Administrative Policies to Regulate Quality of
Service Management in Distributed Multimedia
Applications*

Michael Katchabaw, Hanan Lutfiyya, and Michael Bauer

Department of Computer Science
The University of Western Ontario
London, Ontario, Canada NG6A 5B7

Abstract. Properly capturing and handing administrative require-
ments for Quality of Service (QoS) management is a challenging,
infrequently studied, problem. In this paper, we formalize adminis-
trative requirements as administrative policies, and use policy-based
management techniques for enforcing them. Doing so adds a great
deal of flexibility and power to QoS management. We discuss our
general policy-based approach to QoS management, provide several
examples of administrative policies, and present highlights from the
use of a prototype policy-based QoS management system that uses
administrative policies in a variety of experiments with a distributed
multimedia application.

Keywords: Administrative policies, QoS management

1 Introduction

An application’s Quality of Service (QoS) refers to its non-functional, run-time
requirements. An example QoS requirement for an application receiving a video
stream is the following: “The number of video frames displayed per second must
be 25, plus or minus 2 frames”. In addition to performance requirements, an
application’s QoS may include availability and reliability requirements. A QoS
requirement is hard for an application if the application is not functionally cor-
rect if the QoS requirement is not satisfied at run-time. Otherwise, the QoS
requirement is said to be soft. Examples of hard QoS requirements can be found
in flight control systems and patient monitoring systems. Most distributed mul-
timedia applications, however, have soft QoS requirements. Application QoS
requirements for multimedia applications are also often dynamic in that they
may vary for different users of the same application, for the same user of the
application at different times, or even during a single session of the application.

* An extended version of this paper can be found as Technical Report #596, Depart-
ment of Computer Science, The University of Western Ontario.

A. Marshall and N. Agoulmine: MMNS 2003, LNCS 2839, pp. 341-354] 2003.
© IFIP International Federation for Information Processing 2003

342 M. Katchabaw, H. Lutfiyya, and M. Bauer

The allocation and scheduling of computing resources is referred to as QoS
management. QoS management techniques such as resource reservation and ad-
mission control can be used to guarantee QoS requirements, since resource reser-
vations are based on worst-case scenarios. This is useful for applications that
have hard QoS requirements, but often leads to inefficient resource utilisation
in environments that primarily have applications with soft or dynamic QoS re-
quirements. Such approaches also tend to encounter difficulties in environments
in which all resources are not under the same administrative control.

We have developed a QoS management system that deals with soft and dy-
namic QoS requirements by providing management services that detect when
an application’s run-time behaviour does not satisfy the application’s QoS re-
quirements, determine the possible causes of the violation of requirements, and
formulate corrective actions to resolve the situation. These actions depend not
only on the cause of the violation, but also depend on the constraints imposed on
how to achieve the QoS requirement. These constraints are referred to as admin-
istrative requirements. For example, administrators may want to prioritize ap-
plications so that if the system is overloaded, only high priority applications get
the computing resources needed to ensure their QoS requirements are satisfied.
Administrative requirements can also attempt to prevent QoS violations. For
example, administrators may wish to limit access to the computing environment
to protect previously admitted applications from QoS requirement violations.

Administrative requirements that are implicitly structured into the code of
the QoS management system makes the system rigid, inflexible, and unable to
cope when changes are needed to these requirements or when new administrative
requirements are to be put in place. To address this problem, the QoS manage-
ment system that we have developed is policy-based. A policy is defined [1[7] as a
rule that describes the actions to occur when a specific condition occurs. Policies
can be used to semi-formally express both QoS and administrative requirements.
Using policies separates the process of formulating management decisions from
the management system mechanisms carrying out these decisions, thus allowing
for different management decisions to be executed by the same mechanisms.

In our earlier work in [6], we presented a simple policy-based QoS manage-
ment system capable of supporting a single administrative policy for service
differentiation. This work, however, was somewhat crude, limited, and ad hoc.
Since then, we have demonstrated how the QoS management system [8] services
can be mapped to the IETF architectural framework [7] for a more comprehen-
sive solution. This work provided a needed upgrade to the policy distribution and
handling mechanisms from our work in [6]. In our current work, discussed in this
paper, we extend this previous work to handle a much richer, broader, and more
powerful variety of administrative policies to meet the requirements of mod-
ern computing environments. Experimental results derived from our improved
prototype system using these new administrative policies are also discussed.

