
Mangrove: Enticing Ordinary People onto the
Semantic Web via Instant Gratification

Luke McDowell, Oren Etzioni, Steven D. Gribble, Alon Halevy, Henry Levy,
William Pentney, Deepak Verma, and Stani Vlasseva

University of Washington, Department of Computer Science and Engineering,
Seattle, WA 98195 USA,

{lucasm,etzioni,gribble,alon,levy,bill,deepak,stani}@cs.washington.edu
http://www.cs.washington.edu/research/semweb

Abstract. Despite numerous efforts, the semantic web has yet to
achieve widespread adoption. Recently, some researchers have argued
that participation in the semantic web is too difficult for “ordinary”
people, limiting its growth and popularity.
In response, this paper introduces Mangrove, a system whose goal is
to entice non-technical people to semantically annotate their existing
HTML data. Mangrove seeks to alter the cost-benefit equation of au-
thoring semantic content. To increase the benefit, Mangrove is designed
to make semantic content instantly available to services that consume the
content and yield immediate, tangible benefit to authors. To reduce the
cost, Mangrove makes semantic authoring as painless as possible by
transferring some of the burden of schema design, data cleaning, and
data structuring from content authors to the programmers who create
semantic services.
We have designed and implemented a Mangrove prototype, built sev-
eral semantic services for the system, and deployed those services in our
department. This paper describes Mangrove’s goals, presents the sys-
tem architecture, and reports on our implementation and deployment
experience. Overall, Mangrove demonstrates a concrete path for en-
abling and enticing non-technical people to enter the semantic web.

1 Introduction and Motivation

Numerous proposals for creating a semantic web have been made in recent years
(e.g., [3,6,17]), yet adoption of the semantic web is far from widespread. Several
researchers have recently questioned whether participation in the semantic web
is too difficult for “ordinary” people [9,24,16]. Indeed, a key barrier to the growth
of the semantic web is the need to structure data: technical sophistication and
substantial effort are required whether one is creating a database schema or au-
thoring an ontology. The database and knowledge representation communities
have long ago recognized this challenge as a barrier to the widespread adoption
of their powerful technologies. The semantic web exacerbates this problem, as
the vision calls for large-scale and decentralized authoring of structured data. As

D. Fensel et al. (Eds.): ISWC 2003, LNCS 2870, pp. 754–770, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

http://www.cs.washington.edu/research/semweb


Mangrove: Enticing Ordinary People onto the Semantic Web 755

a result, the creation of the semantic web is sometimes viewed as a discontinu-
ous divergence from today’s web-authoring practices — technically sophisticated
people will use complex tools to create new ontologies and services.

While utilizing such technical people will certainly yield many useful semantic
web services, this paper is concerned with the non-technical people who drove
the explosive growth of the HTML-based web. We consider the question how
do we entice non-technical people to structure their data? This paper presents
the architecture of Mangrove, a system designed to enable and entice these
“ordinary users” to contribute to the semantic web. In particular, Mangrove
seeks to emulate three key conditions that contributed to the rapid growth of
the web:

– Instant Gratification: In the HTML world, a newly authored page is im-
mediately accessible through a browser; we mimic this feature in Mangrove
by making annotated content instantly available to services. We posit that
semantic annotation will be motivated by services that consume the anno-
tations and result in immediate, tangible benefit to authors. Mangrove
provides several such services and the infrastructure to create additional
ones over time.

– Robustness: When authoring an HTML page, authors are not forced to
consider the contents of other, pre-existing pages. Similarly, Mangrove
does not require authors of semantic content to obey integrity constraints,
such as data uniqueness or consistency. Data cleaning is deferred to the
services that consume the data.

– Ease of Authoring: Mangrove provides a graphical web-page annotation
tool that enables users to easily and incrementally annotate existing HTML
content.

As one example of the Mangrove approach, consider the web site of our
computer science department. The web pages at this site contain numerous facts
including contact information, locations, schedules, publications, and relation-
ships to other information. If users were enabled and motivated to semantically
annotate these pages, then the pages and annotations could be used to support
both standard HTML-based browsing as well as novel semantic services. For ex-
ample, we have created a departmental calendar that draws on annotated infor-
mation found on existing web pages, which describe courses, seminars, and other
events. The calendar instantly consumes annotated facts as explained below. Be-
cause the calendar is authoritative and prominently placed in the department’s
web, events that appear in it are more likely to receive the attention of the
department’s community. As a result, people seeking to advertise events (e.g.,
seminars) are motivated to annotate their pages, which leads to their automatic
inclusion in the department’s calendar and in the semantic web.

The remainder of this paper is organized as follows. The next section intro-
duces Mangrove’s architecture and explains how it supports its design goals.
Section 3 describes our first semantic services and our initial experience from
deploying Mangrove. Section 4 discusses related work on this problem, and
Section 5 concludes.



756 L. McDowell et al.

Pages RDF Database

Semantic
Search

Parser

Services

Who's WhoQuery

Notify

Cache

Personal
Homepage

Course
Homepage

Project
Homepage

Annotation

Published

Publication

Crawled
Pages

Google

Annotation Tool

Calendar
Cache

Crawler

Feedback

Authors

Notifier

Semantic
Email

Fig. 1. The Mangrove architecture and sample services.

