10. Some theorems concerning deducibility.

Only for some of these propositions we indicate a proof. (Cf. also Hermes [4].

- (10.1) $\vdash \alpha\alpha$.

 Use (P_x) where not <u>Free</u> x α . Cf. (6.1).
- (10.2) If $\vdash \Sigma \alpha$ then $\vdash \Sigma' \alpha$, if each member of Σ is a member of Σ' . Use (K_{Ω}) , (K_{1}) and (10.1).
- (10.3) If \vdash $\Sigma_1^{}\alpha$ and \vdash $\Sigma_2^{}\alpha\beta$ then \vdash $\Sigma_{12}^{}\beta$ (syllogism). Use (10.1), (W), (E).
- $(10.4) \vdash = tt.$
- (10.5) $\vdash = t_1 t_2 = t_2 t_1$.
- (10.6) $\vdash = t_1 t_2 = t_2 t_3 = t_1 t_3$.
- $(10.7) \vdash = s_1 t_1 \dots = s_r t_r = f s_1 \dots s_r f t_1 \dots t_r.$
- (10.8) \vdash =st s t and \vdash =st t s.

Use (10.1), the second rule for identity, the rule of substitution and (10.2).

(10.9) If $\vdash = \alpha\beta$ then $\vdash = \epsilon \times \alpha \epsilon \times \beta$. Use (10.8) and (E_v).