Administrative Policies to Regulate Quality of Service Management 343

,,,,,,,,,,,,,,,,, Policy _ . ___
v\' |
I
Event Name Policy
Manager Server Manager
h ! ! : Policy !
| ! Event D g '
b T &1
| | -
12 1
! ! o
I I
! o
I I
| PDP oo PEP
: e
I [
I o
i Event 1 1 Action Request
,,,,,,,,,,,,,,,,,, |
| I
L L !
T
HE)
/ Coordinator \
@ Process
Code
Instrumented
Application

Fig. 1. Policy Architecture

2 Policy Architecture

We first describe the components of our policy architecture, depicted in Figure[T]
and their interactions using the following informal QoS requirement.

Example 1 A wvideo client is to receive video at a frame rate of 25 frames per
second, plus or minus 2 frames.

Coordinator. The coordinator is the interface between a process and the man-
agement system. QoS requirements are defined in terms of application specific
attributes. An attribute of an application can be monitored with a Sensor and
thresholds can be associated with a sensor so that a sensor will only report to the
coordinator when the monitored data’s value is not within the specified thresh-
old. For Example 1, the attribute to be monitored by a sensor is the video frame
rate. If the frame rate is below 23 or above 27, then a report of this is sent to
the Coordinator, which in turn forwards an event report to the Event Manager.
Event Manager. An Event Manager receives and aggregates event reports (from
violations of QoS requirements or other monitored data) and allows other man-
agement entities to register an interest in an event. For Example 1, the Event
Manager receives the report from the Coordinator and passes this information on
to a Policy Decision Point that has registered interest in this kind of event to
resolve the situation.

Name Server. The Name Server receives and maintains registration information
in a repository. It assigns a unique instance identifier for each registered process,

344 M. Katchabaw, H. Lutfiyya, and M. Bauer

thereby enabling unique identification of each registered component. The Name
Server coordinates the interaction between the QoS management components
and the Coordinator during the initialization process for an application by no-
tifying the necessary Policy Decision Points of a newly registered process.
Policy Decision Points (PDPs). PDPs are used to make decisions on actions
to be taken based on the receipt of an event which is generated from monitoring
and relayed through an Event Manager. PDPs are responsible for diagnostics, by
determining the cause of the QoS requirement violation and then determining
corrective actions. For Example 1, the PDP that received the report from the
Event Manager carries out diagnostics to determine how to resolve the situation
and notifies the appropriate Policy Enforcement Point of the actions necessary. If
the video client in this example has a frame rate below 23, the PDP may deter-
mine that the action to be taken is to increase the CPU resources of the client.
PDPs are also used to authorize actions on behalf of Policy Enforcement Points.
Furthermore, within an administrative domain, there is one PDP that commu-
nicates with a repository where QoS and administrative policies are stored, and
information about users is kept. This PDP is referred to as a Policy Manager.
Policy Enforcement Points (PEPs). PEPs apply the actions determined by
PDPs. A PEP is a management process that is responsible for monitoring the
device that it is on and executing actions. A PEP receives requests from a PDP,
verifies that the action to be executed is allowed (by consulting with another
PDP and using administrative policies), and performs the requested action if
permitted. For Example 1, when the PEP receives the instruction to increase
CPU resources for the video client from the PDP, it will verify this action with
an authorizing PDP, and then add CPU resources if the action is permitted.

3 Policy Specification

In our current work, policies are formally described using a notation called Pon-
der [1]. Our use of Ponder as a specification language is intended to make it
simpler for administrators to specify policies. The Ponder language provides
constructs to define policy types and instances of the policy types. In other
words, a policy can be thought of as a class that can be instantiated with spe-
cific elements; for example, host machine names or process identifiers.

In this formalism, an obligation policy specifies the action that a subject
must perform on a set of target objects when an event occurs. A positive autho-
rization policy specifies permissible actions and a negative authorization policy
specifies the forbidden actions. Actions specified are carried out by subjects on
the specified targets. Targets and subjects are specified using domains, providing
a mechanism for applying a policy to a collection of objects or for specifying the
collection of objects that can carry out given actions. Administration require-
ments can be specified using a mixture of Ponder obligation and authorization
policy constructs.

Example 2 This policy, a formalization of the requirement in Example 1, states
that the PEP is allowed to increase the CPU priority for a video client process

Administrative Policies to Regulate Quality of Service Management 345

if the process belongs to GroupA and if there are enough CPU resources. This is
calculated by CPUResourcesAvailable. The parameters to this action include the
process identifier (Processld) and a normalised value (normvalue) representing
the difference between the attribute’s current value and the expected value.

type auth+ authCPUIncreaseT (subject s, target t) {
action CPUIncrease(ProcessId,normvalue)
when belongs(GroupA, ProcessId) and CPUResourcesAvailable(normvalue); }

4 Policies Studied

This section presents several different administrative policies. Each policy is
described informally, and also defined formally using Ponder.

