
On Combining Symmetry Reduction and Symbolic
Representation for Efficient Model Checking�

E. Allen Emerson and Thomas Wahl

Department of Computer Sciences and Computer Engineering Research Center
The University of Texas, Austin/TX 78712, USA

{emerson,wahl}@cs.utexas.edu

Abstract. BDDs allow succinct symbolic representation of digital circuits. Sym-
metry reduction factors out redundancy inherent in the regular organization of
many systems. Both are successful techniques for combating state space explo-
sion. It would be desirable to combine them into symbolic symmetry reduction.
Unfortunately, the straight-forward approach to symmetry reduction requires the
orbit relation, whose symbolic representation as a BDD is in general of exponential
size. We investigate the use of generic representatives as a means of overcoming
this problem for fully symmetric systems: instead of first representing the system
as a BDD and then applying symmetry reduction, we translate the given pro-
gram text into a symmetry-reduced version. The result can then be encoded using
a BDD. We demonstrate that this method is superior not only to the traditional
orbit-relation based symmetry reduction, but also to the approach using multiple
representatives.

1 Introduction

Symbolic representation of systems, most notably in the form of binary decision diagrams
(BDDs), is often more compact than explicit, enumerative representation. Symmetry re-
duction is a powerful technique to limit the state space explosion problem. In symmetric
systems, two states are considered equivalent if they are identical up to certain per-
mutations of the participating processes. This relation gives rise to equivalence classes
of states, called orbits. The Kripke structure built over the orbits can be shown to be
bisimulation-equivalent to the structure built over individual states.

The combination of symbolic representation with symmetry reduction was investi-
gated in [CEFJ96]. The paper describes how the BDD for the representative function can
be constructed, which maps a state to its unique orbit representative. Symbolic model
checking in the presence of symmetry is then implemented by applying the representative
function to the intermediate results during fixpoint evaluations.

Computing the representative function requires the orbit relation, which contains
pairs of states that are permutations of each other. The orbit relation turned out to be
the bottleneck of symbolic symmetry reduction, since its BDD is, for many underlying
symmetry groups, of size exponential in the minimum of the number of components and
� This work was supported in part by NSF grants CCR-009-8141 and CCR-020-5483, and SRC

contract 2002-TJ-1026.

D. Geist and E. Tronci (Eds.): CHARME 2003, LNCS 2860, pp. 216–230, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



On Combining Symmetry Reduction and Symbolic Representation 217

the number of states per component. A partial remedy is to permit multiple representa-
tives per orbit, which might be computable without using the orbit relation. However,
choosing too many representatives per orbit defeats the purpose of symmetry reduction.

To overcome the limitations of the above approach [CEFJ96] to combining symmetry
reduction and symbolic representation using BDDs, we investigate, for fully symmetric
systems, the use of generic representatives [ET99] as a means of avoiding the problems
associated with picking representative states. Instead of first building a BDD for the
system and then implementing symmetry reduction via the orbit relation, the symmetry
is factored out at the source code level by compiling the original program into one
that operates on counter variables. To keep track of equivalence classes of states, it is
sufficient to store the number of processes in a given location, rather than their identities.
For example, in a system with process locations N , T and C, the states (N, N, T, C),
(N, C, T, N), and (T, N, N, C) are all symmetry-equivalent and can be represented
generically as (2N, 1T, 1C).

In this paper we show how this idea can be applied to practical systems, where
processes communicate via shared variables. In many applications, a global variable is
used to point to one distinguished process, like one that possesses a token, or one that
is currently allowed to enter its critical section. Since generic representatives get rid of
process identities, such a variable must be adapted to a generic program. We show how
this can be done by replacing it with a new variable that keeps track of the location of the
distinguished process, rather than its identity. This method presents a slight challenge,
though: if the distinguished process executes a transition, then its identity remains the
same, but its location changes. This change must be reflected in the new variable. The
complexity of a transition might therefore grow when translated into its generic form,
although only by a small constant amount.

We place suitable restrictions on the use of those global variables containing process
indices in guards and actions in a program to ensure full symmetry. We also show
the details of the program translation. We then define Kripke structures derived from
the original and translated programs, respectively, and establish their bisimilarity. The
generic method preserves all of the symmetry reduction, is applicable to a large class
of fully symmetric systems and is efficient; in particular, it completely avoids the orbit
relation. We demonstrate its usefulness in symbolic symmetry reduction by presenting
experimental results for two systems with unique, multiple and generic representatives.

The remainder of this paper is organized as follows. In section 2, we review traditional
symmetry reduction with BDDs. In section 3 we illustrate, by means of an example, the
notion of generic representatives. Section 4 formally describes how to translate a program
given as a synchronization skeleton into an “equivalent” generic program. The translation
of this new program into BDDs is the topic of section 5. We compare our method against
other symbolic symmetry reduction techniques experimentally in section 6. Related and
future work are discussed in the concluding section 7.

