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Abstract. Generalized symbolic trajectory evaluation (GSTE) is a new model-
checking approach that combines the industrially-proven scalability and capacity
of classical symbolic trajectory evaluation with the expressive power of temporal-
logic model checking. GSTE was originally developed at Intel and has been used
successfully on Intel’s next-generation microprocessors. However, the supporting
theory and algorithms for GSTE are still immature. In particular, GSTE specifi-
cations are given as assertion graphs, a variety of ∀-automata, and although an
efficient model-checking algorithm exists to verify whether a circuit model obeys
a specification assertion graph, there is no work on reasoning about assertion
graphs themselves. This paper presents new algorithms to leverage GSTE model
checking to efficiently decide whether one assertion graph implies another, and to
model check one assertion graph under the assumption that another is true (under
regular GSTE acceptance conditions). These two operations — deciding whether
one specification implies another and verifying under an assumption — are the
fundamental building blocks of compositional verification and any higher-level
reasoning about model-checking results, so the algorithms presented here are key
steps to using GSTE in a broader verification framework. Preliminary experimen-
tal results applying our algorithms to real, industrial circuits and specifications
show that our algorithms are useful in practice.

1 Introduction

Generalized symbolic trajectory evaluation (GSTE) is a powerful, new model-checking
approach [20]. GSTE is based on classical symbolic trajectory evaluation [16], which has
proven itself able to handle large, industrial designs and has been in active use at Compaq
(now HP), IBM, Intel, and Motorola (e.g., [12,10,1,4]). Classical symbolic trajectory
evaluation, although efficient, is very limited in the types of properties that it can specify
and verify. GSTE extends classical symbolic trajectory evaluation to handle ω-regular
properties, giving it comparable expressive power to more established model-checking
approaches [5,13,18,8,6], while still maintaining the efficiency and capacity of classical
symbolic trajectory evaluation. GSTE was originally developed at Intel and has been
used successfully on Intel’s next-generation microprocessors (e.g., [3]).

Key to the efficiency and usability of GSTE is the manner in which properties are
specified, in a variety of automata called an assertion graph. Existing GSTE theory
provides an efficient procedure for model checking that a circuit obeys an assertion graph,
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as well as techniques based on abstract interpretation to combat state explosion [21].
What is missing, however, is all the supporting theory and algorithms that have developed
around more established formalisms like CTL [5] or LTL [18]. In particular, there has
been no published research on how to reason about assertion graphs.

This paper presents the foundational pieces for reasoning about specifications given
as assertion graphs. Specifically, we give new algorithms to decide whether one asser-
tion graph implies another, and to model check one assertion graph under the assump-
tion that another is true. These two operations — deciding whether one specification
implies another and verifying under an assumption — are the fundamental building
blocks for decomposing a verification task, composing verification results, and any
other higher-level reasoning about specifications. Our current verification system is a
mixed deductive-algorithmic system, with an efficient GSTE model-checking procedure
built into a lightweight theorem prover. Our new algorithms exploit the existing GSTE
model-checking procedure, creating an efficient, algorithmic means to discharge ba-
sic deductive reasoning steps about assertion graphs. Preliminary experimental results
on real, industrial circuits and specifications show that the algorithms are efficient in
practice.

2 Background

2.1 GSTE and Assertion Graphs

GSTE is explained in several sources (e.g., [20,21,19], etc.). Here, we concentrate on
the specification style used by GSTE and highlight its characteristics.

GSTE is basically a linear-time model-checking method, i.e., the possible behaviors
of the system being verified is considered to be the set of all possible execution traces,
and verification consists of checking that all of these traces obey the specification. The
specification in GSTE is called an assertion graph, and is basically a variety of automa-
ton. One can think of the assertion graph as defining the set of execution traces that it
accepts, so the verification problem is basically language containment. Figure 1 gives a
simple example and intuitive explanation of an assertion graph.

In general, an assertion graph is a directed graph with distinguished initial vertex
v0, and the restriction that all vertices must have non-zero out-degree. Each edge e
is labeled with an antecedent ant(e) and a consequent cons(e). The antecedents and
consequents are simply propositional formulas over some set of atomic propositions
AP . Traditionally, the atomic propositions correspond exactly to the state variables of
the system being verified, so the antecedents and consequents are formulas over the state
of the system at some point in time. The assertion graph also has acceptance conditions,
described below.