4.1 Admission Control

Policies can be used to limit the number of violations of QoS requirements by
limiting the number of applications executing in the environment. Admission
control refers to the process of comparing projected application resource needs
with available resources to determine if an application should be allowed to
consume computing resources. Upon application registration, policies are used
to determine if an application may continue. This can be application specific.

Example 3 In this policy, the PEP is authorized to admit a process Processld
when at least 5% of the CPU and 100 pages of free physical memory are available.

type auth+ authAdmissionControl (subject s, target t) {
action admitProcess(ProcessId)
when CPUResourcesAvailabibility() > 5 and FreeMemory > 100; }

4.2 Differentiated Services

It is not always possible to satisfy quality of service requirements for all appli-
cations at the same time. There are a number of possible ways to deal with this
scenario, depending on the answers to a variety of questions: Should all appli-
cations receive equal service or should some receive preferential service to meet
requirements? If the latter, how would the application to favour be selected?
What kind of favouring would be provided? These decisions can be formulated
as service differentiation policies. There are two types of such policies: uniform
service policies and priority-based differentiated service policies.

An example of a priority-based differentiated service policy was given ear-
lier in Example [Another policy is needed to handle the case when the CPU
resources are not available. An example is given below.

346 M. Katchabaw, H. Lutfiyya, and M. Bauer

Example 4 This policy specifies that the PEP requests that the video client
process’s resolution is to be changed if there are not enough CPU resources
available. This should allow for the application to maintain the desired frame
rate, but at the expense of a lower picture quality. The implementation of of this
is done through the use of an actuator, which is an instrumentation component
of an application [5].

type auth+ authChangeApplicationResolution (subject s, target t) {
action ChangeResolution(ProcessId);
when not (CPUResourcesAvailable(normalizedvalue)); }

Example 5 In addition to the policy stated in Example Pl one may have an
additional policy statement that reduces the CPU priority of all processes that
are in GroupB. This is only done when CPU availability is low.

type auth+ authCPUDecrease (subject s, target t) {
action CPUDecrease(ProcessId,normalizedvalue);
when belongs(GroupB, ProcessId) and (CPUResourcesAvailability() < 5); }

Example 6 This uniform service policy basically states that any requesting
application will receive an increased CPU priority if the resources are available.

type auth+ authCPUIncreaseT (subject s, target t) {
action CPUIncrease(ProcessId,normalizedvalue)
when CPUResourcesAvailable(normalizedvalue); }

4.3 User Hints

So far, all the events we have been dealing with are QoS requirement violations.
User hints are events that indicate that the user’s interest or focus of activity
has changed, as discussed in detail in [5]. Hints such such as minimizing and
restoring windows, the covering and uncovering of windows, and the activation
and deactivation of screen savers and locks are all excellent indicators of the
relative interest users have in their applications. A user hint can be used to
reduce the amount of host computing resources consumed by an application
process that is no longer useful or of interest to the user by reducing its CPU
priority, which in turn causes it to consume fewer CPU cycles.

Example 7 In this policy, the PEP is obligated to reduce the CPU priority of a
process whose identifier is Processld when a user hint event, as described above,
has occurred. This policy is assumed to be used by the PDP which has registered
an interest in the event UserHint. The action is sent to the appropriate PEP, and
is validated through an authorization policy used by the appropriate PDP.

type oblig user_hint {subject s, target t) {
on UserHint (ProcessId)
do CPUDecrease(ProcessId,normalizedvalue}; }

Administrative Policies to Regulate Quality of Service Management 347

a@n T
1 2 3 T -} 9 n i 12 13 14 15
i
!
|
1 I
1
= i
-] |
§20-
i
2
=
215
-
]
E
= i
3 |
810 i
= |
- 1
|
51 i
i
i
i
i
4]
L T N R Y D R N R N
- I AR Eaa o omom 2R LEERFYI
Sample Mumber {1 Sample Every 500ms}

Fig. 2. Video-on-Demand without Admission Control

5 Experience

Using the policy based management techniques and sample policies from the pre-
vious sections, we have implemented a prototype policy-based QoS management
system. In this section, we discuss our experience with this system to date.