2 The Architecture of MANGROVE

This section presents the high-level architecture of Mangrove, details some of
the key components, and relates them to Mangrove’s design goals.

2.1 Architecture Overview

Figure 1 shows the architecture of Mangrove organized around the following
three phases of operation:

• Annotation: Authors use our graphical annotation tool or an editor to insert
annotations into existing HTML documents. The annotation tool provides
users with a list of possible properties from a local schema based on the anno-
tation context (e.g., describing a person or course), and stores the semantic
data using a syntax that is simply syntactic sugar for basic RDF.

• Publication: Authors can explicitly publish annotated content, causing the
parser to immediately parse and store the contents in a RDF database.
The notifier then notifies registered services about relevant updates to this
database. Services can then send feedback to the authors in the form of links
to updated content (or diagnostic messages in case of errors). In addition,
Mangrove’s crawler supplies data to the parser periodically, updating the
database when authors forego explicit publishing.

• Service Execution: Newly published content is immediately available to a
range of services that access the content via database queries. For example,
we support semantic search, semantic email, and more complex services such
as the automatically-generated department calendar.
These three phases are overlapping and iterative. For instance, after anno-

tation, publication, and service execution, an author may refine her documents
to add additional annotations or to improve data usage by the service. Support-
ing this complete life-cycle of content creation and consumption is important to
fueling the semantic web development process.

Below, we describe Mangrove in more detail. We focus first on architec-
tural features that support instant gratification and robustness. Section 3 then



Mangrove: Enticing Ordinary People onto the Semantic Web 757

describes the semantic services that make use of Mangrove to provide instant
gratification to content authors. We omit many aspects of components that use
standard technology, such as our crawler, parser, and annotation tool. See [26]
for more details.

2.2 Supporting Instant Gratification

In today’s web, changes to a web page are immediately visible through a browser.
We create the analogous experience in Mangrove by enabling authors to pub-
lish semantically annotated content, which instantly transmits that content to
Mangrove’s database and from there to services that consume the content.

Mangrove authors have two simple interfaces for publishing their pages.
They can publish by pressing a button in Mangrove’s graphical annotation
tool, or they can enter the URL of an annotated page into a web form. Both
interfaces send the URL to Mangrove’s parser, which fetches the document,
parses it for semantic content, and stores that content in the RDF database.
This mechanism ensures that users can immediately view the output of relevant
services, updated with their newly published data, and then iterate either to
achieve different results or to further annotate their data. In addition, before
adding new content, the database purges any previously published information
from the corresponding URL, allowing users to retract previously published in-
formation (e.g., if an event is canceled).

Crawling or polling all potentially relevant pages is an obvious alternative
to explicit publication. While Mangrove does utilize a crawler, it seems clear
that crawling is insufficient given a reasonable crawling schedule. This is an im-
portant difference between Mangrove and current systems (e.g., [6,17]) that
do not attempt to support instant gratification and so can afford to rely ex-
clusively on crawlers. Mangrove’s web crawler regularly revisits all pages that
have been previously published, as well as all pages in a circumscribed domain
(e.g., cs.washington.edu). The crawler enables Mangrove to find semantic
information that a user neglected to publish. Thus, publication supports instant
gratification as desired, while web crawls provide a convenient backup in case of
errors or when timeliness is less important.

Notification: Services specify data of interest by providing a query to the Man-
grove notifier.1 When the database is updated by a new data publication or a
web crawl, the notifier forwards data matching that query to the corresponding
services for processing. For instance, the calendar service registers its interest in
all pages that contain <event> properties (or that had such properties deleted).
When it receives notification of relevant new data, the calendar processes that
data and updates its internal data structures, ensuring that content authors see
their new data on the calendar with minimal delay.2

1 For simplicity, we assume in this paper that such a query consists of just a set of “rel-
evant” RDF properties. More complex queries can be also supported efficiently [30].

2 Note that while only registered services receive such notifications, any service that
follows a simple API (of Mangrove or Jena[25]) may query the database for content.



758 L. McDowell et al.

Fig. 2. Example output from the service feedback mechanism. Services that have
registered interest in a property that is present at a published URL are sent relevant
data from that URL. The services immediately return links to their resulting output.

Service feedback: Mangrove provides a service feedback mechanism that is a
key element of its architectural support for instant gratification. As noted earlier,
services can register their interest in arbitrary RDF properties (e.g., event).
Then, when a URL that contains such a property is published by an author,
the services are automatically notified about the new information. Each notified
service can return feedback to the author as shown in Figure 2. The feedback
can identify problems encountered (e.g., a date was ambiguous or missing) or
can confirm that the information was successfully “consumed” by the service.

