
if a is allocated in local variable 1. Suppose M5 state s contains a thread, th,
the active frame of thread th has pc 6 and that the bytecode sequence above is
positioned starting at byte offset 6 in the current program. Suppose the locals
of the frame are denoted by locals and the operand stack by stack. The symbolic
simplification of (step th s) produces a symbolic state expression in which
the active frame of thread th has pc 7 and operand stack (push (nth 1 locals)
stack). If three more such steps are taken the result is a symbolic state expression
in which the active frame of thread th has pc 10 and the following expression,
locals’, for its locals (update-nth 1 (int-fix (+ (nth 1 locals) 1)) locals).
Note that the symbolic expression for local 1 in this environment, (nth 1 lo-
cals’) simplifies to (int-fix (+ (nth 1 locals) 1)) using rewrite rules about
nth and update-nth.

4 An Iterative Program

Below is an M5 program that decrements its first local, informally called n, by 2
and iterates until the result is 0. On each iteration it adds 1 to its second local
variable, here called a, which is initialized to 0. Thus, the method computes n/2,
henceforth written (/ n 2), when n is even. It does not terminate when n is
odd.

The program is slightly simpler to deal with if it is assumed that n is a non-
negative int. The program actually terminates for even negative ints, because
Java’s int arithmetic wraps around: the most negative int, -2147483648, is even
and when it is decremented by 2 it becomes the most positive even, 2147483646.
For simplicity, the program concludes with the fictitious HALT instruction, which
stops the machine. The program constant below is named *flat-prog* because
it does not return to a caller but stops the machine. Method invocation is dis-
cussed later in the paper.

(defconst *flat-prog*
’((ICONST 0) ; 0
(ISTORE 1) ; 1 a := 0
(ILOAD 0) ; 2 top of loop:



Inductive Assertions and Operational Semantics 297

(IFEQ 14) ; 3 if n=0, goto 17
(ILOAD 1) ; 6
(ICONST 1) ; 7
(IADD) ; 8
(ISTORE 1) ; 9 a := a+1
(ILOAD 0) ;10
(ICONST 2) ;11
(ISUB) ;12
(ISTORE 0) ;13 n := n-2
(GOTO -12) ;14 goto top of loop
(ILOAD 1) ;17 push a
(HALT))) ;18

Let the initial value of n be n0. The goal is to prove that if n0 is a non-
negative int and control reaches pc 18, then n0 is even and (/ n 2) is on the
stack. That is, if the program halts the initial input must have been even and
the final answer is half that input.

Rather than deal with integer division during the code proof, the following
function is introduced. The decision to use this function rather than algebraic
expressions to express the properties of the code is independent of the decision
to express the properties with inductive assertions.

(defun halfa (n a)
(if (zp n)

a
(halfa (- n 2) (int-fix (+ a 1)))))

Here, int-fix returns the integer represented by the low-order 32-bits of its ar-
gument and thus implements int wrap-around. The inductive assertion method
will be used to establish that if the program terminates it will leave (halfa n0
0) on the stack. A second theorem, independent of the code, establishes that
(halfa n0 0) is (/ n 2) under certain conditions. Such decomposition of code
proofs into “algorithm” and “requirements” is standard in the ACL2 community
and independent of whether inductive assertions are being used. It is possible, of
course, to mix the two via inductive assertions about division or multiplication
by two.

5 The Assertions at the Three Cut Points

The cut points, to which assertions will be attached, are at program counters
0 (α), 2 (β), and 18 (γ). The assertions themselves, called P, R, and Q in the
earlier treatment, are captured by the following function definitions. The names
of the functions are, of course, irrelevant but indicate how they will be used. In
the earlier treatment it was convenient to make these functions of state; here
they are functions of the initial input n0 and the relevant state components,
namely n and a.



298 J S. Moore

(defun flat-pre-condition (n0 n)
(and (equal n n0)

(intp n0)
(<= 0 n0)))

(defun flat-loop-invariant (n0 n a)
(and (intp n0)

(<= 0 n0)
(intp n)
(if (and (<= 0 n)

(evenp n))
(equal (halfa n a)

(halfa n0 0))
(not (evenp n)))

(iff (evenp n0) (evenp n))))
(defun flat-post-condition (n0 value)
(and (evenp n0)

(equal value (halfa n0 0))))

The details of the assertions are not germane to this paper. The assertions are
typical inductive assertions for such a program. They are complicated primarily
because of Java’s int arithmetic. Halfa tracks the behavior of the program only
as long as n stays non-negative. Things would be simpler if the pre-condition
required that n0 be even or if the post-condition did not assert that n0 is even.
These assertions were chosen to illustrate that operational semantics could be
used to address partial correctness of non-terminating programs including the
characterization of when termination occurs.