2 Preliminaries

Notation. For a, b ∈ IN, we denote by [a..b] the set {i ∈ IN : a ≤ i ≤ b}. For a
permutation π, the symbol π− stands for its inverse. In programs, we use an imperative



218 E.A. Emerson and T. Wahl

language style syntax. Block structure is indicated by indentation (instead of begin/end);
comments go from “//” to the end of the line.

2.1 Permutations Acting upon States

The ideas presented in this paper apply to process symmetries, which describe the phe-
nomenon that in a system of replicated process components, processes can be rearranged
in certain ways simultaneously in the source and target state of all transitions of the sys-
tem, without changing the overall transition relation. This can be formalized as follows.
The systems under consideration are similar to shared variable programs [ES96]. We
assume there are n concurrently executing processes, following an interleaved model of
computation, which share some global variables. The possible local states of a process
are given by a set of process locations L. A system state can therefore be written as
s = (v, l1, . . . , ln), where v is a (possibly tuple-valued) global variable and li ∈ L
is the location of process i. For L ∈ L, we use Li as a shorthand for the expression
li = L. The rearrangement of processes in a state is formalized in terms of a permuta-
tion π : [1..n] → [1..n] acting upon process indices. The mapping π can be extended to
act on system states by defining π(s) = (vπ, lπ(1), . . . , lπ(n)), where vπ describes the
result of π acting on v. The definition of vπ depends on the character of v: some global
variables, like a binary semaphore, are invariant under permutations, such that vπ = v.
On the other hand, a global token variable pointing to (the id of) some process is directly
affected by π, as we shall see in section 3. In this case, one defines vπ = π(v).

2.2 Symmetry Reduction in Theory

Given a set of permutations G acting on [1..n], a Kripke structure M = (S, R, s0), and
a definition of π(s) for s ∈ S, we say that M is symmetric with respect to G if, for all
π ∈ G, π(R) := {(π(s), π(t)) : (s, t) ∈ R} satisfies π(R) ⊂ R. In this case, it can be
shown that in fact π(R) = R, and that G is a group with function composition as the
group operation. If G contains all permutations over [1..n], M is called fully symmetric.
This paper focuses on fully symmetric systems. G, the full symmetry group, is therefore
henceforth omitted.

The orbit relation θ(s, t) := ∃π : π(s) = t defines an equivalence between states;
the equivalence classes it entails are called orbits. Instead of considering all states in S,
it suffices now to choose a small set Rep of representatives. This choice is reflected by
the representative relation ξ ⊂ S × Rep, which assigns to every state in S elements of
Rep such that:

soundness: for all (s, r) ∈ ξ, there exists π such that π(s) = r (i.e. ξ ⊂ θ), and
totality: for all s ∈ S, there exists r ∈ Rep such that (s, r) ∈ ξ.

The symmetry-reduced transition relation is obtained by replacing source and target of
edges in R by representatives:

R̄ = {(s̄, t̄) ∈ Rep × Rep : ∃s, t ∈ S : (s, s̄) ∈ ξ, (t, t̄) ∈ ξ ∧ (s, t) ∈ R}. (1)



On Combining Symmetry Reduction and Symbolic Representation 219

The structure M̄ := (Rep, R̄, s̄0)), for any s̄0 with (s0, s̄0) ∈ ξ, is called the quotient
model of M . For suitable choices of Rep and ξ it can be shown that M̄ is bisimulation-
equivalent to M , and therefore

M, s |= f ⇔ M̄, s̄ |= f (2)

for any s̄ such that (s, s̄) ∈ ξ and every symmetric formula f : for all π, every s ∈ S and
every maximal propositional subformula p appearing in f , M, s |= p ⇔ M, π(s) |= p.
The “suitable choices” for Rep and ξ turn out to be crucial for efficiency.

2.3 Unique Representatives

It seems natural to pick exactly one representative from each orbit, such that the relation
ξ becomes a function. For instance, given a system state as an n-tuple over the process
locations L, ξ could return the tuple with the locations sorted according to some
ordering within L [LN91]. This mapping is sound, since sorting amounts to applying a
permutation. It is also total, since every system state can be sorted in this way. Finally,
the structure M̄ derived from this choice of Rep is indeed bisimulation-equivalent to M .

The only currently known way to construct a BDD for ξ with unique representatives
is by first building the BDD for the orbit relation θ and then projecting the second
component of θ onto Rep: ξ = {(s, r) ∈ θ : r ∈ Rep}. Unfortunately, this approach is
generally problematic in terms of both time and space [CEFJ96]: The orbit problem—are
two states related by θ ? —is at least as hard as the graph isomorphism problem, for which
no polynomial-time algorithm is known. Making it worse for symbolic representations,
the BDD of the orbit relation is, for many common symmetry groups, of size at least
min{2n, 2|L|}.

2.4 Multiple Representatives

A computationally less expensive choice of Rep and ξ is possible if the uniqueness
requirement for the representatives is dropped. This approach imposes a few weaker
constraints on Rep and ξ, which we sketch here briefly; for details see [CEFJ96].