5.1 Prototype

We have developed a prototype policy-based QoS management system for Solaris
2.6. This prototype was based on work discussed in [6] and extended in [5]
and again in [§]. It is capable of managing and regulating access to multiple
computing resources, including CPU cycles and memory, with integrated support
for networking resources nearing completion. It also supports a wide variety of
distributed multimedia applications, as well as more traditional applications.

The policy engine in our prototype, used for formulating and executing man-
agement decisions, is built on the Java Expert System Shell (JESS) [3], which
is compatible with the C Language Integrated Production System (CLIPS) [4]
used in our earlier work. Policies are specified using Ponder, and then mapped
into JESS rules for use in our prototype system.

5.2 Experimental Results

For experimentation demonstrating the effectiveness of administrative policies,
we chose to use a distributed client-server video-on-demand application. In re-
sponse to a request from a client, the server streams a given MPEG video over

348 M. Katchabaw, H. Lutfiyya, and M. Bauer

30

3
B
5

:I'L‘W i

(l

=

i “

[rr"w

W l i u'“ L

¥ideo Frame Rate {Frames'Second)
@ 8
—_—
——

—Instance 1 —— Instance 2
Instance 3 Instance 4
— Inztance 21 ——Instance 22/
o T T — ———— T T —— I. .= T i .= i
AT A A A R - - e
TRRESRSIIETI2RE2 AR AANERERNERERRERESS ¥ ¥
Sample Number (1 Sample Every 500ms)

Fig. 3. Video-on-Demand with Admission Control

a TCP connection back to the client, which decodes the video and presents it
to the user. Three Sun Microsystems UltraSparc workstations with Solaris 2.6
were used in experimentation: farquarson, strawberry, and vanilla.

Admission Control. For these experiments, the host farquarson was used to
serve multiple video feeds to clients launched on strawberry. Every 10 seconds,
a new instance of the video-on-demand application client was launched on this
host, and instructed to play the same small 80x60 8-bit video from a file at a
mean frame rate of 25 frames per second, plus or minus 2 frames (yielding an
acceptable quality range of 23 to 27 frames per second). The video was small
enough to be pre-loaded into memory once, and fed to clients without further
disk access at run-time.

Figure @ shows a representative run from the first instance of the video-on-
demand client started during experimentation. As noted in the figure, additional
instances of the application were started roughly 10 seconds apart (sometimes
more, depending on the load on the system induced by other instances of the
application). As can be seen from the figure, quality is quite good until the fifth
instance of the player is added. Variation in quality deliver begins to increase at
this point with each subsequent player added, and mean quality drops. Figure Bl
shows a representative run of this experiment, with the admission control policy
of Section [Tl in place to limit access to the system to maintain quality of
admitted applications. In this case, our prototype system admitted only four

Administrative Policies to Regulate Quality of Service Management 349

ao

—MPEG 1
—MPEG 2

[
=3

o

Video Frame Rate (Frames/Second)

=

41541
659
85

401
7
433
49
65
481
497
513
529
515
561

Fig. 4. Video-on-Demand with Uniform Services

instances of the application at a time, which allowed quality to be delivered in
accordance with QoS requirements.

Differentiated Services. For experimentation with service differentiation, we
chose to use the same application, with a different workload. The application
workload assigned was a 10 minute 320x240 8-bit video of footage recorded by
our network operations counter cameras stored in a local file. The expectation
policy in place dictated that this workload be delivered at a mean frame rate of
24 frames per second, plus or minus 2 frames per second (yielding an acceptable
quality range from 22 to 26 frames per second). In this case, the file was too
large to cache in memory, so we used two different servers, on farquarson and on
vanilla to stream the video to two clients on strawberry.

Figure[lshows a representative run of this scenario using the uniform services
policy discussed in Section 42 in which both instances of the video-on-demand
application compete for resources on a first-come, first-serve basis. Neither in-
stance of the application is able to meet its QoS requirement, as both instances
evenly share available resources. Figure [l shows a representative run in this sce-
nario with the service differentiation policies from Example 2] and Example
discussed in Section in place to favour one application instance over the
other. In this case, service differentiation was enacted as soon as the supply of
resources on the host was exhausted, yet demand for the resources was still high.
Our prototype system scaled back resources allocated to the second instance of
the application and reallocated them to the first. Consequently, the first instance

350 M. Katchabaw, H. Lutfiyya, and M. Bauer

a0

—MPEG 1
—MPEG 2

25 4
I

204

| |"|‘ M .