6 Verification Conditions

Given *flat-prog*, the informal attachment of the three assertions to the cho-
sen cut points, and a VCG for the JVM, the following verification conditions
would be produced.

(defthm VC1 ; entry to loop
(implies (flat-pre-condition n0 n)

(flat-loop-invariant n0 n 0)))
(defthm VC2 ; loop to loop
(implies (and (flat-loop-invariant n0 n a)

(not (equal n 0)))
(flat-loop-invariant n0

(int-fix (- n 2))
(int-fix (+ 1 a)))))

(defthm VC3 ; loop to exit
(implies (and (flat-loop-invariant n0 n a)

(equal n 0))
(flat-post-condition n0 a)))



Inductive Assertions and Operational Semantics 299

These are easily proved. The challenge is: how can these three theorems be
used to verify a partial correctness result for *flat-prog*?

7 Attaching the Assertions to the Code

In the earlier treatment of the method, the invariant conjoined each assertion
with prog (s) = π. Here we introduce an intermediate function to do this and
also to name relevant components of the state.

(defun flat-assertion (n0 th s)
(let ((n (nth 0 (locals (top-frame th s))))

(a (nth 1 (locals (top-frame th s)))))
(and (equal (program (top-frame th s)) *flat-prog*)

(case (pc (top-frame th s))
(0 (flat-pre-condition n0 n))
(2 (flat-loop-invariant n0 n a))
(18 (let ((value (top (stack (top-frame th s)))))

(flat-post-condition n0 value)))
(otherwise nil)))))

The let identifies parts of the JVM state of interest: the 0th local of thread th,
called n, and the 1st local of thread th, called a. It requires that the program
being executed by the thread be *flat-prog* (“π”). It then case splits on the
pc of thread th and for program counters 0, 2, and 18 makes an assertion about
n, a, and n0. The variable symbol value at the post-condition is bound to the
value on top of the operand stack of the relevant thread at the conclusion of the
program.

8 The Nugget: Defining the Invariant

The nugget in this paper is how the assertions, attached to selected cut points,
are completed into a step-wise invariant on states.

The invariant is introduced with the defpun (“define partial function”) utility
of [10]. The assertions are tested at the three cut points and all other statements
inherit the invariant of the next statement. This definition is analogous to that
for Inv in the abstract treatment, except that the invariant also takes the initial
input, n0, and the identifier of the relevant thread, th.

(defpun flat-inv (n0 th s)
(if (or (equal (pc (top-frame th s)) 0)

(equal (pc (top-frame th s)) 2)
(equal (pc (top-frame th s)) 18))

(flat-assertion n0 th s)
(flat-inv n0 th (step th s))))



300 J S. Moore

9 Proofs

Here is the key theorem, called “property 1 of Inv” or the step-wise invariant
theorem.

(defthm flat-inv-step
(implies (flat-inv n0 th s)

(flat-inv n0 th (step th s))))

As noted earlier, the proof attempt generates the verification conditions (with
a few extra hypotheses about the program counter and current program). If
ACL2’s data base already contains the theorems VC1–VC3, those theorems are
used to complete the proof of flat-inv-step. If the verification conditions have
not already been proved, the proof attempt here generates and proves them.

Central to the process is the symbolic simplification of state expressions under
the state transition function step.

Having proved the invariance of flat-inv under step the next theorem in
the mechanized “methodology” corresponds to property 4 of the earlier proof of
the Correctness of Program π. is trivial. The theorem states that flat-inv is
invariant under arbitrarily long runs of the thread in question.

(defthm flat-inv-run
(implies (and (mono-threadedp th sched)

(flat-inv n0 th s))
(flat-inv n0 th (run sched s))))

where

(defun mono-threadedp (th sched)
(if (endp sched)

t
(and (equal th (car sched))

(mono-threadedp th (cdr sched))))).

Proof of flat-inv-run is trivial by induction and appeal to flat-inv-step.
Thus, if the initial state has pc 0 and satisfies the pre-condition, and, after

some arbitrary mono-threaded run, a state with pc 18 is reached, then it satisfies
the post-condition, namely, n0 is even and the answer is (halfa n0 0). Formally
this can be written as follows.