Definition 1 ([CEFJ96]) Let Rep be a set of representatives and ξ a sound and total
representative relation. A set C of permutations is complete if:

– for all (s, r) ∈ ξ, there exists π ∈ C such that π(s) = r, and
– for all π ∈ C and r ∈ Rep, (π(r), r) ∈ ξ.

Notice that if the representatives are unique as in 2.3, the full symmetry group G is a
complete set. We hope, however, to find a small complete subset C. Intuitively, we can
then restrict our attention to permutations from C in the search for representatives of a
given state.

Theorem 2 ([CEFJ96]) Let Rep and ξ be as in definition 1. If there exists a complete
set C, then M, s |= f ⇔ M̄, s̄ |= f with M̄ , s̄ and f as in (2).



220 E.A. Emerson and T. Wahl

CT
tok = self

tok := ndet [1..n]

N

Fig. 1. The synchronization skeleton for a token solution to the Mutual Exclusion problem

In practice, it is the programmer’s responsibility to first define a set Rep representable
by a small BDD. In [CEFJ96], it is described how a suitable set C can be derived. By
finally defining ξ as

(s, r) ∈ ξ iff r ∈ Rep ∧ ∃π ∈ C : π(s) = r, (3)

C is a complete set for Rep and ξ. If the expression ∃π ∈ C : π(s) = r and R can
also be encoded succinctly, then the BDD for R̄ as in (1) is small; the orbit relation is
nowhere used. By theorem 2, we can now perform model checking on M̄ .

The symmetry reduction effect is negatively impacted by choosing several represen-
tatives per orbit. While this could still be advantageous when using BDDs, it is not clear
that Rep can always be chosen to allow a small BDD for ξ and R̄. In the remainder of
this paper, we argue that in the case of full symmetry, a solution exists that avoids all
these problems altogether.

3 Generic Representatives – A Case Study

Full symmetries occur frequently in practice, whenever a system is composed of un-
ordered, pairwise interchangeable components. This is the case for clique networks of
processes, but also for bus and star topologies, where components communicate via a
centralized hub (such as in cache coherence protocols). In the latter cases, the bus or hub
can be “factored out”, while full symmetry reduction can be applied to the remaining
processes.

A fully symmetric system is concisely specified by the number n of processes,
possible global variables with initial values, and the common program executed by all
processes. As an abstraction of this program, we assume, for the purpose of describ-
ing the formal translation into BDDs, the input model of synchronization skeletons.
These skeletons are appropriate and powerful enough to describe most control-intensive
synchronization problems over finite domains. Combinations of values for the local vari-
ables of a process are abstracted into a local state; assignments to those variables are
represented as local state changes. Sequential code executed by a process in an atomic
action is abstracted into a single transition.

As an example, consider a token-based solution to the n-process Mutual Exclusion
problem with a global variable tok ∈ [1..n], and the skeleton in figure 1. A skeleton’s
arcs can be labeled with guards (shown in the diagram above the arc) and actions (shown
below it, executed after the transition). The skeleton in the figure allows a process to



On Combining Symmetry Reduction and Symbolic Representation 221

Variables:
nN , nT , nC : [0..n]
TOK : {N, T, C}

Initial values:
(nN , nT , nC) := (n, 0, 0)
TOK := N

// from transition
// N → T :
if nN > 0

if TOK = N
if nN = 1

TOK := T
else

TOK := {N, T}
nN := nN − 1
nT := nT + 1

// from transition

// T
tok=self−→ C:

if nT > 0 ∧ TOK = T
TOK := C
nT := nT − 1
nC := nC + 1

// from transition
// C → N , tok := ndet [1..n]:
if nC > 0

nC := nC − 1
nN := nN + 1
TOK := ndet{L : nL > 0}

Fig. 2. Generic version of the token-based Mutual Exclusion solution

enter its critical section C if it currently possesses the token (tok = self ). Upon leaving
C, it sets tok to a nondeterministic value in [1..n]. The skeleton gives rise to a fully
symmetric structure, as we will see in the next section for skeletons written in a specific
input syntax.

We now want to construct a new program based on counters that yields a bisimula-
tion-equivalent structure. Instead of a local state variable for each process, we somewhat
conversely declare global counter variables for each local state, calling them nN , nT ,
nC .A slight challenge is provided by the tok variable with range [1..n]. Since the counter
variables deliberately ignore process identities, we cannot check a guard like tok = self
any more. However, assume there are several processes in location T . Since they are
indistinguishable, it does not matter which of them has the token (if any). Rather, it
suffices to remember, in a new variable TOK , the location of the process possessing the
token. Thus, TOK ranges over {N, T, C}.

The translated program consists of the variables and statements shown in figure 2.
The values of the counter variables range from 0 to the number of processes, n. The
initial values of all four variables follow from the fact that all processes start out in
location N . All transitions in the new program require that the counter of the source
state is positive, since the transition can be taken only if there is a process in that state.

