
Bringing AgentX Subagents

to the Operating System Kernel Space

Oliver Wellnitz and Frank Strauß

Technical University of Braunschweig
Institute of Operating Systems and Computer Networks
Mühlenpfordtstraße 23, 38106 Braunschweig, Germany

{wellnitz,strauss}@ibr.cs.tu-bs.de

Abstract. SNMP agents on conventional operating system platforms
are mostly monolithic and implement Managed Objects in a single pro-
gram. The concept of subagents makes it possible to delegate the im-
plementation of Managed Objects to several subagents located close to
the managed subsystems. All subagents are managed by a master agent.
While this concept is well accepted for hardware subsystems of modu-
lar devices and for host services running in the user space, it is not yet
applied for components of conventional operating systems.
This paper examines to what extent the IETF standard subagent pro-
tocol AgentX is suitable for the management of kernel components. For
this purpose, on the Linux platform two subagents have been imple-
mented within the kernel subsystems they manage. They communicate
with a master agent in user space. The implemented software contains a
generic intermediate layer which carries out AgentX protocol operations
and access to Managed Objects. Based on this layer, the network in-
terface subsystem and the Netfilter subsystem have been enhanced with
management extensions.

1 Introduction

Network management is essential for the operation and supervision of medium
to large computer networks and the Simple Network Management Protocol
(SNMP) is the standard network management protocol of the Internet [3]. Cur-
rent implementations of SNMP agents on conventional operating system plat-
forms are mostly monolithic and rarely extensible. They run in user space and
cover a broad spectrum of management information from high-level service man-
agement to low-level hardware device management. In many cases they have to
gather information from the operating system kernel through different means
such as system calls, device driver input/output control functions (ioctls) or
special filesystems. These kernel interfaces can be difficult to handle because,
for example, on many Unix systems the agent has to parse files from the /proc
filesystem which have a structure that is likely to change in subsequent kernel
revisions. These interfaces can in many cases also be incomplete in respect to
the MIB which is to be implemented, e.g., they may lack attributes to uniquely

M. Brunner and A. Keller (Eds.): DSOM 2003, LNCS 2867, pp. 234–245, 2003.
c© IFIP International Federation for Information Processing 2003

Bringing AgentX Subagents to the Operating System Kernel Space 235

identify instances of Managed Objects. Furthermore, in many cases SNMP no-
tifications cannot be created efficiently because there is no mechanism in the
methods mentioned above to notify user space processes upon certain events
that occur in kernel space. So whenever an SNMP agent handles notifications,
it has to use a polling strategy to gather information and detect changes it-
self. If the polling interval is set too small, polling data from the kernel wastes
CPU time. On the other hand, setting the polling interval too large, the data in
question may change two or more times during that time so that changes can-
not be detected accurately. Another problem is that aside from the maintainer
of a component the author of an SNMP agent must also know specific details
about the managed component. If we could minimize the necessary amount of
knowledge that a component maintainer needs to have about network manage-
ment, he could provide a network management interface for his component all
by himself, so that it is much more likely to keep the management plane in sync
with the component.

A kernel implementation of AgentX subagents may overcome theses prob-
lems. Inside the kernel, a subagent has access to every available data struc-
ture. Additionally, it also can be synchronously and accurately triggered upon
changes because it can call notification functions directly at the point where
data is altered. Finally, a simple thus complete management interface for kernel
subsystems would enable developers to implement and maintain any network
management extension to their subsystem.

This paper is structured as follows: The next Section gives some background
information about the subagent protocol AgentX. Section 3 describes the design
and implementation of the kernel subagent architecture. It also gives some ex-
amples. Section 4 explains the implemented MIB modules and Section 5 gives
a short evaluation of the presented architecture. Finally, Section 6 concludes the
paper.

2 Agent Extensibility Protocol

Developed as a protocol to dynamically extend SNMP agents, Agent eXtensibil-
ity (AgentX) was published in January 2000 as an IETF Proposed Standard [4]
and advanced to Draft Standard in 2002. The AgentX framework splits the role
of an agent into two separate entities: A master agent, which is a traditional
SNMP agent but with little or no direct access to management information,
and a set of subagents, which have access to a mostly disjunct set of manage-
ment information and no knowledge about SNMP. Master agent and subagents
communicate through the AgentX protocol. The master agent thereby acts as
a multiplexer and SNMP/AgentX protocol translator for the subagents. AgentX
is transparent to SNMP managers and SNMP independent, which means that
AgentX subagents can be combined with SNMPv1, SNMPv2c and SNMPv3
master agents. The upper half of Figure 2 illustrates this concept.