A path in the assertion graph is a directed path (defined in the usual manner for
directed graphs) starting from the initial vertex v0. Every path in the assertion graph
specifies a temporal if-then assertion: if the antecedents hold, then the consequents must
hold as well. More precisely, a path of length n (i.e., with n edges) is an assertion about
the system’s behavior over a period of n clock cycles. If all of the antecedents along the
path hold at the corresponding points in the system’s behavior, then all of the consequents
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v0
WRITE / True

v1
READ_SEL_ALIGN / True

v2
MASK / DATA_CORRECT

v3

True / True

NO OVERWRITE / True

WRITE := (we = 1) ∧ (addr = A) ∧ (datawr = D)

NO OVERWRITE := (we = 0) ∨ (addr �= A)

READ SEL ALIGN := (ck = 0) ∧ (we = 0) ∧ (addr = A) ∧ (sel = S) ∧ (align = R)

MASK := (ck = 1) ∧ (maskbegin = B) ∧ (maskend = E)

DATA CORRECT := (dataout = mask(align(select(D, S), R), B, E))

Fig. 1. GSTE Assertion Graph Example. This assertion graph, adapted from [20], was used in
the verification of an industrial memory design, which reads and writes data with a large variety
of selection and alignment options. The property being verified is that, if data value D is written
to address A, followed by an arbitrary number of clock cycles that don’t overwrite the same
address, followed by a read of the address, then the value returned is the value that was written,
appropriately aligned and masked. The edge labels are of the form “antecedent / consequent”,
where the antecedents and consequents are simply propositional formulas over the state of the
system at a given clock cycle. For example, the antecedent WRITE specifies that the value of
the write-enable input we is high, that the address input addr is equal to some value A, etc.
The capital letters denoting values, like A, D, etc., are symbolic constants, which are essentially
skolem constants that can be equal to any value, making the verification result hold for all possible
values of the symbolic constants. A path is a sequence of edges that start from the initial vertex
v0. A terminal path is a path that ends with a terminal edge (shown in the figure by a tic-mark on
the edge, e.g., the edge from v2 to v3). A path accepts an execution trace if at least one antecedent
on that path fails (is false on the state of the system at that clock cycle) or if all antecedents and
all consequents on the path succeed (are true on that clock cycle). Intuitively, a path is an if-then
assertion: the antecedents say when the assertion is relevant; the consequents say what must hold
whenever the assertion is relevant. If any antecedent fails, the assertion is vacuously true; if all
antecedents are satisfied, then all consequents must be satisfied as well. The assertion graph as
a whole accepts an execution trace if every terminal path in the assertion graph accepts that
trace. Intuitively, the assertion graph takes a potentially infinite set of assertions about the system
and rolls them up into a graph; therefore, every trace must satisfy every assertion (vacuously or
otherwise).

inputs corresponding to

init

accept
atomic propositions in G

Circuit
Monitor

Fig. 2. Monitor Circuit. Our algorithms rely on a linear-space, linear-time construction for a
monitor circuit from an assertion graph G. The generated circuit has inputs corresponding to the
atomic propositions in G and an output that is true iff the sequence of states presented at the input
would have been accepted by G. The init input initializes the internal state of the circuit.
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must also hold at the corresponding points, in order for the assertion to be satisfied. If
any antecedent doesn’t hold, then the assertion is vacuously true. Formally, if ρ is a path
of length n, with ρ[i] denoting the ith edge in ρ, and if σ is a trace consisting of n system
states, with σ[i] denoting the ith state, then σ satisfies or is accepted by ρ iff

(∀i1≤i≤n. σi |= ant(ρ[i])) ⇒ (∀i1≤i≤n. σi |= cons(ρ[i])) .

For convenience, we will say that “σ satisfies the antecedents of ρ” if ∀i1≤i≤n. σi |=
ant(ρ[i]), and that “σ fails at least one of the consequents of ρ” if ∃i1≤i≤n. σi �|=
cons(ρ[i]).

An assertion graph as a whole accepts a given trace iff all “appropriate” paths in
the assertion graph are satisfied. Appropriate is defined by the four different kinds of
acceptance in GSTE:

– In strong satisfiability, a finite-length trace is accepted iff it satisfies all paths of the
same length in the assertion graph.