The feedback mechanism supports instant gratification by making it easier
for authors to immediately see the tangible output resulting from their new
semantic data. Authors can click on any of the links shown in Figure 2 and
they will be directed to a web page that shows how the information they just
annotated is being used by a semantic service. For example, as soon as an event
page is annotated and published, the organizer can click on a link and see her
event appearing in the department’s calendar. To be true to the ‘instant’ in
‘instant gratification’, publishing a page returns feedback to authors in about
two seconds. We are working on further reducing that delay to a fraction of a
second.

Because services and information are created independently in Mangrove
by different sets of people, there is the potential in the future for authors to
be unaware of services that consume their information and that would provide
further motivation for them to author more semantic information. The service
feedback mechanism acts as a service discovery mechanism that addresses this
problem. Once a service registers its interest in a particular property, an author
that publishes relevant information will be notified about that service’s interest



Mangrove: Enticing Ordinary People onto the Semantic Web 759

in the property.3 We expect that users will typically publish content with a
particular service in mind, and then decide whether or not to investigate and
possibly annotate additional content for the services that they learn of from
this feedback. As the number of services grows, an author can avoid “feedback
spam” by explicitly selecting the services that send her feedback, by limiting
their number, or by filtering them according to the criteria of her choice (e.g.,
by domain or category). Additional techniques for supporting useful feedback
across a very large numbers of services, content providers, and distinct ontologies
is an interesting area for future work. Note that since the author is publishing
information with the hope of making it broadly available, privacy does not seem
to be a concern in this context.

The service feedback mechanism also supports robustness by helping authors
to produce well-formed data. We discuss support for robustness further below.

2.3 Supporting Robustness

Database and knowledge base systems have a set of mechanisms that ensure
that the contents of a database are clean and correct. For example, database
systems enforce integrity constraints on data entry, thereby eliminating many
opportunities for entering “dirty” data. In addition, database applications con-
trol carefully who is allowed to enter data, and therefore malicious data entry is
rarely an issue. On the semantic web, such mechanisms are impractical. First,
we do not have a central administration of the data on the semantic web, and
hence integrity constraints are difficult if not impossible to define. Second, en-
forcing integrity constraints would create another hurdle preventing people from
joining the semantic web, rather than enticing them. Third, on the semantic
web authors who enter data may not be aware of which services consume their
data and what is required in order for their data to be well formed. Hence, a
design goal of Mangrove is robustness: authors should be able to add content
without considering constraints, and services should be able to consume data
that is cleaned and consistent as appropriate for their needs. Furthermore, when
users do intend their data to be consumed by certain services, there should be
a feedback loop that ensures that their data was in a form that the service
could consume. Below we describe how Mangrove supports robustness in such
a large-scale data sharing environment.

Deferring integrity constraints: On the HTML web, a user can put his phone
number on a web page without considering whether it already appears anywhere
else (e.g., in an employer’s directory), or how others have formatted or structured
that information. Despite that, users can effectively assess the correctness of the
information they find (e.g., by inspecting the URL of the page) and interpret
the data according to domain-specific conventions. In contrast, existing systems
often restrict the way information may be expressed. For instance, in WebKB-
2 [23], a user may not add information that contradicts another user unless the
3 Very loosely speaking, this is analogous to checking which web pages link to your

page – a service that is offered through search engines such as Google.



760 L. McDowell et al.

contradictions are explicitly identified first. Likewise, in SHOE [17], all data must
conform to a specified type (for instance, dates must conform to RFC 1123).

Mangrove purposefully does not enforce any integrity constraints on an-
notated data or restrict what claims a user can make. With the calendar, for
instance, annotated events may be missing a name (or have more than one), dates
may be ambiguous, and some data may even be intentionally misleading. Instead,
Mangrove defers all such integrity constraints to allow users to say anything
they want, in any format. Furthermore, Mangrove allows users to decide how
extensively to annotate their data. For instance, the instructor property may
refer to a resource with further properties such as name and workPhone, or sim-
ply to a string literal (e.g., “John Fitz”). Permitting such “light” annotations
simplifies the annotation of existing HTML and allows authors to provide more
detail over time.

To complement the deferral of integrity constraints, Mangrove provides
three mechanisms that facilitate the creation of appropriate data for services:
service feedback (discussed earlier), data cleaning, and inspection of malicious
information.

Data cleaning: The primary burden of cleaning the data is passed to the
service consuming the data, based on the observation that different services will
have varying requirements for data integrity. In some services, clean data may
not be as important because users can tell easily whether the answers they are
receiving are correct (possibly by following a hyperlink). For other services, it
may be important that data be consistent (e.g., that an event have the correct
location), and there may be some obvious heuristics on how to resolve conflicts.
The source URL of the data is stored in the database and can serve as an
important resource for cleaning up the data.

To assist with this process, Mangrove provides a service construction tem-
plate that enables services to apply a simple rule-based cleaning policy to the
raw results obtained from the RDF database. For instance, for course events,
our calendar specifies a simple policy that prefers data from pages specific to a
particular course over data from general university-provided pages. Thus, fac-
tual conflicts (e.g., a location change not registered with the university) are
resolved in the course-specific page’s favor. The cleaning policy also helps the
calendar to deal with different degrees of annotation. For instance, to identify
the instructor for a course lecture, the calendar simply requests the value of the
<instructor> property, and the template library automatically returns the
<name> sub-property of the instructor if it exists, or the complete value of that
property if sub-properties are not specified. Finally, the template also provides
other rules to assist with data interpretation (e.g., to parse different formats of
dates and times commonly found on the web, or those often found in a university
setting, such as ‘‘MWF 10-11 a.m.’’). To utilize these features, services may
create their own cleaning policy or use a default from the service template.