The first transition, N → T , has apparently nothing to do with the token, since
tok does not explicitly appear in it. However, the process executing it might be the one
possessing the token, in which case the new variable TOK must be updated from N
to T . If TOK = N and nN = 1, then the executing process has the token, and we
set TOK to T . If TOK = N and nN > 1, then the process executing the transition
may or may not be the one possessing the token, so we must set TOK to T , or TOK
must remain at N , respectively. Hence, the new program has two transitions in this case,
which we abbreviate by a nondeterministic assignment TOK := {N, T}. Finally, the
actual location change is reflected by decreasing nN and increasing nT . A similar, but
simpler reasoning motivates the translation of the other two transitions; in particular,
the condition nL > 0 in the assignment to TOK in the last statement ensures that only
locations in which there is at least one process are nondeterministically chosen.



222 E.A. Emerson and T. Wahl

The property to be verified also needs to be translated into counters. As an example,
compare the mutual exclusion (safety) and communal progress (liveness) requirements
in specific and generic notation:

specific generic
Safety: AG∀i, j : i 	= j : ¬(Ci ∧ Cj) AG(nC < 2)
Liveness: AG(∃iTi ⇒ AF ∃jCj), AG(nT > 0 ⇒ AF nC > 0).

The liveness property states that if there is some process in its trying region, then
in any possible future, there should eventually be some process entering its criti-
cal section. This property is weaker than progress of an individual process, formally
AG∀i : (Ti ⇒ AF Ci). The latter formula, however, is not symmetric, since the max-
imal propositional subformula Ti is not invariant under permutations. It can therefore
not directly be verified over a symmetry reduced structure (whether specific or generic).
One approach to overcoming this problem is to “factor out” one of the processes and
treat its local variables as global. The progress property is formulated for this process,
and symmetry reduction is applied to the remaining ones. This approach is described
in more detail by Pnueli, Xu, and Zuck [PXZ02], incidentally for counter-abstracted
programs.

To see that implementing the above translation is tantamount to performing symmetry
reduction on the program text, notice that all states from one equivalence class of the
original system are mapped by the translation to the same counter tuple (TOK , nN , nT ,
nC). This tuple can therefore be viewed as an “unusual notation” for the representative of
the orbit—we call it a generic representative. The new program can now be transformed
into a Kripke structure, represented by BDDs, and model checked.

4 Translating Symmetric Programs into Generic Form

The global variable tok in the previous section contains a process index, which is lost
after the introduction of counters. Such variables require special treatment during the
translation process. We call them id-sensitive. Global variables independent of process
identities, for example a boolean semaphore, are, as we shall see, much simpler to handle.
We refer to them as id-independent variables.

We assume a program P in the form of the following parameters: (1) the number n
of processes, (2) any number of id-independent global variables, given as a single vector
v with range V (cross product of individual ranges), along with initial value x0, (3) any
number z of id-sensitive global variables, given as d = (d1, . . . , dz) with range [1..n]z ,
along with initial value k0, and (4) a synchronization skeleton. The latter is a finite
directed graph, each node of which represents (and is identified with) a process location;
call their number l. One of the nodes, I0, is the distinguished initial location of every
process. The edges may be labeled with a guard and an action (which default to true
and no-op, respectively).

Syntax of Guards. Guards are arbitrary propositional combinations of boolean-valued
basic guards, the latter being conditions on process locations and expressions over global
variables. In order to ensure full symmetry of the structure entailed by the program, basic
guards must meet certain criteria.



On Combining Symmetry Reduction and Symbolic Representation 223

Table 1. Fully symmetric basic guards on process locations

no. Basic Guard Generic version Meaning
0 ∀i : ¬Li nL = 0 none
1 ∀i : Li nL = n all
2 ∃i, j : i �= j : Li ∧ Lj nL ≥ 2 at least two

Definition 3 For a quantified boolean formula h over atoms of the form Li, i ∈ [1..n],
and a permutation π on [1..n], define π(h) by π acting upon the indices. Formula h is
fully symmetric if h ⇔ π(h) is valid.

Some basic guards satisfying this definition are listed in table 1.As an example, the guard,
exactly one process is in location L, formally (∃i : Li) ∧ (∀i, j : Li ∧ Lj ⇒ i = j),
is equivalent to ¬0 ∧ ¬2, where 0 and 2 are two basic guards from the table. It is more
succinctly written as nL = 1 in generic terms.

Any (syntactically valid) expression over id-independent global variables is “by
nature” fully symmetric and thus a legal basic guard. As for an id-sensitive variable d,
we allow the expressions d = self and d 	= self as basic guards.

Syntax of Actions. An action consists of at most one assignment to each of the global
variables. The execution model for the assignments—e.g. parallel or sequential—is left
to the implementation, since it is irrelevant for the translation of the source program into
generic representatives.

As with guards, to ensure full symmetry the syntax of actions must be restricted.
Any (syntactically valid) assignment to the id-independent variables is legal, since it
does not affect the symmetry of the program. For an id-sensitive variable d we allow the
following three types:

d := self d := ndet [1..n] d := ndet([1..n]\{self }).