236 Oliver Wellnitz and Frank Strauß

[varbinds ok]
/ send OK [commit failed]

/ send ERROR

recv CleanupSet
/ finish successful transaction

recv UndoSet
/ rollback transaction

recv CleanupSet
/ abort transaction[varbinds not ok]

/ send ERROR

recv TestSet

recv CommitSet

/ send OK
[commit ok]

test failed

commit failed
test ok

commit ok

Fig. 1. AgentX Set transaction

The design of a single master agent to which one or more subagents con-
nect requires that the master agent is already running when the subagents are
initialized.

The AgentX architecture was designed to be simple in respect of authoriza-
tion, privacy and encoding. It completely leaves the first two points to the master
agent, which has to ensure that only allowed mangers can access or change man-
agement information. Because subagents usually reside on the same machine as
the master agent a native byte-order encoding is used instead of the BER/ASN.1
encoding of SNMP.

While it was tried to keep AgentX simple, it offers full support for data re-
trieval (Get, GetNext and GetBulk) and data modification operations (Set) as
well as notifications (Traps). AgentX uses a multiphase-commit so that SNMP
Set operations remain atomic even if the Set request comprises objects located
at several subagents. Figure 1 shows the different states in an AgentX set trans-
action.

AgentX transport mappings are specified for Unix domain sockets and TCP.
Any other transport mechanism is likewise conceivable. Every AgentX connec-
tion is split up into several sessions, which in turn can convey several transac-
tions.

There are also other subagent protocols: The SNMP multiplexing protocol
SMUX [7] and the Distributed Program Interface DPI [2, 11] can be regarded as
predecessors of AgentX. Furthermore, there are proprietary agent toolkits, such
as EMANATE by SNMP Research Inc., that use their own master/subagent
architecture.

3 Design and Implementation

Similar to traditional user space AgentX subagent toolkits such as NET-
SNMP [1] and JAX [8], we propose a kernel subagent architecture which com-
prises two major parts: (a) a generic AgentX layer, which is MIB-unaware but
omniscient in regard to the AgentX protocol and its variable types and (b) one or
more management entities (kernel subagents) which implement the Managed Ob-
jects. There are no requirements for the master agent, thus any existing AgentX
master agent that runs on the target platform can be used. Figure 2 gives an

Bringing AgentX Subagents to the Operating System Kernel Space 237

overview of the SNMP/AgentX framework with kernel space extensions. In the
following, we focus on the kernel elements in the lower right part of the figure,
the master agent and user space subagents are not regarded any further.

3.1 The AgentX Layer

The AgentX layer is a mediator between the master agent and the kernel sub-
agents. It implements the AgentX protocol to talk to the master agent in user
space and it maintains the knowledge of all available kernel subagents which
supply management information. The general idea is to put everything into the
AgentX layer that can be done in a generic way. The AgentX layer is divded
into the following three parts, which are also shown in the grey box of Figure 2.

session layer

protocol layer

socket layer

AgentX AgentXAgentX

kernel subsystemkernel subsystem kernel subsystem

kernel subagent kernel subagent

kernel space
function calls

user space

kernel space

managers

master agent

subagent
user space

subagent
user space

/proc filesystem,
/dev/kmem device driver,

ioctl() interface, etc. AgentX

layer

managed system

SNMP

Unix domain socket

Fig. 2. SNMP/AgentX architecture with kernel space subagents

238 Oliver Wellnitz and Frank Strauß

The socket layer forwards all AgentX PDUs between the protocol layer and
the master agent. Its interface is very small and can easily be exchanged or
modified to support other AgentX transport mappings.

The protocol layer is able to parse AgentX PDUs received from the master
agent and to create AgentX PDUs, which are then sent through the socket layer
to the master agent.

The session layer decides which kernel subagent is responsible for a request
that has been parsed by the protocol layer. Similarly, the session layer assigns
responses and notifications from kernel subagents to the right AgentX sessions
and passes them up to the protocol layer. For this purpose, every kernel subagent
has to register with the session layer prior to any AgentX communication. These
registrations result in AgentX registrations.