Malicious information: Another reason that we store the source URL with
every fact in the database is that it provides a mechanism for partially dealing
with malicious information. The highly distributed nature of the web can lead



Mangrove: Enticing Ordinary People onto the Semantic Web 761

Fig. 3. The calendar service as deployed in our department. The popup box appears
when the user mouses over a particular event, and displays additional information and
its origin. For the live version, see www.cs.washington.edu/research/semweb.

to abuse, which popular services such as search engines have to grapple with on
a regular basis. Potential abuse is an issue for semantic services as well. What is
to prevent a user from maliciously publishing misleading information? Imagine,
for example, that a nefarious AI professor purposefully publishes a misleading
location for the highly popular database seminar in an attempt to “hijack”
students and send them to the location of the AI seminar.

Thus, Mangrove services associate an easily-accessible source (i.e., a URL)
with each fact made visible to the user. For example, as shown in Figure 3, a user
can “mouse over” any event in the calendar and see additional facts including one
or more originating URLs. The user can click on these URLs to visit these pages
and see the original context. Naturally, service writers are free to implement more
sophisticated policies for identifying malicious information, based on freshness,
URL, or further authentication. For instance, in case of conflict, our department
calendar uses its previously mentioned cleaning policy to enable facts published
from pages whose URL starts with www.cs.washington.edu/education/ to
override facts originating elsewhere.

2.4 Discussion

As noted in the introduction, Mangrove is designed to enable and entice au-
thors to structure their data by mimicking some of the conditions that led to
the explosive growth of content creation on the web. First, Mangrove supports
instant gratification with a loop that takes freshly published semantic content
to Mangrove services, and then back to the user through the service feedback
mechanism. Next, Mangrove supports robustness by postponing the enforce-
ment of integrity constraints, associating a source URL with every fact in the
database, and with the service construction template, which assists services in



762 L. McDowell et al.

cleaning and interpreting the data based on these URLs. Finally, Mangrove
supports ease of authoring by providing a simple graphical annotation tool, de-
ferring integrity constraints to the services, and permitting authors to annotate
HTML lightly and incrementally.

3 Semantic Services in MANGROVE

One of the goals of Mangrove is to demonstrate that even modest amounts of
annotation can significantly boost the utility of the web today. To illustrate this,
Mangrove supports a range of semantic services that represent several different
web-interaction paradigms, including Google-style search, novel services that
aggregate semantically annotated information, and semantic email. Below, we
briefly discuss service construction and then consider each of the above services.

Services are written in Java and built on top of the Mangrove service
template that provides the basic infrastructure needed for service creation. Our
implementation uses the Jena [25] RDF-based storage system, which enables
our services to extract basic semantic information from the database by pos-
ing queries. In addition, the Mangrove service template provides methods to
assist with data cleaning and interpretation, as explained in Section 2.3. The
template also aids service construction with support for incrementally comput-
ing and caching results. Overall, Mangrove makes services substantially easier
to write by encapsulating commonly-used functionality in this service template.
At runtime, these services are then invoked by a Jakarta Tomcat servlet engine.

3.1 Semantic Search

We believe that annotation will be an incremental process starting with “light”
annotation of pages and gradually increasing in scope and sophistication as more
services are developed to consume an increasing number of annotations. It is im-
portant for this “chicken and egg” cycle that even light annotation yield tangible
benefit to users. One important source of benefit is a Google-style search ser-
vice that responds appropriately to search queries that freely mix properties and
text. The service returns the set of web pages in our domain that contain the
text and properties in the query.

The interface to the service is a web form that accepts standard textual
search queries. The service also accepts queries such as
“assistant professor” <facultyMember> <portrait>? , which combines the phrase

“assistant professor” with properties. Like Google, the query has an implicit
AND semantics and returns exactly the set of pages in our domain containing
the phrase “associate professor” and the specified properties. The ? after the
<portrait> property instructs the service to extract and return the HTML
inside that property (as with the SELECT clause of a SQL query). Users select
appropriate properties for the search from the simple schema available on the
search page; future work will consider ways to make this selection even easier.



Mangrove: Enticing Ordinary People onto the Semantic Web 763

Fig. 4. The semantic search results page. The page reproduces the original query and
reports the number of results returned at the top. Matching pages contain the phrase
“assistant professor” and the properties <facultyMember> and <portrait>. The ? in
the query instructs the service to extract the <portrait> from each matching page.