– In terminal satisfiability, some edges are marked as terminal edges, and a terminal
path is a path that starts from v0 and ends with a terminal edge. A finite-length trace
is accepted iff it satisfies all terminal paths of the same length.

– In normal satisfiability, an infinite trace is accepted iff it satisfies all infinite paths.
– In fair satisfiability, there is a finite set of fair edge sets. A path is fair iff it visits

each fair edge set infinitely often (generalized Büchi fairness). An infinite trace is
accepted iff it satisfies all fair paths.

The different kinds of acceptance are listed in (roughly) increasing order of model-
checking complexity.

An assertion graph G defines the set of traces that it accepts. Call that set the language
of G, denoted L(G). Similarly, a system M defines the set of traces that it can produce,
denoted L(M). Verification consists of proving that L(M) ⊆ L(G). In subsequent
sections of this paper, unless otherwise stated, we will restrict ourselves to terminal
satisfiability, which includes strong satisfiability as a special case, because the finite-
trace satisfiabilities are currently the most commonly used in practice.

At first glance, assertion graphs may appear somewhat bizarre: the an-
tecedent/consequent edge labels are unusual, as is acceptance based on all paths ac-
cepting. However, assertion graphs are actually the natural combination of symbolic
trajectory evaluation and automata-theoretic specification. The antecedent/consequent
style comes from classical symbolic trajectory evaluation [16] and is a natural way to
specify temporal properties. For example, timing diagrams, one of the most widely used
hardware specifications in practice, are typically interpreted this way (e.g., if some se-
quence of events happens, then some other events must happen) [2]. In addition, the
explicit identification of antecedents and consequents provides an efficiency benefit, be-
cause the model-checking algorithm can limit its search on-the-fly to paths that satisfy
the antecedents. The “for all paths” acceptance criteria makes assertion graphs a variety
of ∀-automata [9], which are less familiar than the usual existential acceptance of non-
deterministic automata (where a trace is accepted if there exists a corresponding path
through the automata), but the ∀ semantics also provides both usability and efficiency
benefits. The usability arises because an assertion graph defines a set of assertions, and
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one typically wants all assertions to be true; in contrast, usually with automata as specifi-
cations, the automata directly defines a set of possible behaviors, so verification consists
of determining if the system’s behavior exists in the set provided by the specification.
The efficiency advantage of the ∀ semantics — as in other works that use ∀-automata
as specifications [9,8,2] — is that a ∀-automaton is essentially pre-complemented, so
checking language containment can bypass the expensive step of complementing a non-
deterministic automaton. Indeed, GSTE model-checking is very efficient in practice, and
the correctness of the algorithm relies on the ∀ semantics.

We emphasize that assertion graphs take their present form as the direct result of
practical considerations. The natural theoretical question is what relationship they have
to more established formalisms. Assertion graphs with fairness can express all ω-regular
properties: an easy construction is to start with a non-deterministic, generalized Büchi
automata and then to note that the almost-isomorphic assertion graph (with the same
structure, the same fairness constraints, the Büchi automaton’s edge labels moved to the
antecedents, and all consequents labeled with False) accepts the complement language.
ω-regular expressiveness follows because ω-regular languages are closed under com-
plementation. The same construction also shows that non-deterministic Büchi automata
can be simulated with a single-exponential blow-up (to pre-complement the Büchi au-
tomaton), and that LTL model checking can be translated to GSTE with at worst the
same complexity as the translation to generalized Büchi automata, for which efficient
tools exist (e.g., [17]). In the other direction, assertion graphs can be simulated by more
conventional automata.1 Analogous results hold for assertion graphs with terminal sat-
isfiability and ordinary regular automata. In theory, therefore, assertion graphs are no
more expressive.

In our case, we have an existing user community with practical experience using
GSTE assertion graphs as well as an industrially-proven, efficient GSTE model-checking
tool. The short-term need was for algorithms for rudimentary reasoning with assertion
graphs — implication and model-checking under assumptions — so we sought to de-
velop efficient algorithms to perform these operations directly on assertion graphs (with
terminal satisfiability), exploiting the existing GSTE model-checking engine as much
as possible.

2.2 Monitor Circuits from Assertion Graphs

Our algorithms for reasoning about assertion graphs rely on an efficient (linear space
and time) algorithm for constructing circuits from assertion graphs, which was inspired
by efficient methods for generating circuits from regular expressions [15,14,11]. The
construction is rather intricate and is described elsewhere [7]. Here, we give a brief
overview.