When the master agent sends an AgentX request to the kernel, it is received
by the socket layer and passed to the protocol layer which divides it into smaller
pieces, which are simpler to process by the subagents. E.g., a GetNext request
may contain more than one SearchRange so that multiple object instances can be
retrieved by one request. This is handled as follows: The protocol layer creates an
empty Response PDU. Then it takes the first SearchRange and dispatches it via
the session layer to the corresponding kernel subagent. The response is appended
to the Response PDU. This procedure is repeated until all SearchRanges were
processed.

In contrast to userspace subagents where it is easy to ensure that the mas-
ter agent is started first, the kernel and many of its subsystems are obviously
initialized before the master agent program can be started. The implemented
solution to this problem is to decouple the registration of kernel subagents to
the AgentX layer from the AgentX registration to the master agent. This allows
the kernel AgentX layer to delay the AgentX connection. Once the master agent
is running a signal has to be sent to the kernel AgentX layer in order to setup
the connection. The upper part of the sequence diagram in Figure 3 illustrates
this procedure.

3.2 Kernel Subagents

Kernel subagents are closely attached to the kernel subsystems for which they
implement the Managed Objects. Figure 2 shows the two different approaches
of kernel subagents: The subagent can either be closely integrated within the
kernel subsystem code, or the kernel subagent can be implemented separated
from the kernel subsystem, e.g., as a separate kernel module, if the subsystem
supports appropriate kernel level interfaces.

In both variants, a kernel subagent contains notification emitting functions
and request callback functions. The notification emitting functions are called by
other kernel functions upon certain events, so that they can construct a noti-
fication message and pass it to the AgentX layer. If the subagent is integrated
with the managed kernel subsystem, notifications can easily be triggered from
those functions that actually process kernel data in a way that should raise a

Bringing AgentX Subagents to the Operating System Kernel Space 239

Table 1. AgentX PDU type to method translation

AgentX PDU method parameters

Get GET & EXACT

GetNext GET or GET & INCLUDE

GetBulk GET or GET & INCLUDE

TestSet TESTSET

CommitSet COMMITSET

UndoSet UNDOSET

CleanupSet CLEANUPSET

notification. On the other hand, if the kernel subagent is implemented as a sep-
arate module, it depends on the kernel subsystem to offer hooks so that the
subagent can register for events that potentially raise notifications. However,
such hooks are more likely to be available within kernel space than for feedback
to traditional user space agents.

As described in Section 3.1, callback functions are registered with the AgentX
layer at startup. They are called for all Get and Set requests. The signature of
a callback function is defined as follows:

errorcode Callback(in oid, in method, in context, out result)

A callback function gets a single request oid, a method specifier (which is
a set of named flags) and the SNMP context as input arguments. A buffer in
which the callback functions returns a result is passed as the fourth argument.
Every callback function returns an errorcode. The oid is the starting OID of a
SearchRange or the exact OID of a variable binding (varbind). It always lies
within the range for which the callback function was registered to the AgentX
layer. When the AgentX layer receives an AgentX GetNext PDU and dispatches
a SearchRange, it compares the starting OID of the SearchRange to the callback
functions’ registration points. If the starting OID is a lexicographical predecessor
compared to the registration point of a callback function, it uses the registration
point as the value for the oid argument and sets the INCLUDE flag in the
method argument.

Callback functions are called with one out of five different methods, which is
specified by an according flag in the method argument. There is one GET method
for Get, GetNext and GetBulk requests, and four methods for the phases of Set
transactions (TESTSET, COMMITSET, UNDOSET, and CLEANUPSET). Ad-
ditionally, the method argument can hold two flags which describe the interpre-
tation of the oid argument: The flag INCLUDE signals that the search range
includes oid itself, if it is not set oid is excluded. The flag EXACT signals that
the request is for the exact oid and not for any successor. AgentX GetBulk re-
quests with Repeaters are split by the AgentX layer into several invocations of
callback functions. This streamlines and simplifies the architecture, because for
GetBulk Repeaters the results may come from different callback functions. It is

240 Oliver Wellnitz and Frank Strauß

not a performance issue, since it affects only neglectable local function calls and
not PDUs that would have to be transmitted. Table 1 shows how all AgentX
request PDUs are translated into method parameters to callback functions.

3.3 Processing Get/GetNext/GetBulk Requests

The middle part of Figure 3 shows a sequence diagram that illustrates the pro-
cessing of a GetNext request which is similar to the processing of Get or GetBulk
requests. Some details of the socket layer and the protocol layer are omitted here.