The service is implemented by sending the textual portion of the query (if
any) to Google along with instructions to restrict the results to the local domain
(cs.washington.edu). The Mangrove database is queried to return the set of
pages containing all the properties in the query (if any). The two result sets are
then intersected to identify the relevant set of pages. When multiple relevant
pages are present, their order in the Google results is preserved to enable more
prominent pages to appear first in the list. Finally, any extraction operations in-
dicated by one or more question marks in the query are performed and included
in the result (see Figure 4). Like Google, not every result provides what the user
was seeking; the search service includes semantic context with each result — a
snippet that assists the user in understanding the context of the extracted in-
formation. The snippet is the name property of the extracted property’s subject.
For instance, when extracting the <portrait> information as shown in Figure
4, the snippet is the name of the faculty member whose portrait is shown.

With its ability to mix text and properties, this kind of search is different from
the standard querying capability supported by Mangrove’s underlying RDF
database and other semantic web systems such as SHOE [17] and WebKB [23].
Our search service has value to users even when pages are only lightly annotated,
supporting our goal of enticing users onto the semantic web.

3.2 Aggregation Services

Aggregation services provide useful views on data from the semantic web. We
describe the aggregation services we implemented with Mangrove below.



764 L. McDowell et al.

First, our Who’s Who service compiles pictures, contact information, and
personal data about people within an organization. In our department, a static
Who’s Who had existed for years, but was rarely updated (and was woefully out-
of-date) because of the manual creation process required. Our dynamic Who’s
Who directly uses more up-to-date information from users’ home pages, enabling
users to update their own data at any time to reflect their changing interests.

Whereas Who’s Who merely collects information from a set of web pages,
our Research Publication Database compiles a searchable database of publica-
tions produced by members of our department based on the information in home
pages and project pages. This service is able to infer missing information (e.g.
the author of a paper) from context (e.g., the paper was found on the author’s
home page) and applies simple heuristics to avoid repeated entries by detecting
duplicate publications. Only a single <publication> property enclosing a de-
scription of the publication is required in order to add an entry to the database,
which facilitates light, incremental annotation. However, users may improve the
quality of the output and the duplicate removal by specifying additional prop-
erties such as <author> and <title>.

Our most sophisticated service, the department calendar (shown in Figure 3),
automatically constructs and updates a unified view of departmental events and
displays them graphically. As with our other services, the calendar requires only
a date and name to include an event in its output, but will make use of as much
other information as is available (such as time, location, presenter, etc.).

Department members are motivated to annotate their events’ home pages in
order to publicize their events. (In fact, the current contents of the calendar are
projected on the wall in the lobby of our department.) We initially seeded the
calendar with date, time, and location information for courses and seminars by
running a single wrapper on a university course summary page. Users then pro-
vide more detail by annotating a page about one of these events (e.g., users have
annotated pre-existing HTML pages to identify the weekly topics for seminars).
Alternatively, users may annotate pages to add new events to the calendar (e.g.,
an administrator has annotated a web page listing qualifying exams). Typically,
users annotate and publish their modified pages, the calendar is immediately up-
dated, and users then view the calendar to verify that their events are included.
For changes (e.g., when an exam is re-scheduled), users may re-publish their
pages or rely on the Mangrove web crawler to capture such updates later.

3.3 Semantic Email

While the WWW is certainly a rich information space in which we spend signif-
icant amounts of time, many of us spend even more time on email. In the same
spirit as the semantic web, adding some semantics to email also has the potential
for increasing productivity. In fact, we often use email for tasks that are reminis-
cent of lightweight data collection, manipulation, and analysis. Because email is
not set up to handle these tasks effectively, accomplishing them manually can be
tedious, time-consuming, and error-prone. As another example of where instant



Mangrove: Enticing Ordinary People onto the Semantic Web 765

gratification can entice people to add more semantic structure to their data, we
developed semantic email processes (SEPs) [10] using Mangrove.

As an example of semantic email, consider the process of organizing a potluck
by sending an email to a list of people, asking who will attend and what dish they
plan to bring, and then automatically collecting the responses and tallying them
up. The benefits of such an automated process provide significant incentive for
people to structure their original request.4 We model a SEP as an RDF data set
affected by messages from a set of participants, controlled by a set of constraints
over the data set. For instance, when executing we may constrain the potluck so
it results in a balanced number of appetizers, entrees, and desserts.5

Implementing SEPs within Mangrove enables us to synergistically leverage
data from the web and email worlds in one system. For instance, our calendar
service accepts event information from annotated pages that are published via
Mangrove or via semantic email. Likewise, SEPs such as our “RSVP” process
could accept event descriptions from an annotated web page, then monitor this
web data for location or time changes to include in a reminder email. Finally,
human responses to semantic email queries (e.g., requesting a phone number) can
be used to gradually acquire semantic knowledge over time. See [10] for a more
complete description of semantic email, including the formal model of SEPs and
a description of important inference problems that arise in this context.