Given an assertion graph G, we construct a monitor circuit for G. A monitor circuit
is simply a small circuit that watches, without interfering, the system being verified and

1 Simulation by a conventionally labeled ∀-automata can be done with twice as many states;
simulation by a normal ∃-automata requires an exponential blow-up. We would like to thank
the anonymous reviewers for suggesting the construction for simulation via conventional ∀-
automata, and for pointing out that there cannot be a general sub-exponential construction to
simulate assertion graphs via normal ∃-automata or vice-versa.
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flags whether or not the system is obeying some user-specified correctness property. In
this case, the monitor circuit has inputs corresponding to the atomic propositions AP
that are used in G. The monitor circuit has a single output accept, which is true iff
the trace that has been observed on the inputs would be accepted by G. The circuit is a
Mealy machine, so the value at the inputs is immediately reflected at the accept output.
The circuit also has an init input, which initializes the internal state of the circuit; init
is asserted at the same time that the first state of the execution trace is presented at the
inputs, and then de-asserted from then on. See Figure 2.

Intuitively, the monitor circuit has an internal copy of the assertion graph and keeps
track of paths by placing tokens on the edges in its copy. In theory, each token represents
a path that ends on that edge at that clock cycle, and the token remembers the history
of which antecedents and consequents were true during preceding clock cycles. At each
clock cycle, tokens can update their histories and advance to the next edge, possibly
splitting into multiple tokens if there are multiple out-going edges. The monitor accepts
a trace iff all tokens represent accepting paths. The key insight to making this construction
efficient is that the tokens can actually be almost memoryless. The only history necessary
is to distinguish between three different kinds of pasts: (1) if an antecedent has failed
already, this path and its continuations will always accept, so they need not be tracked
any further, (2) if all antecedents and all consequents so far have succeeded, then this
path currently accepts, but its continuations might not, and (3) if all antecedents have
succeeded, but at least one consequent has failed, then this path currently rejects, but its
continuations might eventually accept if an antecedent fails in the future. All paths with
the same history that arrive at the same edge at the same time will share the same future,
so their tokens can be merged. Hence, the constructed monitor circuit has a structure that
exactly corresponds to the assertion graph, with two state bits per edge to track the two
kinds of tokens, and a constant amount of circuitry per edge and per vertex to update the
tokens appropriately. The constructed circuit is clearly linear-size compared to G.

3 Assertion Graph Implication

We now consider determining whether one assertion graph G1 implies another assertion
graph G2, or, equivalently, whether L(G1) ⊆ L(G2).

3.1 Implication via Product Construction

The monitor circuit construction immediately yields an obvious way to determine
whether L(G1) ⊆ L(G2):

1. Build circuits C1 and C2 for the assertion graphs G1 and G2.
2. Tie the inputs together.
3. Verify on the combined machine, using GSTE or any other model checking method,

whether accept1 ⇒ accept2 in all reachable states.

The disadvantage of this approach is that we are building circuits for both G1 and G2,
rather than using G2 as a specification, potentially increasing the possibility of state
explosion. Instead, we would like to harness the efficiency of GSTE and avoid adding
G2 to the state space.
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3.2 Implication via GSTE

Given a circuit M and an assertion graph G, GSTE model checking provides an efficient
way to determine whether L(M) ⊆ L(G), or equivalently, whether M is a model of
G, notated M |=T G. (The “T” is for terminal satisfiability.) With our construction
of a circuit from an assertion graph, one might consider generating a circuit C1 from
assertion graph G1, and then determining whether G1 ⇒ G2 by model checking whether
C1 |=T G2. Unfortunately, this approach does not work: C1 is a monitor circuit that
indicates whether or not an input stream was an accepting trace; it is not a circuit whose
behaviors are exactly the accepting traces. A more subtle approach is needed.

The idea behind our algorithm is to modify G2 so that it ignores traces that are
not accepted by C1. More precisely, given assertion graphs G1 and G2, we determine
whether G1 ⇒ G2 as follows:

1. Without loss of generality, we assume that the initial vertex v0 of G2 has in-degree
of 0. (If this is not the case, we can modify G2 by creating a duplicate initial vertex
v0′, which has the same incoming and outgoing edges as v0, and then we delete the
incoming edges to the true initial vertex v0.)