Video Frame Rate (Frames/Second)

E Mg e g R ErRE R EEREE SRS g S
- - N % @ S oo (SR =] B o % D mg 0B S - W T @
-~ r e - F RN A NN RS R R @A ST e % oT %o F BB
‘Sample Number (1 Sample Every 500ms)

Fig. 5. Video-on-Demand with Differentiated Services

was able to converge and deliver stable quality meeting requirements, while the
second was still able to deliver quality at 50% of its target rate.

User Hints. For experimentation with user hints, we used the same scenario
used in the previous section for differentiated services experiments. This includes
the same application, workload, and host configurations as before.

Figure[d shows a representative run of this scenario with the user hints policy
from Section[d3]in place. In this case, any user hints indicating a change in user
focus or attention would result in a corresponding shift of computing resources.
When the application instances started, the video window of one was placed
over the other, generating a user hint event, and adjusting resource allocations
in its favour. At time A, the ordering of windows was reversed, shifting resources
from one instance to the other. At time B, the ordering was reversed once again,
resulting in a shift back to the original allocation.

Multiple Administrative Policies. The last scenario examined in experimen-
tation involved the use of our admission control, differentiated services, and user
hints policies all at the same time. In this experimentation, we used the same
application, workload, and host configuration as in the previous two sections.
Figure [shows a representative run from this experimentation. Because suf-
ficient resources were deemed available, both instances of the video-on-demand
application were admitted. Windows from both applications were placed in non-
overlapping positions at the top of the window stack. Both application instances

Administrative Policies to Regulate Quality of Service Management 351

30

& 2 —MPEG 1
—MPEG 2

[
=3

w

=

Video Frame Rate (Frames/Second)

o

Sample Number {1 Sample Every 500ms)

Fig. 6. Video-on-Demand with User Hints

competed for resources until the supply was exhausted, at which time service dif-
ferentiation kicked in to favour one instance over the other. When windows were
repositioned so that the favoured application was covered, the user hints policy
overrode service differentiation, and reallocated resources to the uncovered ap-
plication instance. When this instance terminated, the remaining instance was
reallocated resources and completed its execution.

6 Related Work

The IETF is currently developing a set of standards (current drafts found in [7
) that includes an information model to be used for specifying policies, a
standard that extends the previous standard for specifying policies to specify-
ing QoS policies, and a standard for mapping the information model to LDAP
schemas. IETF policies are reasonable for specifying QoS requirements, but we
have found that it was much more difficult to specify administrative and diag-
nostic policies. Generally, we found it easier to specify policies using Ponder and
then translate to the IETF format as necessary.

Other language standards have been proposed by the IETF and others, as
summarized in [I2]. These languages primarily focus on policies applied to a
network device; none of this work addresses the use of policies applied to appli-
cations. Other policy specification languages (for example, [9] and others) focus
on security related policies. The Ponder Policy Specification language [I] has a

352 M. Katchabaw, H. Lutfiyya, and M. Bauer

an

— MPEG 1|
— MPEG 2

Video Frame Rate (FramesSecaond)

o

TERELRERNFBEBEENEBEERS

g 28
——————— ET I I] aom
Sample Mumber {1 Sample Every 500ms)

337

o
®

365
37y
3
407
421
435
449
A3
A7T
491

Fig. 7. Video-on-Demand with Usage Based Differentiated Services

broader scope than most of the other languages, in that it not only was designed
with specifying security, but also with management policy in general.

There has been some recent work in service level management [I0] that de-
scribes an architecture and policies for the management of a differentiated ser-
vices network so that users receive good quality of service and fulfill the service
level agreements. The policies are primarily applied to network devices and cal-
culate the drop rate for an incoming line.

There has also been significant work (for example, [T4] and others) that has
looked at the translation of policies to network device configurations. In most
of this work, policy distribution is initiated by an administrator and focusses
on one device. The emphasis was on the framework and the effectiveness of the
translation as opposed to the effectiveness of different policies.

A deployment model was developed in [2] for Ponder. Each policy type is
compiled into a policy class by the Ponder compiler, and instantiated as policy
objects. Each policy object has methods that allow a policy object to be loaded to
an enforcement agent and unloaded from an agent. Agents register with the event
service to receive relevant events (as specified by the policies) generated from the
managed objects of the system. There is no discussion on the configuration of
devices or applications. Furthermore, this approach has its drawbacks; we found
that the use of JESS would make certain tasks easier and more efficient.

Generally, we found that little related work focusses on policies at the appli-
cation level. We are addressing this oversight through our work in this area.