The function ax dispatch getnext() in the protocol layer dispatches every
SearchRange contained in the GetNext request. It then forwards the request
for every single SearchRange to ax dispatch sr() in the session layer. This
function now iterates over all callback functions for the session and compares
their registration OIDs to the starting and ending OID in the given SearchRange.
Every matching callback function is invoked until a callback returns a valid
result.

layer
session

subagent
kernel

layer
protocol socket

layer

AgentX layer

initialization

setup AgentX connection, session, and registration

signal startup

[for all varbinds]

registration

agent
master

GetNext PDU

Response PDU

callback *
ax_dispatch_sr() *

ax_dispatch_getnext()

until AX_SUCCESS]
[for matching search ranges

event
any signaled

ax_createpdu_notify()

ax_addvar_*()

ax_send_pdu() Notify PDU

ax_destroy_pdu()

*

Fig. 3. Sequence diagrams: (a) startup procedure, (b) processing a GetNext
request, (c) emitting a notification

Bringing AgentX Subagents to the Operating System Kernel Space 241

3.4 Processing Set Transactions

The AgentX protocol accomplishes a successful Set transaction in three phases
(see Figure 1). This is done to preserve the atomic nature of an SNMP Set re-
quest that may span multiple objects even at multiple subagents. However for
the AgentX layer, Set transactions are very similar to Get requests, because
varbinds are dispatched in the same way as SearchRanges. In case of success,
a Set transaction consists of three request PDUs: a TestSet PDU to prepare the
write access, a CommitSet PDU to actually write the data and a CleanupSet
PDU to complete the transaction. The next example describes how set transac-
tions are safely dispatched to the kernel subagents.

An AgentX TestSet PDU initiates a Set transaction. Every varbind from
the TestSet PDU is dispatched to callback functions as explained before for
SearchRanges in Get requests. Please notice that varbinds from the TestSet PDU
may be dispatched to different callback functions. The callback functions check
the varbinds for valid write access, type correctness, and legal values. When the
checks have been succeeded, the AgentX layer saves all varbinds from the TestSet
PDU because they are needed later. In the second phase, the master agent sends
a CommitSet PDU to actually trigger the data change. Because the CommitSet
PDU does not contain any varbind data, the AgentX layer refers to the previously
saved varbind list to dispatch the CommitSet PDU to all corresponding callback
functions. Finally in the third phase, the master agent sends a CleanupSet PDU.
Similar to the commit phase, it is dispatched to the callback functions based on
the saved varbind list to release any remaining temporary data of the transaction.

3.5 Sending Notifications

While Get and Set requests are handled by callback functions, notifications are
initiated by kernel subagents. Hence, the AgentX protocol layer provides func-
tions to kernel subagents to create a Notify PDU, to add an arbitrary number of
varbinds of specific base types to the PDU, and to send the PDU to the master
agent. Finally the kernel subagent has to release the PDU data from the protocol
layer. This procedure is illustrated in the lower part of Figure 3.

4 Implemented MIB Modules

In order to evaluate the feasibility of the presented kernel subagent architecture
it was implemented for the open-source Linux operating system. In addition
to the AgentX layer, two MIBs were partially implemented: The ifTable and
ifXTable of the Interfaces Group MIB [6] and a newly defined MIB [9] for the
Linux Netfilter subsystem [5, 10].

4.1 The Interfaces Group MIB

The Interfaces Group MIB (IF-MIB) defines objects for managing network in-
terfaces. Our implementation accesses existing kernel data structures directly or

242 Oliver Wellnitz and Frank Strauß

through functions already provided by the Linux networking code. It can no-
tice changes of network interfaces through an already existing notification hook,
which makes the design of a separated subagent module (see the left part of the
grey box in Figure 2) feasible. Hence, the kernel IF-MIB subagent was imple-
mented as a Linux kernel module.

However, there are two objects for which no equivalent variables exist in the
kernel: a timestamp for the last status change of an interface (ifLastChange)
and the value of ifLinkUpDownTrapEnable. The latter is to specify whether to
send a notification if an interface changes its status. Because a kernel module
cannot extend existing data structures, the IF-MIB module introduces an in-
terface shadow list where these values are stored. The elements of this list are
created on demand so that the list contains only interfaces which have non-
default values on any of these two objects. In addition to readable objects, this
module implements the linkUp and linkDown notifications and write access to
the ifLinkUpDownTrapEnable and ifAdminStatus objects.