(defthm flat-main
(let ((s1 (run sched s0)))
(implies (and (intp n0)

(<= 0 n0)
(equal (pc (top-frame th s0)) 0)
(equal (locals (top-frame th s0)) (list n0 any))
(equal (program (top-frame th s0)) *flat-prog*)
(mono-threadedp th sched)
(equal (pc (top-frame th s1)) 18))



Inductive Assertions and Operational Semantics 301

(and (evenp n0)
(equal (top (stack (top-frame th s1)))

(halfa n0 0))))))

This is proved by using the instance of flat-inv-run obtained by letting s
be s0.

Flat-main is essentially the goal, except it characterizes the answer as
(halfa n0 0). If (/ n0 2) were preferred, either a separate proof relating
(halfa n0 0) to (/ n0 2) could be performed, or the assertions could be stated
in terms of division in the first place. In any case, this issue is independent of
the use of inductive assertions.

It takes ACL2 approximately 8 seconds (on a 797MHz Pentium III) to prove
flat-inv-step, in which the verification conditions are generated by repeated
symbolic expansion of step on the bytecode in *flat-prog*. The subsequent
proofs of flat-inv-run and flat-main take less than 1.5 seconds in all. The
only proof-specific lemmas developed for this exercise were mathematical lemmas
on the properties of evenp int arithmetic when subtracting 2.

Notice what has been accomplished. Flat-main is a partial correctness the-
orem about a JVM program, formalized with an operational semantics. The
creative part of the proof consisted of the definition of the three assertions.
Users familiar with inductive assertions would find these assertions straightfor-
ward (requiring only a few minutes to write down). The proof of the key lemma,
flat-inv-step, generated (and requires the proof of) the classic verification
conditions just as though a VCG for the JVM were available. But no VCG was
defined. The proof does not establish termination of the code under the pre-
conditions but does characterize necessary conditions to reach the HALT state-
ment. Finally, neither the theorem nor the proof involved counting instructions
or defining what is called a “clock function” in the Boyer-Moore community.

10 Method Invocation and Return

The HALT instruction in the previous program is fictitious but handy. Stepping
the machine while on a HALT leaves the machine at the HALT. Thus, the invariance
of the exit assertion is easy to prove once the exit is reached. In realistic code, the
machine does not halt but returns control to the caller and non-trivial stepping
continues. A useful inductive assertion methodology must deal with call and
return. This paper does not discuss call and return in detail; see [13].

On the JVM, method invocation pushes a new stack frame on the invocation
stack of the active thread. Abstractly, that frame may be thought of as contain-
ing the bytecode for the newly invoked method with initial pc 0. The new frame
contains an initially empty “operand stack” for intermediate results. When cer-
tain return instructions are executed, the topmost item, v, on the operand stack
is removed, the invocation stack is popped, and v is pushed onto the operand
stack of the caller.2

2 Some forms of return implement void methods and return no v to the caller.



302 J S. Moore

To deal with call and return via inductive assertions, two changes are made to
the “methodology” described above. First, instead of using run to run the state
a certain number of steps, the new function run-to-return is introduced, which
runs a certain number of steps or until the state returns from the call depth, d0,
at which the run was started. Second, the assertion function is changed so that
the post-condition is asserted if the call depth is less than d0.

To deal with recursive methods, one must characterize the stack of frames
created by previous recursive calls so that returns produce states in which
continued symbolic evaluation is possible.

It should be possible to use this technique to express safety and liveness
invariants for multi-threaded programs, significantly reducing the amount of
definitional done in examples such as [15], but that experiment has not been
done yet.

11 Conclusion

This paper has demonstrated that inductive assertion style proofs can be carried
out in an operational semantics framework, without producing a verification con-
dition generator or incurring proof obligations beyond those produced by such a
tool. The key insight is that assertions attached to cut points in a program can
be propagated by a tail-recursive function to create an alleged invariant. The
proof that the alleged invariant is invariant under the state transition function
produces the standard verification conditions. The invariance result can then
be traded in for a partial correctness result stated in terms of the operational
semantics, without requiring the construction of clocks or the counting of in-
structions.

No verification condition generator need be constructed. Given an operational
semantics it is possible, more or less immediately, to perform inductive assertion
style proofs of partial correctness theorems.

The process of proving the step-wise invariance of the completed assertions
“naturally” produces the verification conditions.