2. Apply the monitor circuit construction to G1, resulting in circuit C1.
3. Modify G2 to work with C1, creating a new assertion graph G′

2:
a) The new graph G′

2 has all of the same vertices as G2.
b) For every edge e in G2 from vertex vi to vertex vj , create two edges e′ and e′′,

both from vertex vi to vertex vj . Set

ant(e′) =
{

ant(e) ∧ accept ∧ init if vi = v0
ant(e) ∧ accept ∧ ¬init otherwise

ant(e′′) =
{

ant(e) ∧ ¬accept ∧ init if vi = v0
ant(e) ∧ ¬accept ∧ ¬init otherwise

The consequents do not change: cons(e) = cons(e′) = cons(e′′). Edge e′ is a
terminal edge in G′

2 iff edge e is a terminal edge in G2. Edge e′′ is not a terminal
edge.

c) Add init and accept to the atomic proposition set.
Figure 3 shows this construction applied to the assertion graph from Figure 1.

4. Use GSTE to model check whether C1 |=T G′
2. The result is true iff G1 ⇒ G2.

Proof that G1 ⇒ G2 implies C1 |=T G′
2:

Suppose C1 �|=T G′
2. Then, there exists a trace σ′ of C1 and a terminal path ρ′ of G′

2,
of the same length, where σ′ satisfies all the antecedents in ρ′, but fails at least one
consequent. Define the trace σ by projecting out the accept and init signals from
each state of σ′. Define path ρ in G2 formed from ρ′ by mapping back through the edge
doubling. We prove that σ is a witness that G1 �⇒ G2 by showing that:

1. σ |=T G1.
2. ρ is a terminal path in G2.
3. σ satisfies the antecedents along ρ.
4. σ fails at least one consequent along ρ.



Reasoning about GSTE Assertion Graphs 177

v1v0 v2 v3
WRITE&RI / True

READ_SEL_ALIGN&AN / True

NO OVERWRITE&RN / True
NO_OVERWRITE&AN / True

WRITE&AI / True

MASK&RN / DATA_CORRECT

MASK&AN / DATA_CORRECT

RN / True

AN / True

READ_SEL_ALIGN&RN / True

Fig. 3. Assertion Graph Modified to Consider Only Accepting Paths. This figure shows the
result of modifying the assertion graph in Figure 1 using the construction from Section 3.2.
Edge labels are defined as in Figure 1, with AI := accept ∧ init, AN := accept ∧ ¬init,
RI := ¬accept ∧ init, and RN := ¬accept ∧ ¬init. The implication construction modifies
an assertion graph so that it considers only the accepting paths of the other assertion graph. The
basic idea is to double all edges, with one edge guessing that the path is accepting and the other
edge guessing that the path is rejecting. Because these guesses are in the antecedents, paths that
guess wrong are disregarded. The modification also ensures that the monitor circuit is initialized
properly, via the init signal.

Claim 1: We know that σ′ satisfies the antecedents of ρ′. Therefore, the circuit C1 is
initialized properly, because the antecedent constrain the init signal. Also, the
accept signal is true in the last state of σ′, because ρ′ ends on a terminal edge, so
σ is an input sequence that would end up with C1 accepting. Therefore, σ |=T G1,
by the construction of C1.

Claim 2: G′
2 is created by doubling the edges of G2. Undoing the doubling maps the

path back to a path on G2. Since ρ′ ended on a terminal edge in G′
2, the corresponding

edge in G2 must also be a terminal edge, so ρ is a terminal path.
Claim 3: Recall that σ′ satisfies the antecedents of ρ′. The path ρ has antecedents that are

strictly weaker than the corresponding antecedents in ρ′, because they are missing
the conjuncts about accept and init. Therefore, σ satisfies the antecedents of ρ.

Claim 4: We are given that σ′ fails at least one consequent along ρ′. The consequents
are the same in ρ and ρ′, so σ must fail the corresponding consequent along ρ.

Proof that G1 ⇒ G2 is implied by C1 |=T G′
2:

Suppose G1 �⇒ G2. Then, there exists a trace σ (in the state space defined by the atomic
propositions) such that σ |=T G1, but σ �|=T G2. We will construct a trace σ′ of C1 that
is not accepted by G′

2, witnessing that C1 �|=T G′
2.