Figure 4 gives an example of a callback function. It covers the table row
ifMtu, the Maximum Transfer Unit. The IF-MIB defines this as a read-only
object, hence this function returns an error on Set transactions. The function
get ifid() finds the correct interface ID for the requested OID. The function
getmtu() is called to retrieve the MTU of the interface. Finally the full instance

int if_mtu(ax_oid *oid,

ax_method method,

char* context,

ax_variable *res)

{

u_int32_t ifid;

const ax_oid IFMTU =

{10, {1, 3, 6, 1, 2, 1, 2, 2, 1, 4}};

if (!(m & GET))

return AX_NOTWRITABLE;

ifid = get_ifid(oid, method, 4);

if (!ifid)

return AX_NOSUCHOBJECT;

res->oid = ax_oid_addint(IFMTU, ifid);

res->type = AX_VB_INT;

res->value.integer = getmtu(ifid);

return AX_SUCCESS;

}

Fig. 4. IF-MIB: Callback function for ifMtu

Bringing AgentX Subagents to the Operating System Kernel Space 243

OID, the type and the value are stored to the result structure, before the callback
function is terminated successfully.

4.2 The Netfilter MIB

The second implemented MIB is the experimental TUBS IBR Linux Netfilter
MIB [9]. Netfilter is the Linux subsystem for packet filtering, mangling and
network address translation (NAT).

The Linux Netfilter subsystem consists of so called tables. As of Linux 2.4.20
there are three tables in the Linux kernel: The packet filtering table, the net-
work address translation table and a mangle table for packet alteration. Each
table contains a number of built-in chains and may additionally have user-
defined chains. The Netfilter subsystem currently has five hooks at five different
points where an IP packet can traverse (INPUT, FORWARD, OUTPUT, PRE-
ROUTING and POSTROUTING). So each table has up to five different built-in
chains. Every chain consists of a list of rules where each rule consists of one or
more conditions (matches) and an action (target). If a packet matches all con-
ditions, the according target is applied. Each built-in chain has a default policy
which decides the fate of an IP packet that does not match any rule.

The Linux Netfilter subsystem is divided into several modules, which are
responsible for different tasks. One module handles all table and chain manage-
ment (ip tables.c) so that the according network management functionality
has been implemented there. This module defines data structures for Netfilter
tables and chains but it, e.g., lacks methods to access a specific chain. This is
done in user space by the Netfilter configuration tool iptables(1). This approach
is usually preferred because it keeps the kernel code small, but on the other hand,
it makes the task of adding network management code to the kernel more diffi-
cult. So existing user space functions had to be rewritten and put into the kernel.
Furthermore, the Netfilter MIB contains ”LastChange” timestamp objects for
all Netfilter elements, which the original Netfilter subsystem does not support.
For this reason the data structures for Netfilter tables and chains had to be
extended. This raised a problem, because as mentioned before, these data struc-
tures are used by the user space tool as well, so that adding timestamps to tables
and chains breaks compatibility with the Netfilter user space tool. The solution
to this problem is either to recompile the user space tool with the new structure
definitions or to drop the ”LastChange” objects. Finally, both approaches were
implemented and the system administrator can decide at kernel compile time.

5 Evaluation

A brief evaluation was done in order to see if the presented kernel subagent ar-
chitecture has measurable impact on the performance in contrast to a monolithic
SNMP agent. For this purpose we used a Pentium 200MMX host with 64 MB
memory running either a standalone NET-SNMP agent or the presented kernel

244 Oliver Wellnitz and Frank Strauß

kernel subagent monolithic agent
mean std.dev. mean std.dev.

snmpwalk ifTable 323 ms 11 ms 351 ms 7 ms

10× snmpget ifNumber 737 ms 20 ms 739 ms 34 ms

Fig. 5. Performance comparison

AgentX prototype with a NET-SNMP daemon as the AgentX master agent. All
SNMP requests were issued by a remote manager over a local area network.

Figure 5 shows the results of the evaluation which presents no distinctive
difference in performance. However, the implementation of ifTable is not equiv-
alent in both approaches: the NET-SNMP implementation of ifTable supports
17 columnar objects while the kernel subagents supports 20 columns. Therefore
in the snmpwalk test the kernel implementation returned 81 object instances for
four table rows compared to 69 in case of the NET-SNMP implementation.