The last two actions intuitively assign a nondeterministic value in the given set to d.
Their precise semantics is given by the derivation of a Kripke structure:

Definition 4 A program specified in the above syntax defines a Kripke structure M =
(S, R, s0) with S = V × [1..n]z × [1..l]n, s0 = (x0, k0, I0, . . . , I0), and R containing
all pairs (s, t) with

s = (x, k, l1, . . . , li−1, A, li+1, . . . , ln), t = (x′, k′, l1, . . . , li−1, B, li+1, . . . , ln)

such that there is an edge e :A → B in the skeleton with a guard that evaluates to true
for v = x, d = k, self = i and process locations as in s, and e’s action A satisfies
the Hoare triple 〈v = x〉A〈v = x′〉, and for each id-sensitive variable d with values k
and k′ in s and t, resp., A has an assignment d := self and k′ = i, or an assignment
d := ndetZ for some Z with k′ ∈ Z, or A has no assignment to d and k′ = k.

The following theorem shows that symmetry reduction can be applied to M .

Theorem 5 For s = (x, k1, . . . , kz, l1, . . . , ln), let π(s) = (x, π−(k1), . . . , π−(kz),
lπ(1), . . . , lπ(n)) and π(R) as in section 2.2. M is fully symmetric, that is, π(R) ⊂ R
for all permutations π.



224 E.A. Emerson and T. Wahl

We are now ready to describe the translation of program P from its components (1)
through (4) (beginning of this section): The new program P̂ consists of the same variable
v with initial value x0, further variables d̂j , j ∈ [1..z], with range [1..l] and common
initial value I0, and variables n1, . . . , nl with range [0..n] and initial values nI0 = n,
nL = 0 for L 	= I0. Every edge of the skeleton is translated into a statement as follows:

A Baction
guard

if nA > 0 ∧ gen(guard)
update1 (guard)
nA := nA − 1
nB := nB + 1
update2 (action)

(4)

The conditionnA > 0 ensures that there is a process in locationA.The guard is translated
by a function gen as follows: each basic guard on process locations is replaced according
to table 1. For an id-sensitive variable dj , guard dj = self is replaced by d̂j = A, guard
dj 	= self by d̂j 	= A ∨ nA ≥ 2 (if nA ≥ 2, there is a process i in location A with
dj 	= i; hence dj 	= self is true for that process). Expressions over v are unchanged.

Function update1 performs updates of variable d̂j that become necessary because
of the location change. It is only required if action does not assign to dj (otherwise, d̂j

is overwritten by update2 (action)).

guard dj = self dj 	= self otherwise (including true)
if d̂j = A

if nA = 1
update1 (guard) d̂j := B no-op d̂j := B

else
d̂j := ndet{A, B}

Function update2 implements updates of v and d̂j that are due to the action . It
leaves no-op and assignments to v unchanged. For the assignments to dj , we translate
as follows:

action dj := self dj := ndet([1..n]\{self }) dj := ndet [1..n]
if nB = 1

update2 d̂j := ndet({L : nL > 0}\{B})
(action) d̂j := B else d̂j := ndet{L : nL > 0}

d̂j := ndet{L : nL > 0}

Definition 6 Program P̂ defines a Kripke structure M̂ = (Ŝ, R̂, ŝ0) with Ŝ = V ×
[1..l]z × [1..n]l, ŝ0 = (x0, I0, . . . , I0, n1, . . . , nl) such that nI0 = n, nL = 0 for all
L 	= I0, and R̂ containing all pairs (ŝ, t̂) such that there is a (nondeterministic) statement
in P̂ whose top-level condition nA > 0∧gen(guard) evaluates to true and that contains
an execution that, applied to ŝ, results in t̂.



On Combining Symmetry Reduction and Symbolic Representation 225

Theorem 7 Structures M (definition 4) and M̂ are bisimulation-equivalent via

b :S → Ŝ, b(x, k1, . . . , kz, l1, . . . , ln) = (x, lk1 , . . . , lkz , n1, . . . , nl)

with nL := |{j ∈ [1..n] : lj = L}|. Function b maps every state to its unique generic
representative. The following theorem shows that although generic representatives are
not based on permutations, they define the same equivalence classes as the orbit relation:

Theorem 8 For any r, s ∈ S, b(r) = b(s) if and only if ∃π : π(r) = s.

In order to model check over structure M̂ , the specification must be rewritten in
generic notation. We assume it is a CTL formula whose atomic propositions are fully
symmetric expressions on local state variables (translated like the examples in table 1)
and expressions on the id-independent global variable (unchanged). Such a formula is
symmetric in the sense defined right below (2).

Note that the translation of the program as well as of the formula can be done fully
automatically, in time linear in the size of the program text.

5 Translating Generic Programs into BDDs

In this section, we show how the statements of the generic program, obtained in section 4,
can be encoded in a BDD efficiently. We will also estimate the sizes of those BDDs,
depending on n, l and the size of the input synchronization skeleton. In this section we
ignore the existence of the id-independent variable v: since expressions involving it are
subject to no restrictions, BDD sizes cannot be estimated. However, those expressions
are not altered during the translation; hence they do not contribute any change in BDD
size.