We construct σ′ by augmenting the state space of σ with values for init and accept.
For the initial state of σ′, set init to be 1. In all other states of σ′, set init to be 0.
Because C1 is a Mealy machine, we can always compute the value of accept by feeding
σ as input to C1. Thus, σ′ is a trace of C1 by construction. The resulting trace σ′ has
atomic proposition values that are the same as σ and has accept true in the last state
(because σ is accepted by G1).

Since σ �|=T G2, we know there exists a terminal path ρ in G2, of the same length as
σ, such that σ satisfies all the antecedents in ρ but fails at least one consequent. Construct
path ρ′ in G′

2 as follows: Match ρ edge-for-edge, picking the accept or ¬accept version
of the edge in G′

2 depending on the value of the accept signal in σ′. Since σ′ ends with
accept true, the constructed path ρ′ ends at a terminal edge in G′

2.
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Now, we see that σ′ satisfies the antecedents in ρ′ because the states/antecedents are
the same as in σ and ρ (with the accept′ or ¬accept′ edge chosen correctly by the
construction of ρ′). On the other hand, σ fails at least one consequent of ρ, so σ′ must fail
the corresponding consequent of ρ′, since the consequents are the same in both paths.
Therefore, σ′ witnesses that C ′

1 �|=T G′
2.

4 Model Checking under an Assumption

Besides assertion graph implication, the other main reasoning tool we wanted was how
to perform GSTE model checking under an assumption. We notate this problem C0 |=T

(G1 ⇒ G2), meaning that all behaviors of a circuit C0 that satisfy an assertion graph
G1 (the assumptions) also satisfy the assertion graph G2. This construction is closely
related to the preceding one.

The basic idea is that we build a monitor circuit C1 for G1 and augment C0 with this
monitor, in a non-interfering manner. Then, we modify G2 so that it ignores traces that are
not accepted by the monitor, resulting in verifying only the behaviors of C0 that satisfy
the assumptions of G1.An alternative intuition is to consider the implication construction
in Section 3.2 as the special case of model checking a completely unconstrained machine
under the assumption of G1; here, we constrain the inputs of C1 to be the behaviors of
C0.

1. Without loss of generality, we assume that the initial vertex v0 of G2 has in-degree
of 0.

2. Build the monitor circuit C1 from G1.
3. Connect the inputs of C1 to the state variables of C0. In this way, C1 will watch

C0 and indicate accept/reject depending on whether or not C0’s behavior obeys the
assertion graph G1. Call this combined circuit C01.

4. Build G′
2 from G2 by edge-doubling and modifying the antecedents, exactly as in

the implication construction.
5. C01 |=T G′

2 iff C0 |=T (G1 ⇒ G2).

Proof:
The constraints on init in the antecedents of G′

2 guarantee that we only consider traces
in which C1 is properly initialized.

The monitor circuit C1 has no effect on C0. Therefore, C01 has the same traces as
C0, except for some additional state bits that determine whether or not G1 would have
accepted the trace.

Any path in G′
2 that guesses accept/reject incorrectly on any edge will have its

antecedent fail and will be ignored. For any path in G2, there will always exist a corre-
sponding path in G′

2 that guesses accept/reject correctly for every edge. The only paths
that are checked are the ones that are terminal in G′

2, which means that they were termi-
nal in G2 as well, and also that the accept signal is true, which means that G1 would
have accepted the path. Thus, we check only the traces of C0 that satisfy G1.
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v0 v1
MASK / DATA_CORRECT

v2

True / True

READ_SEL_ALIGN&READ_RESULT / True

v0
WRITE / True

v1
READ / READ_RESULT

v2

NO_OVERWRITE / True

True / True

Fig. 4. Decomposing a Property. We have manually decomposed the assertion graph from Fig-
ure 1 into two smaller ones. The edge labels are as before, except READ := (ck = 0) ∧ (we =
0) ∧ (addr = A) and READ RESULT := (memout = D), where memout is the internal data
output of the memory array. We model check that the memory unit obeys the smaller assertion
graphs, and then use our implication construction to verify that the two smaller assertion graphs
imply the original specification. This process took less than 2/3 the time of verifying the original
property directly.

5 Experimental Results

We have implemented the above algorithms into Intel’s Forte verification system2 and
report their effectiveness on two verification tasks taken from real, industrial problems.