The implementation costs for kernel subagents turned out to be relatively
small. E.g., the ifTable and ifXTable implementation presented in Section 4.1
comprise of about 900 lines of C code.

6 Conclusion

This paper states that the concept of distributed SNMP agent implementation by
means of the AgentX subagent architecture is well applicable not only to modular
devices and host services in user space, but also to kernel space subsystems. It
has been argued that this allows MIB implementors to retrieve and manipulate
data that lives in kernel space without the indirection of a potentially changing
and limited kernel interface. Furthermore, this way it is easier to handle events
in the kernel space in order to emit notifications for which user space agent
implementations would often need to poll data frequently from the kernel due
to the lack of appropriate trigger mechanisms.

To evaluate the concept of kernel AgentX subagents, two MIBs have been
implemented for the Linux 2.4.x kernel: the IETF IF-MIB and a newly designed
MIB module for the Linux packet filtering subsystem Netfilter. It has been shown
that the effort to instrument typical kernel subsystems with subagent functional-
ity is low and that the intervention to the existing kernel code could be restricted
to a small interface. Furthermore it has been proved that the performance is at
least comparable to traditional agent implementations.

The downside of implementing management agent functionality inside the
kernel is the increased size of static kernel code and the general fact that kernel
level code development is a delicate task, because bugs affect system stability
more severely than user space programs.

The major benefit of the presented approach is the fact that the develop-
ment of a kernel subsystem and its management instrumentation can be closely
integrated. The development of a MIB implementation is put in the hands of

Bringing AgentX Subagents to the Operating System Kernel Space 245

the maintainer of the subsystem which is to be managed through the MIB. This
expertise helps to ensure more accurate MIB implementations and eases to keep
track of changes in a subsystem which affect the management portion. At the
same time the AgentX layer releases the developer from the necessity to know
SNMP in detail.

References

[1] The NET-SNMP home page. WWW Page. http://www.net-snmp.org 236
[2] G. Carpenter and B. Wijnen. SNMP-DPI: Simple Network Management Protocol

Distributed Program Interface. RFC 1228, T. J. Watson Research Center, IBM
Corp., May 1991. 236

[3] J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction to Version 3 of the
Internet-standard Network Management Framework. RFC 2570, SNMP Research,
TIS Labs at Network Associates, Ericsson, Cisco Systems, April 1999. 234

[4] M. Daniele, B. Wijnen, M. Ellison, and D. Francisco. Agent Extensibility
(AgentX) Protocol Version 1. RFC 2741, Digital Equipment Corporation, IBM
T. J. Watson Research, Ellison Software Consulting, Cisco Systems, January 2000.
235

[5] Pat Eyler. Networking Linux: A Practical Guide to TCP/IP. New Riders Profes-
sional Library, 2001. 241

[6] K. McCloghrie and F. Kastenholz. The Interfaces Group MIB. RFC 2863, Cisco
Systems, Argon Networks, June 2000. 241

[7] M. Rose. SNMP MUX Protocol and MIB. RFC 1227, Performance Systems
International, May 1991. 236

[8] F. Strauß, J. Schönwälder, and S. Mertens. JAX - A Java AgentX Subagent
Toolkit. In Proc. 1st IEEE Workshop on IP-oriented Operations & Management,
Cracow, September 2000. 236

[9] F. Strauß and O. Wellnitz. The experimental TUBS-IBR Linux Netfilter MIB.
http://www.ibr.cs.tu-bs.de/arbeiten/strauss/kagentxd/

TUBS-IBR-LINUX-NETFILTER-MIB, 2002. 241, 243
[10] K. Wehrle, F. Pählke, H. Ritter, D. Müller, and M. Bechler. Linux Network

Architecture. Prentice Hall, 2004. 241
[11] B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, and G. Waters. Simple Network

Management Protocol Distributed Protocol Interface Version 2.0. RFC 1592, IBM
T. J. Watson Research Center, Bell Northern Research Ltd., March 1994. 236

	Bringing AgentX Subagents to the Operating System Kernel Space
	Introduction
	Agent Extensibility Protocol
	Design and Implementation
	The AgentX Layer
	Kernel Subagents
	Processing Get/GetNext/GetBulk Requests
	Processing Set Transactions
	Sending Notifications

	Implemented MIB Modules
	The Interfaces Group MIB
	The Netfilter MIB

	Evaluation
	Conclusion