The generic structure M̂ = (Ŝ, R̂, ŝ0) is the disjunction of statements of the form in
(4) in section 4. BDDs implementing those statements can be obtained as follows:

nA > 0 iff there is at least one true bit among the �log(n + 1)� bits representing nA.
This can be implemented as a disjunction over all those bits. The resulting BDD
size is linear in the number of participating bits: O(log n).

gen(guard) is a propositional combination of basic generic guards. Guards from table 1
can be realized as above with a BDD that compares the constant bit-wise against
the counter variable; size O(log n). Basic generic guards involving the id-sensitive
variable have the form d̂ = A or d̂ 	= A ∨ nA ≥ 2, which can again be verified bit-
wise; these BDDs thus have maximum size O(log l log n) (d̂ ∈ [1..l], nA ∈ [0..n]).
Let F denote the number of basic guards appearing in guard . The total BDD size for
this part of a transition is then no more than O((log l log n)F ). Since F is typically
a small constant, this bound is usually polynomial in practice.

update1 (guard): an if-then-else statement can be implemented using the common
ITE operation for BDDs. Since the expressions contained inside the if-then-else
are again comparisons against constants, the entire statement can be encoded in a
BDD of size O(logα l · logβ n), for small constants α and β.



226 E.A. Emerson and T. Wahl

nL := nL ± 1: since the right-hand side is not a constant, a bit-wise comparison is
not possible. The increment can be implemented by searching (using existential
quantification) for a bit position i at which nL is 0, n′

L (the next-state value) is 1,
for all preceding bits nL and n′

L are identical, and for all succeeding bits nL is 1
and n′

L is 0. The worst-case BDD size over two variables of �log(n + 1)� input bits
is 22�log(n+1)� = O(n2).

update2 (action): assignment d̂ := ndet{L : nL > 0} can be realized with a BDD for
the expression

∨
L∈[1..l](nL > 0 ∧ d̂′ = L) of size O((log n log l)l). The BDD for

the if-then-else statement then has size O(log2 n · (log n log l)2l).

Assuming (very defendably) that F is a small constant, we can see that all parts of the
translation of an edge can be expressed with a BDD that is low-degree polynomial in
n, although, with respect to l, it can be of order (log l)2l (caused by the d̂ := ndet{L :
nL > 0} statement). The complexity of the overall transition relation depends on the
way the individual statements are combined, but it is guaranteed to be polynomial in n
as well.

It is interesting to investigate how the relative sizes of n and l influence the benefit
of generic representatives. Because of the n log l input variables of the BDDs for the
specific representatives algorithm (n variables of range [1..l] for θ, ξ and R̄), hence a
maximum specific BDD size of roughly ln, it can be assumed that the generic method
is most useful if n is larger than l. Asymptotically, this is the case if l is a constant and
n is considered variable. This situation occurs frequently in practice, since, for a given
application, the number l of local states is often fixed. Our second experimental case,
presented in the next section, is such an instance.

6 Experimental Results

We compare traditional to generic symmetry reduction using two examples:
The first is an artificial Mutual Exclusion scenario that allows us to show how the

generic method scales for varying values for n and l. Each process can be in one of
the local states L1, . . . , Ll, where Ll−1 and Ll take the rôles of the trying region and
critical section, respectively. The process must go through L1 to Ll−1 in this order before
proceeding into Ll. In addition, the transition into Ll is protected by a binary semaphore,
which is released again upon the process’ return to L1:

Transition Guard Action
Li → Li+1 for 1 ≤ i ≤ l − 2 true no-op

Ll−1 → Ll !sem sem := 1
Ll → L1 true sem := 0

As a second example, we chose a variant of the MCS list-based queuing lock with
atomic compare and swap instruction [MCS91, also used in ID96]. The algorithm con-
sists of an acquire and a release operation for a lock with the property that a process
waiting for the lock spins only on process-local variables, instead of spinning on a shared
variable (like a semaphore). According to [MCS91], spins on shared variables can cause
memory detention and severe system performance degradation.



On Combining Symmetry Reduction and Symbolic Representation 227

For the second example, the input was not a synchronization skeleton, but the program
text for the two operations. In order to perform counter abstraction on this symmetric
system, the number of local states needs to be determined. The acquire operation forces
processes to line up for the lock in a queue. Each process remembers its successor, which
can be any of the n− 1 other processes, such that the number of local states of a process
is not constant. While forming a queue is a valuable property for enforcing a special type
of liveness on the processes, it is less relevant for the verification of safety properties.
We therefore generalized the system so as to allow any process that is “ready” to obtain
the lock to do so. Since the safety property—no two processes can acquire the lock at
the same time—turned out to be true for this conservative abstraction with a constant
number of 28 local states, we conclude that it holds in a system that enforces FIFO order.