5.1 Decomposing a Verification Property: Verifying a Memory Unit

The first example is the verification of an industrial memory unit, using the assertion
graph from Figure 1. Verifying this assertion graph on the memory unit by directly
applying GSTE model checking required 56 seconds.

Alternatively, we manually decomposed the assertion graph into two smaller asser-
tion graphs G1 and G2, which separates the memory behavior from the selection and
alignment specifications. See Figure 4. GSTE model checking these two specifications
on the memory unit took 28 seconds and 7 seconds, respectively. Note that, because of
the ∀ semantics, we can produce the assertion graph for G1 ∧ G2 simply by having the
two graphs share a single initial vertex. Accordingly, we verified that (G1 ∧G2) implies
the original assertion graph, using the implication construction from Section 3.2. This
step took 0.3 seconds, and the generated monitor circuit for (G1 ∧ G2) had 5338 gates
and 44 latches — far smaller than the memory unit. The total verification runtime was,
therefore, less than 36 seconds, compared to the original 56 seconds.

Obviously, for such a small property, the time savings are not enough to repay
the effort of decomposing the property. Nevertheless, we see that the decomposition
does reduce the overall model-checking complexity, and our new algorithm does enable
verifying automatically that a combination of sub-properties implies a more complex
one. For larger, more challenging verification tasks, being able to decompose a difficult

2 Forte is available for download at
http://www.intel.com/software/products/opensource/tools1/verification/
but our new algorithms are not yet part of the the standard distribution.
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Tag Mem

Data Mem

match[15:0]

tagin[7:0]
taddr[3:0]

twrite

aread

dwrite
daddr[3:0]
din[63:0]

matchout[i]

hit

Fig. 5. Content-Addressable Memory (CAM). A CAM allows finding data by matching the
value of a tag. In this CAM, a 64-bit data value is written at the same time as an 8-bit tag. Values
can be read by supplying the correct tag. The match[i] signals indicate which of the 16 tags
matches a supplied tag. The “outputs” on the right are for verification only: hit =

∨
i
match[i],

and matchout[i] = datamem[i] if match[i] is true, otherwise matchout[i] = 0. The overall
CAM has 1152 latches. Our verification will cut the circuit at the dotted line. We first verify the
tag portion of the circuit, then use that assertion graph as an assumption to verify the data portion
of the circuit.

property into smaller ones, verify the smaller properties, and then conclude that the
original property holds, is extremely useful.

5.2 GSTE with an Assumption: Content-Addressable Memory

The second example is from the verification of a content-addressable memory (CAM).
This example illustrates GSTE model checking under an assumption.

A CAM allows finding data in its memory by matching a given tag value in an array
of stored tags, i.e., by matching a value to the content of storage locations, rather than
by address. CAMs are ubiquitous in modern microprocessors, where they are used to
cache small amounts of frequently accessed data (e.g., in caches, TLBs, and assorted
other buffers). Figure 5 shows the CAM for this example.

We wish to verify that the CAM as a whole satisfies the assertion graph G2 in Figure 6.
Verifying this assertion graph on the CAM by directly applying GSTE model checking
required 15 seconds. Alternatively, to evaluate our algorithm for model checking under
an assumption, we first verified the correct operation of the tag portion, in isolation,
against the tag-correctness assertion graph G1 in Figure 7. This verification took 0.8
seconds. Then, we abstracted away the tag portion of the CAM and used our algorithm
for verification under an assumption to verify that G2 holds, assuming that G1 does:
(data portion of CAM) |=T (G1 ⇒ G2). This verification took 7 seconds. Altogether,
the decomposed verification was roughly twice as fast as the direct approach, and the
monitor circuit for G1 had only 12 latches, an order of magnitude less than the tag
memory that was abstracted away.
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v2

True / True

v1

TAG RETAIN&DATA RETAIN / True

TAG_WRITE&DATA_WRITE / True
v0

TAG_READ / TAG_RESULT&DATA_RESULT

TAG WRITE := (twrite = 1) ∧ (taddr = A) ∧ (tagin = T )

DATA WRITE := (dwrite = 1) ∧ (daddr = A) ∧ (din = D)

TAG RETAIN := (twrite = 0) ∨ (taddr �= A)

DATA RETAIN := (dwrite = 0) ∨ (daddr �= A)

TAG READ := (aread = 1) ∧ (tagin = T )

TAG RESULT := (hit = 1) ∧ ∀i[(i = A) ⇒ (match[i] = 1)]