3.4 Discussion

Mangrove and our services have been deployed in our department for only a
few months, but already permit a few observations. First, simple services such
as the calendar can offer substantial added value over other forms of accessing
the same information. For instance, in the five months the online calendar has
been operational, it has received more than 2700 distinct visits, with an average
of about two page views per visit.6 Second, users are willing to annotate their
documents if the process is easy and interesting services exist to use the anno-
tations. For instance, a small but growing number of users have annotated their
personal home pages in order to be included in the Who’s Who and to pro-
mote their publications. In addition, administrators, students, and faculty have
all utilized annotation to promote a wide range of events, ranging from official
departmental events to visitor schedules to informal events at a local pub.

These observations are not meant to be conclusive: the system and its services
are new and still evolving. Nonetheless, our initial experience strongly suggests
that the Mangrove system and services are both feasible and beneficial. See [26]
for additional measurements demonstrating that simple annotation of existing
documents is feasible and that it can potentially improve both the precision and
recall of search compared to Google.
4 While the organizer must perform some structuring, we do not require participants

in this process to understand semantics or use any special tools; see [10] for details.
5 This SEP and many others are available for public use, see

http://www.cs.washington.edu/research/semweb/email.
6 These statistics exclude traffic from webcrawlers and Mangrove team members.



766 L. McDowell et al.

Scalability is an important design consideration for Mangrove, and it has
influenced several aspects of Mangrove’s architecture, such as our explicit pub-
lish/notification mechanisms. Nevertheless, the scalability of our current proto-
type is limited in two respects. First, at the logical level, the system does not
currently provide mechanisms for composing or translating between multiple
schemas or ontologies (all users annotate data with a common local schema).
Second, at the physical level, the central database in which we store our data
could become a bottleneck.

We address both scalability issues as part of a broader project described
in [13]. Specifically, once a department has annotated its data according to
a local schema, it can collaborate with other structured data sources using a
peer-data management system (PDMS) [14]. In a PDMS, semantic relationships
between data sources are provided using schema mappings, which enable the
translation of queries posed on one source to the schema of the other. Our group
has developed tools that assist in the construction of schema mappings [7,8],
though these tools are not yet integrated into Mangrove. Relying on a PDMS
also distributes querying across a network of peers, eliminating the bottleneck
associated with a central database.

4 Related Work

This paper is the first to articulate and focus on instant gratification as a central
design goal for a semantic web system. Many of the key differences between
Mangrove’s architecture and that of related semantic web systems follow from
this distinct design goal. We discuss these differences in more detail below.

Haustein and Pleumann [16] note the importance of semantic data being
“immediately visible” in a way that yields benefit to content authors. Their
system, however, primarily provides this benefit by eliminating redundancy be-
tween HTML and semantic data, and then using this data and templates to
dynamically generate attractive HTML or RDF content. While these features
potentially make maintaining interrelated HTML and RDF data more conve-
nient, their system is very different from Mangrove. Specifically, they have a
different architecture that doesn’t support explicit publication, notification, or
service feedback. In addition, we have identified and deployed a set of instant
gratification services as an essential part of Mangrove, which are absent from
their system.

Two other projects most closely related to our work are OntoBroker [6] and
SHOE [17], both of which make use of annotations inside HTML documents.
SHOE’s services, like those of many other systems, primarily consisted of tools
to simply search or view semantic data, although their “Path Analyzer” [18]
provided a convenient interface for exploring relationships among concepts.
OntoBroker did implement a number of services, such as a Community Web
Portal [31] and services intended to assist business processes [29]. SHOE and
OntoBroker, however, primarily rely upon periodic web crawls to obtain new
information from annotated HTML, thus preventing instant gratification and



Mangrove: Enticing Ordinary People onto the Semantic Web 767

content creation feedback. In addition, Mangrove has the advantage of en-
abling useful services even when content is only lightly annotated. For instance,
while OntoBroker’s “SoccerSearch” service [29] tries a semantic search and then
a textual search if the former fails, Mangrove’s semantic+text search service
can profitably combine both types of information.

As an alternative to crawling, some systems provide a web interface for users
to directly enter semantic knowledge [23,6] or to instruct the system to immedi-
ately process the content of some URL [23]. However, we are aware of no existing
systems that support this feature in a manner that provides instant gratification
for typical web authors. For instance, the WebKB-2 system supports a command
to load a URL, but this command must be embedded within a script, and ex-
isting data must be manually deleted from the repository before a (modified)
document can be reprocessed.

Conceivably, we could leave the data in the HTML files and access them
only at query time. In fact, several data integration systems (e.g., [11,1,19])
do exactly this type of polling. The difference between Mangrove and such
systems is that in the latter, the system is given descriptions of the contents of
every data source. At query time, a data integration system can therefore prune
the sources examined to only the relevant ones (typically a small number). In
Mangrove we cannot anticipate a priori which data will be on a particular
web page, and hence we would have to access every page for any given query –
clearly not a scalable solution. An additional reason why we chose publishing to
a database over query-time access is that the number of queries is typically much
higher than the number of publication actions. For example, people consult event
information in the department calendar much more frequently than announcing
new events or changing the events’ time or location.