This situation is attractive for three reasons. First, writing a verification
condition generator for a realistic programming language like JVM bytecode is
error-prone. For example, method invocation involves complicated non-syntactic
issues like method resolution with respect to the object on which the method is
invoked, as well as side-effects to many parts of the state including, possibly, the
call frames of both the caller and the callee, the thread table (in the event that a
thread is started), the heap (in the event of a synchronized method locking the
object upon which it is invoked), and the class table (in the event of dynamic
class loading). Coding this all in terms of formula transformation instead of
state transformation is difficult. Second, when completed, the semantics of the
language is encoded in the VCG process rather than as sentences in a logic.
This encoding of the semantics makes it difficult to inspect. In our approach,
the semantics is expressed explicitly in the logic so that it can be inspected.
Indeed, it is possible to prove theorems about the semantics (not just theorems



Inductive Assertions and Operational Semantics 303

about programs under the semantics). Finally, realistic VCGs contain simplifiers
used to keep the generated proof obligations simple. These simplifiers are just
theorems provers and must be trusted. In our approach, only one theorem prover
is involved. It must be trusted but that trusted engine derives the verification
conditions from the operational semantics and the user-supplied assertions.

References

1. R. S. Boyer and J S. Moore. A Computational Logic Handbook, Second Edition.
Academic Press, New York, 1997.

2. R. Floyd. Assigning meanings to programs. In Mathematical Aspects of Computer
Science, Proceedings of Symposia in Applied Mathematics, volume XIX, pages 19–
32. American Mathematical Society, Providence, Rhode Island, 1967.

3. P. Y. Gloess. Imperative program verification in PVS. Technical Report
http://dept-info.labri.u-bordeaux.fr/˜gloess/imperative/index.html,
École Nationale Supérieure Électronique, Informatique et Radiocommunications
de Bordeaux, 1999.

4. H. H. Goldstine and J von Neumann. Planning and coding problems for an elec-
tronic computing instrument. In John von Neumann, Collected Works, Volume V.
Pergamon Press, Oxford, 1961.

5. C. A. R. Hoare. An axiomatic basis for computer programming. Comm. ACM,
12(10):576–583, 1969.

6. P. Homeier and D. Martin. A mechanically verified verification condition generator.
The Computer Journal, 38(2):131–141, July 1995.

7. M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Press, Boston, MA., 2000.

8. J. C. King. A Program Verifier. PhD thesis, Carnegie-Mellon University, 1969.
9. T. Lindholm and F. Yellin. The Java Virtual Machine Specification (Second Edi-

tion). Addison-Wesley, Boston, MA., 1999.
10. P. Manolios and J S. Moore. Partial functions in ACL2. Technical Report

http://www.cs.utexas.edu/users/moore/publications/defpun/index.html,
Computer Sciences, University of Texas at Austin, 2001.

11. John McCarthy. Towards a mathematical science of computation. In Proceedings
of the Information Processing Cong. 62, pages 21–28, Munich, West Germany,
August 1962. North-Holland.

12. J S. Moore. An NQTHM formalization of a small machine. Technical Report
ftp://ftp.cs.utexas.edu/pub/boyer/nqthm/nqthm-1992/examples/basic/small-
machine.events, Computational Logic, Inc., May 1991.

13. J S. Moore. Inductive assertions and operational semantics – long version.
Technical Report
http://www.cs.utexas.edu/users/moore/publications/trecia/index.html,
Department of Computer Sciences, University of Texas at Austin, 2003.

14. J S. Moore. Proving theorems about Java and the JVM with ACL2. In M. Broy,
editor, Lecture Notes of the Marktoberdorf 2002 Summer School. Springer, LNCS,
2003. http://www.cs.utexas.edu/users/moore/publications/marktoberdorf-03.

15. J S. Moore and G. Porter. The Apprentice challenge. ACM TOPLAS, 24(3):1–24,
May 2002.

http://dept-info.labri.u-bordeaux.fr/~gloess/imperative/index.html
http://www.cs.utexas.edu/users/moore/publications/defpun/index.html
http://www.cs.utexas.edu/users/moore/publications/trecia/index.html

	Summary
	Related Work and Discussion
	A Demonstration of the Method
	An Iterative Program
	The Assertions at the Three Cut Points
	Verification Conditions
	Attaching the Assertions to the Code
	The Nugget: Defining the Invariant
	Proofs
	Method Invocation and Return
	Conclusion