DATA RESULT := ∀i[(i = A) ⇒ (matchout[i] = D)]

Fig. 6. CAM Correctness Specification. This assertion graph specifies that if a tag and data
values are written, followed by an arbitrary number of cycles in which they are not overwritten,
followed by a read by the same tag, then the CAM must indicate a hit, and the matchout signal
must give the correct data value at any matching locations.

v1
TAG_READ / TAG_RESULT

v2

TAG RETAIN / True

True / True

v0
TAG_WRITE / True

Fig. 7. Tag Correctness Specification. This assertion graph specifies that if a tag is written, not
overwritten for an arbitrary number of cycles, and then the same tag is presented, the hit signal
and the correct match signal must be asserted. We first verify this property on the tag portion of
the circuit. Then, we use this assertion graph as an assumption to abstract away the tag portion of
the circuit when verifying the whole CAM.

As in the previous example, the time savings on a small verification task are not
enough to repay the time to manually decompose the problem. Nevertheless, this example
does demonstrate how our new algorithm runs efficiently and enables decomposing a
harder verification problem into smaller, easier ones. In general, we envision using this
style of proof for simplifying complex verification tasks, and also for verification with IP
cores (portions of a circuit supplied by third-parties, for which functionality is specified,
but internal details are not visible) as well as the verification of partial or incomplete
circuits.

6 Conclusion and Future Work

We have presented new algorithms for reasoning about GSTE assertion graphs. These
algorithms appear efficient in theory, and preliminary experiments indicate that they are
efficient in practice as well. Given the increasing practical importance of GSTE model
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checking, the need for (practically efficient) supporting theory and algorithms is great.
This work is a first step.

The practical success of GSTE is the justification for studying assertion graphs. In
theory, assertion graphs are simply a new variety of automata, with equivalent expres-
sive power to established varieties of automata, so an obvious, fundamental question is
to elucidate whether and how GSTE is gaining efficiency advantages over older tech-
niques. Do assertion graphs facilitate writing specifications in a manner that enables
more efficient model checking? Are other aspects of GSTE, completely separable from
assertion graphs, more important for efficiency? Can we leverage these ideas with other
verification methods? On the other hand, perhaps the practical successes have been pri-
marily the result of the overall verification methodology, the types of verification tasks
undertaken, or the skill of the verification engineers. Assertion graphs and GSTE give
symbolic-trajectory-evaluation-based approaches comparable expressive power to other
model-checking approaches, so it is now possible to make direct comparisons.

Focusing on assertion graphs, research is needed on composing and decomposing
assertion graphs. For example, given the ∀ semantics, it should be possible to decompose
a large assertion graph into the conjunction of smaller ones, as is possible in formaliza-
tions of timing graphs [2]. Such a decomposition could reduce the complexity of model
checking.

A related, and perhaps more immediately applicable, direction for research is to
look for transformations and inference rules for assertion graphs. For example, it is easy
to see that adding edges, weakening antecedents, or strengthening consequents are all
operations that cannot enlarge the set of traces accepted by an assertion graph. Perhaps it
is possible to develop a powerful set of inference rules to reason about assertion graphs,
without having to perform model checking.

The work presented here are fundamental building blocks for reasoning about asser-
tion graphs. An important next step is to develop compositional verification theorems,
so that we can automate the process of stitching together partial verification results.

Finally, although assertion graphs are interesting to consider in isolation as a variety
of automata, in practice their use is intimately tied to GSTE model checking. This con-
nection suggests that it may be interesting to consider weaker notions of implication (and
equivalence). For example, rather than defining G1 ⇒ G2 to mean L(G1) ⊆ L(G2), we
could use the weaker definition: ∀ circuits M.(M |= G1) ⇒ (M |= G2). Under all the
different acceptance conditions, we have constructed small assertion graphs G1 and G2
such that L(G1) �= L(G2), but that are equivalent under the weaker definition because
no circuit satisfies either one. (The intuition is that real circuits cannot generate arbitrary
sets of strings, e.g., a circuit can always be run for one more clock cycle, generating
a longer string.) We do not know whether the difference between these definitions is
theoretically interesting or practically important.

In general, increasing evidence demonstrates the practical value of GSTE and asser-
tion graphs, but the supporting infrastructure is underdeveloped. Much work remains to
be done.
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