In Mangrove we chose to store annotations within the original HTML
pages, for simplicity and to enable easy updates of the annotations when the
source data changes. However, the overall architecture is also consistent with ex-
ternal annotation, where a user may annotate any page and the annotations are
transmitted directly to a semantic database, as possible with CREAM [15], An-
notea [20], or COHSE [2]. A side effect of these tools is that they automatically
aggregate data as with our explicit publish operation; Mangrove completes
the necessary features for instant gratification by providing service notification,
feedback, and a host of useful services.

The TAP semantic search [12] executes independent textual and semantic
searches based on traditional text queries. This service is easy to use but cannot
currently exploit information from one search in the other, nor can the user
specify the type of semantic information that is desired. Recently, QuizRDF [5]
introduced a search service that does combine textual and semantic content.
QuizRDF’s searches are more restricted than those provided by Mangrove’s
search service, making it more difficult to use as a building block for other
services. However, QuizRDF has an elegant user interface that more readily
assists users in identifying relevant properties.



768 L. McDowell et al.

Information Lens [22] used forms to enable a user to generate a single email
message with semi-structured content that might assist recipients with filtering
and prioritizing that message. Mangrove’s SEPs generalize this earlier work by
enabling users to create an email process consisting of a set of interrelated mes-
sages governed by useful constraints. In addition, Mangrove extends Information
Lens’s rule-based message processing to support more complex reasoning based
on information from multiple messages and data imported from web sources.
Consequently, Mangrove’s SEPs support a much broader range of applications
than those possible with Information Lens [10]. More recently, Kalyanpur et
al. [21] proposed having users semantically annotate messages to improve mail
search, sorting, and filtering. This approach can potentially result in rich seman-
tic content, but requires users to invest significant annotation effort for some
potential future benefit (e.g., in improved searching for an old email) or primar-
ily for the benefit of the recipient. SEPs instead generate both the semantic
content and the text of the email message directly from simple forms, and pro-
vide instant gratification by immediately utilizing this content for simple but
time-saving email processes.

For storing and accessing RDF data, we utilize the Jena toolkit [25]. Other
systems that also offer centralized RDF storage include Kaon [27] and Sesame [4].
Edutella [28] extends these approaches to provide RDF annotation, storage,
and querying in a distributed peer-to-peer environment, and proposes some ser-
vices, but primarily assumes the pre-existence of RDF data sources rather than
considering the necessary architectures and services to motivate semantic web
adoption. We view these systems as valuable modules for complete semantic web
systems such as Mangrove. In contrast, Mangrove supports the complete cy-
cle of content creation, real-time content aggregation, and execution of services
that provide instant gratification to content authors.

5 Conclusion

This paper presented Mangrove as a means of demonstrating how to entice
non-technical people to contribute content to the semantic web. Specifically, the
paper reports on the following contributions:

1. We highlighted three key conditions that are essential for the growth of the
semantic web: instant gratification (i.e., immediate, tangible value result-
ing from semantic annotation), robustness to malformed data and malicious
misinformation, and ease of authoring.

2. We introduced the Mangrove architecture that supports the complete se-
mantic web “life-cycle” from content authoring to semantic web services. We
demonstrated how elements of the architecture support each of our three de-
sign goals, particularly the explicit publish mechanism, service feedback, and
deferral of integrity constraints.

3. We described several deployed semantic services that motivate the annota-
tion of HTML content by consuming semantic information. We showed how
these services can provide tangible benefit to authors even when pages are



Mangrove: Enticing Ordinary People onto the Semantic Web 769

only sparsely annotated. These are some of the first “semantic services” that
are invoked by ordinary users as part of their daily routine. This deployment
lends credence to the claim that our services are both feasible and beneficial.

Our goal in designing Mangrove and in deploying it locally has been to
test our design on today’s HTML web against the requirements of ordinary
users. Clearly, additional deployments in different universities, organizations,
and countries are necessary to further refine and validate Mangrove’s design.
New instant gratification services are necessary to drive further adoption, and
a broad set of measurements is essential to test the usability and scalability of
the system. Finally, we plan to incorporate Mangrove as part of a peer-data
management system to achieve web scale.

Acknowledgments. This research was partially supported by NSF ITR Grant
IIS-0205635, DARPA contract NBCHD030010 for Oren Etzioni, NSF CAREER
Grant IIS-9985114 for Alon Halevy, and by a NSF Graduate Research Fellowship
for Luke McDowell. Thanks to Google and Corin Anderson for their assistance
with our search service. We are also grateful to Abraham Bernstein, Natasha
Noy, Valentin Razmov, Dan Weld, Oren Zamir, and the anonymous review-
ers for their helpful comments on improving the paper. Mangrove’s parser uti-
lizes code from HTMLParser (http://htmlparser.sourceforge.net/) and Xerces-J
(http://xml.apache.org/xerces-j/), and the calendar interface is based on Web-
Calendar (http://webcalendar.sourceforge.net/).

References

1. S. Adali, K. Candan, Y. Papakonstantinou, and V. Subrahmanian. Query caching
and optimization in distributed mediator systems. In Proc. of SIGMOD, pages
137–148, Montreal, Canada, 1996.