For both problems, we experimented with unique, multiple and generic representa-
tives. For multiple ones, we chose the set Rep as follows:

r ∈ Rep ⇔ ∃i : 1 ≤ i ≤ l : process 1 is in location Li ∧
locations Lj with j < i do not appear in r.

For example, using l = 3, the states (L1, L2, L1), (L1, L3, L1), (L1, L3, L2) and
(L2, L3, L2) belong to the set Rep, but are not unique representatives, in which the
superscripts have to be in order. It turns out that the BDD for the representative relation
ξ derived from Rep can be computed much more efficiently than that for the function ξ
for unique representatives. Looking back at definition 1, the complete set C to be cho-
sen contains the n permutations that swap index 1 with index i, for 1 ≤ i ≤ n. It
can be shown that C indeed satisfies the two properties required in definition 1. C is
exponentially smaller than the full symmetry group.

For the first example, we verified the standard safety property: AG∀i, j : i 	= j :
¬(Ll

i ∧ Ll
j) (generically: AGnl < 2). For the second example, we verified that no two

processes can acquire the lock at the same time, and also that there is no deadlock in the
system. The latter means that it is never the case that all processes are simultaneously
spinning in one of the two busy-waits that are present in the operations. Such a situation
would cause a deadlock since a process can not free itself from a busy-wait, but can only
be unlocked by another processes.

These properties were verified using the CUDD BDD package [S01] for the standard
symbolic fixpoint characterization of EF bad . Table 2 shows how the space requirements
and running times of the three methods of symmetry reduction compare.

Discussion. First, for multiple and generic representatives, it can be seen that there
is still room to grow memory-wise, but not necessarily so for unique representatives.
Indeed, the main motivation for research on alternatives to unique representatives was
the impractical BDD size of the orbit relation.

Further, the unique representatives approach spends nearly all of its time on the orbit
relation construction. The use of multiple representatives clearly reduces memory and
time requirements. The generic representatives solution outperforms, by several orders
of magnitude, the other two both in terms of memory and time, and hence in the size
of problems it can handle. According to the table, although multiple representatives do
remedy the major disadvantage of an orbit relation based solution somewhat, generic
representatives have in turn an equally impressive benefit over multiple ones.



228 E.A. Emerson and T. Wahl

Table 2. Space and run time comparisons (i686/1400 Mhz PC, 256MB memory)

Choice Unique Specific Multiple Specific (Unique) Generic
of n, l Representatives Representatives Representatives

no. of live time in sec. no. of live time no. of live time
n l

BDD nodes (% orbit rel.) BDD nodes in sec. BDD nodes in sec.

M 8 4 114,894 8.2 (97%) 2,211 0.0 703 0.0
U 6 5 2,152,710 137.3 (97%) 6,612 0.1 690 0.0
T 16 16 ? >15h (100%) 132,377 6.6 4,876 0.0
E 64 16 — — 599,561 198.8 6,972 0.1
X 128 128 — — ? >15h 69,060 10.4

256 128 — — — — 78,060 12.6

M 3 28 113,188 2.4 (79%) 30,614 0.2 1,340 0.0
C 4 28 9,478,195 4386.7 (95%) 75,604 0.5 2,608 0.0
S 8 28 ? >15h (100%) 272,080 15.4 7,320 0.3
- 16 28 — — 2,417,477 5055.3 24,094 2.7
L 20 28 — — ? >15h 34,170 5.0
K 60 28 — — — — 293,981 266.8

7 Conclusion

In this paper, we investigated the use of generic representatives in symbolic model
checking of fully symmetric systems. Compared to unique representatives, with generic
ones there is no need to construct the orbit relation. Compared to multiple representatives,
the generic ones maintain full symmetry reduction. The BDD derived from the generic
structure M̂ turned out to be small for the examples we experimented with. For the class
of programs presented here, the translation into generic representatives can be done
automatically and in negligible time.

Generic representatives seem to prove useful outside the symbolic domain as well:
we translated some of the fully symmetric example programs coming with the Murϕ
explicit state verifier [DDHY92] into generic representatives. For some examples, we
obtained savings in terms of both time and space of several orders of magnitude over
Murϕ’s symmetry reduction algorithms (using unique or multiple representatives).

Related and Future Work. Barner and Grumberg [BG02] considered combining sym-
metry and symbolic representation using BDDs mainly for falsification. They perform
reachability analysis by discarding states symmetric to previously seen states. How-
ever, due to orbit complexity problems, the algorithm uses multiple representatives and
therefore forgoes some of the symmetry reduction possible. Also, according to [BG02],
computation costs often incur the use of under-approximations of the set of reached
representatives, which renders the algorithm inexact.

Finite counters have been used previously to abstractly represent states of systems
with many processes. Pnueli, Xu and Zuck [PXZ02] used truncated counters with values
0, 1, or 2 to approximate the number of processes in certain locations in reasoning about
symmetric parameterized systems. Emerson and Trefler [ET99] used counters in the
form of generic representatives in connection with fully symmetric programs. Other



On Combining Symmetry Reduction and Symbolic Representation 229

examples can be found in the work by Emerson and Srinivasan [ES90] on synthesis of
parameterized programs and in the work by Pong and Dubois [PD95] on cache protocol
verification.