Administrative Policies to Regulate Quality of Service Management 353

7 Concluding Remarks

The work we describe here is part of ongoing work on addressing issues in the
quality of service management of distributed multimedia applications. This pa-
per focusses on the use of administrative policies to provide flexible and dynamic
control over the quality of service management process to balance the individ-
ual needs of users against the broader goals of administration. We developed a
general policy architecture for facilitating this, and presented a variety of admin-
istrative policies that address several quality of service issues. Using a prototype
system based on this approach, we have been able to carry out a number of ex-
periments that show the positive effects administrative policies can have on the
delivery of quality of service, and demonstrate the effectiveness of our approach.

We have identified several avenues for future work in this area. We need to
investigate other administrative policies that are suitable for quality of service
management. We need to examine and refine the administrative policies we have
already defined to further improve their effectiveness and applicability. To ease
adoption and simplify tasks for administrators, we need to investigate more
user friendly approaches to policy specification, which can then be translated to
Ponder or JESS directly. With an increasing number of administrative policies
to activate at the same time, we need to also increase efforts into techniques for
detecting and resolving conflicts between policies automatically. We also need
to complete on-going work integrating network resource management into our
management system, as well as facilities for I/O and disk resource management.
We need to continue porting efforts to other platforms, including the Microsoft
Windows family, other variants of the Unix environment, and Java.

References

1. N. Damianou, N. Dalay, E. Lupu, and M. Sloman. Ponder: A Language for Spec-
ifying Security and Management Policies for Distributed Systems: The Language
Specification. Imperial College Research Report DOC 2000/01, Imperial College of
Science, Technology and Medicine, April 2000.

2. N Dulay, E. Lupu, M. Sloman, and N. Damianou. A Policy Deployment Model for
the Ponder Language. Proceedings of the 7th IEEE/IFIP Symposium on Integrated
Network Management (IM’01), Seattle USA, May 2001.

3. E. J. Friedman-Hill. Jess, The Rule Engine for the Java Platform. Sandia National
Laboratories Report (SAND98-8206 (revised)), 2003.

4. J. Giarratano and G. Riley. FExpert Systems: Principles and Programming. PWS
Publishing Company, 1998.

5. M. J. Katchabaw. Quality of Service Resource Management. PhD thesis, The
University of Western Ontario, June 2002.

6. G. P. Molenkamp, M. J. Katchabaw, H. L. Lutfiyya, and M. A. Bauer. Distributed
Resource Management to Support Distributed Application-Specific Quality of Ser-
vice. Proceedings of the Fourth IFIP/IEEE International Conference on the Man-
agement of Multimedia Networks and Services, Chicago, Illinois, October 2001.

7. B. Moore, J. Strassmer, and E. Elleson. Policy Core Information Model — Version
1 Specification. Technical report, IETF, May 2000.

354

8.

10.

11.

12.

13.

14.

M. Katchabaw, H. Lutfiyya, and M. Bauer

N. Muruganantha and H. Lutfiyya. Issues in Policy Specification, Distribution and
Architecture for Quality of Service Management. Integrated Network Management,
Volume VIII, March 2003.

R. Ortalo. A Flexible Method for Information System Security Policy Specifica-
tio”. Proceedings of 5th European Symposium on Research in Computer Securily
(ESORICS 98), Louvain-laNeuve, Belgium, Springer-Verlag, 1998.

P. Pereira, D. Dadok, and P. Pinto. Service Level Management of Differentiated
Services Networks with Active Policies. 3rd Conferencia de Telecomunicacoes., Rio
de Janeiro, Brazil, December 1999.

Y. Snir, Y. Ramberg, J. Strassner, and R. Cohen. Policy Framework QoS Infor-
mation Model. Technical report, IETF, April 2000.

G. Stone, B. Lundy, and G. Xie. Network Policy Languages: A Survey and New
Approaches. IEEE Network, 15(1):10-21, January 2001.

J. Strassner, E. Ellesson, B. Moore, and Ryan Moats. Policy Framework LDAP
Core Schema. Technical report, IETF, November 1999.

P. Trimintzios, I. Andrikopoulos, G. Pavlou, and C. Cavalcanti. An Architectural
Framework for Providing QoS in IP Differentiated Services Networks. Proceedings
of the 7th Symposium on Integrated Network Management, Seattle USA, May 2001.

	Introduction
	Policy Architecture
	Policy Specification
	Policies Studied
	Admission Control
	Differentiated Services
	User Hints

	Experience
	Prototype
	Experimental Results

	Related Work
	Concluding Remarks