2. S. Bechhofer and C. Goble. Towards annotation using DAML+OIL. In K-CAP
2001 Workshop on Knowledge Markup and Semantic Annotation, 2001.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
May 2001.

4. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: An architecture for
storing and querying RDF data and schema information, 2001.

5. J. Davies, R. Weeks, and U. Krohn. QuizRDF: Search technology for the semantic
web. In Workshop on Real World RDF and Semantic Web Applications, 2002.

6. S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology based ac-
cess to distributed and semi-structured information. In Eighth Working Conference
on Database Semantics (DS-8), pages 351–369, 1999.

7. A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of disparate data
sources: a machine learning approach. In Proc. of SIGMOD, 2001.

8. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between
ontologies on the semantic web. In Proc. of the Int. WWW Conf., 2002.

9. O. Etzioni, S. Gribble, A. Halevy, H. Levy, and L. McDowell. An evolutionary
approach to the semantic web. In Poster presentation at the First International
Semantic Web Conference, 2002.



770 L. McDowell et al.

10. O. Etzioni, A. Halevy, H. Levy, and L. McDowell. Semantic email: Adding
lightweight data manipulation capabilities to the email habitat. In Sixth Inter-
national Workshop on the Web and Databases, 2003.

11. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ull-
man, and J. Widom. The TSIMMIS project: Integration of heterogeneous infor-
mation sources. Journal of Intelligent Information Systems, March 1997.

12. R. Guha, R. McCool, and E. Miller. Semantic search. In World Wide Web, 2003.
13. A. Halevy, O. Etzioni, A. Doan, Z. Ives, J. Madhavan, L. McDowell, and I. Tatari-

nov. Crossing the structure chasm. In First Biennial Conferenece on Innovative
Data Systems Research, Asilomar, CA, January 5–8, 2003.

14. A. Halevy, Z. Ives, I. Tatarinov, and P. Mork. Piazza: Data management infras-
tructure for semantic web applications. In Proc. of the Int. WWW Conf., 2003.

15. S. Handschuh and S. Staab. Authoring and annotation of web pages in CREAM.
In World Wide Web, pages 462–473, 2002.

16. S. Haustein and J. Pleumann. Is participation in the semantic web too difficult?
In First International Semantic Web Conference, Sardinia, Italy, June 2002.

17. J. Heflin, J. Hendler, and S. Luke. SHOE: A knowledge representation language
for internet applications. Technical Report CS-TR-4078, 1999.

18. J. Heflin, J. A. Hendler, and S. Luke. Applying ontology to the web: A case study.
In IWANN (2), pages 715–724, 1999.

19. Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld. An adaptive query
execution engine for data integration. In Proc. of SIGMOD, pages 299–310, 1999.

20. J. Kahan and M.-R. Koivunen. Annotea: an open RDF infrastructure for shared
web annotations. In World Wide Web, pages 623–632, 2001.

21. A. Kalyanpur, B. Parsia, J. Hendler, and J. Golbeck. SMORE – semantic markup,
ontology, and RDF editor. http://www.mindswap.org/papers/.

22. T. Malone, K. Grant, F. Turbak, S. Brobst, and M. Cohen. Intelligent information-
sharing systems. Communications of the ACM, 30(5):390–402, 1987.

23. P. Martin and P. W. Eklund. Large-scale cooperatively-built KBs. In ICCS, pages
231–244, 2001.

24. B. McBride. Four steps towards the widespread adoption of a semantic web. In
First International Semantic Web Conference, Sardinia, Italy, June 2002.

25. B. McBride. Jena: Implementing the RDF model and syntax specification.
http://www-uk.hpl.hp.com/people/bwm/papers/20001221-paper/, 2001. Hewlett
Packard Laboratories.

26. L. McDowell, O. Etzioni, S. D. Gribble, A. Halevy, H. Levy, W. Pentney, D. Verma,
and S. Vlasseva. Evolving the semantic web with Mangrove. Technical Report
UW-CSE-03-02-01, February 2003.

27. B. Motik, A. Maedche, and R. Volz. A conceptual modeling approach for build-
ing semantics-driven enterprise applications. In First International Conference on
Ontologies, Dataases and Application of Semantics (ODBASE-2002), 2002.

28. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér,
and T. Risch. Edutella: a P2P networking infrastructure based on RDF. In WWW,
pages 604–615, 2002.

29. Ontoprise. Demo applications. http://www.ontoprise.de/com/co produ appl2.htm
30. D. Reynolds. RDF-QBE: a Semantic Web building block.

http://www.hpl.hp.com/semweb/publications.htm.
31. S. Staab, J. Angele, S. Decker, M. Erdmann, A. Hotho, A. Maedche, H.-P. Schnurr,

R. Studer, and Y. Sure. Semantic community web portals. WWW9 / Computer
Networks, 33(1–6):473–491, 2000.


	Introduction and Motivation
	The Architecture of MANGROVE
	Architecture Overview
	Supporting Instant Gratification
	Supporting Robustness
	Discussion

	Semantic Services in MANGROVE
	Semantic Search
	Aggregation Services
	Semantic Email
	Discussion

	Related Work
	Conclusion