Several years ago, Ip and Dill [ID96] introduced scalar sets in the description of
the input program to enforce full symmetry. The Murϕ verifier is an explicit-state im-
plementation of this approach. Since Murϕ was originally not designed to exclusively
target symmetric systems, Murϕ’s input language is more general. In addition to non-
symmetric programs, it allows one to write programs exhibiting symmetry other than
process symmetry, which is discussed in this paper. To make our approach more readily
applicable, we would like to allow a more convenient input language than synchroniza-
tion skeletons, perhaps similar to that of Murϕ.

The present formulation of generic representatives is directly only applicable to (the
common case of) fully symmetric systems. We would like to do research on systems
whose symmetry group is the product of full symmetry groups of subsystems [CEJS98,
section 5.1], and systems that are almost, but not fully, symmetric [ET99]. The ultimate
goal is to apply the generic method to some larger, perhaps industrial-size examples.

References

[B86] Randy E. Bryant: “Graph-based Algorithms for Boolean Function Manipulation.”
IEEE Transactions on Computers, 35(8), 1986.

[BG02] Sharon Barner, Orna Grumberg: “Combining Symmetry Reduction and Under-
Approximation for Symbolic Model Checking.” CAV, LNCS 2402, 2002.

[CE81] Edmund M. Clarke and E. Allen Emerson: “The Design and Synthesis of Syn-
chronization Skeletons Using Temporal Logic.” Workshop on Logics of Programs,
LNCS 131, 1981.

[CEFJ96] Edmund M. Clarke, Reinhard Enders, Thomas Filkorn, Somesh Jha: “Exploit-
ing Symmetry In Temporal Logic Model Checking.” Formal Methods in System
Design, volume 9, 1996.

[CEJS98] Edmund M. Clarke, E. Allen Emerson, Somesh Jha, A. Prasad Sistla: “Symmetry
Reductions in Model Checking.” CAV, LNCS 1427, 1998.

[DDHY92] David L. Dill, Andreas J. Drexler, Alan J. Hu, C. HanYang: “Protocol Verification
as a Hardware Design Aid.” IEEE International Conference on Computer Design:
VLSI in Computers and Processors, 1992.

[EJP97] E. Allen Emerson, Somesh Jha, Doron Peled: “Combining Partial Order and Sym-
metry Reductions.” TACAS, 1997.

[ES90] E. Allen Emerson and Jai Srinivasan: A Decidable Temporal Logic to Reason
About Many Processes. “Principles of Distributed Computing”, 1990.

[ES96] E. Allen Emerson, A. Prasad Sistla: “Symmetry and Model Checking.” Formal
Methods in System Design, vol. 9, ISSN 0925-9856, 1996.

[ET99] E. Allen Emerson, Richard J. Trefler: “From Asymmetry to Full Symmetry: New
Techniques for Symmetry Reduction in Model Checking.” CHARME, LNCS
1703, 1999.

[ID96] C. Norris Ip, David L. Dill: “Better Verification Through Symmetry.” Formal
Methods in System Design, volume 9, nos. 1/2, 1996.

[LN91] Bill Lin, A. Richard Newton: “Efficient symbolic manipulation of equivalence
relations and classes.” InternationalWorkshop on Formal Methods inVLSI Design,
1991.



230 E.A. Emerson and T. Wahl

[MCS91] John M. Mellor-Crummey, Michael L. Scott: “Algorithms for Scalable Synchro-
nization on Shared-memory Multiprocessors.” ACM Transactions on Computer
Systems, vol. 9, 1991.

[M93] Ken L. McMillan: “Symbolic Model Checking: An Approach to the State Explo-
sion Problem.” Kluwer Academic, 1993.

[P90] Carl Pixley: “Introduction to a Computational Theory and Implementation of
Sequential Hardware Equivalence.” CAV, 1990.

[PD95] Fong Pong, Michel Dubois: “A New Approach for the Verification of Cache Co-
herence Protocols.” IEEE Transactions on Parallel and Distributed Systems, 6(8),
1995.

[PXZ02] Amir Pnueli, Jessie Xu, Leonore Zuck: “Liveness with (0, 1, ∞)-Counter Ab-
straction.” CAV, LNCS 2404, 2002.

[S01] Fabio Somenzi: “The CU Decision Diagram Package”, release 2.3.1.
http://vlsi.colorado.edu/˜fabio/CUDD/

[W86] PierreWolper: “Expressing Interesting Properties of Programs.” 13th Annual ACM
Symposium on Principles of Programming Languages (POPL), 1986.


	Introduction
	Preliminaries
	Permutations Acting upon States
	Symmetry Reduction in Theory
	Unique Representatives
	Multiple Representatives

	Generic Representatives -- A Case Study
	Translating Symmetric Programs into Generic Form
	Translating Generic Programs into BDDs
	Experimental Results
	Conclusion



