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Abstract. We describe a new method for detecting features on a marked
RoboCup field. We implemented the framework for robots with omnidi-
rectional vision, but the method can be easily adapted to other systems.
The focus is on the recognition of the center circle and four different cor-
ners occurring in the penalty area. Our constructive approach differs from
previous methods, in that we aim to detect a whole palette of different
features, hierarchically ordered and possibly containing each other. High-
level features, such as the center circle or the corners, are constructed
from low-level features such as arcs and lines. The feature detection pro-
cess starts with low-level features and iteratively constructs higher fea-
tures. In RoboCup the method is valuable for robot self-localization; in
other fields of application the method is useful for object recognition
using shape information.

1 Introduction

Robot self-localization is an important problem in the RoboCup domain. Many
systems rely on Monte Carlo Localization [19] identifying landmarks such as the
colored goals or posts. There have been attempts to detect field line features and
to use them for robot self-localization.

In [I8] straight lines are detected, however no other features, in particular no
curved features are extracted. In [9] straight lines and circles are recognized using
the Hough transform [I0], but no other features like the corner circle sectors or
the rectangle of the penalty area are detected. Although the Hough transform is
robust and conceptually elegant, it is inefficient, since for each type of feature a
separate parameter space has to be maintained. The search for local maxima in
parameter space can be optimized by combining the method with Monte Carlo
Localization, however it is still computationally expensive [9].

In this paper, we aim at efficient and robust feature recognition which allows
the unique localization of the robot, up to the symmetry of the playing field.
We refer to such features as high-level features in the following. We concentrate
on five different high-level features: The center circle and four different corners
which occur at the penalty area, as shown in Fig. [I]

This paper contains two contributions. First, we propose methods which allow
the robust and efficient detection of the features mentioned above. Second, and
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Fig. 1. The center circle and four different corners are recognized by the system. Al-
though the shapes of the different corners are identical, the system is able to identify
the position of a detected corner within the penalty area. Within one side of the playing
field, each of the corners represents a unique feature

more important, we propose a framework which can be extended to recognize
other feature types without doing all the work from scratch.

Feature detection has been addressed in numerous papers: The simplest ap-
proach for feature detection is to directly derive parameters of the feature from
the data. For instance, for three points (not all collinear) one can easily derive the
parameters of the circle containing the points. However, one has to be sure that the
points belong to a circle. If one point is wrong, a false circle will be constructed.

The next class of methods is based on least-squares fitting. Instead of deriv-
ing the parameters with the minimum number of required points, more points
are used and the total error is minimized. There exist fitting methods for lines
(i.e see appendix of [13]), circles[I7] and ellipses[8], or more generally for conic
sections[7]. However it has to be know a priori which points belong to the feature.
Outliers affect the result seriously.

Therefore, attempts to develop robust detection methods have been made.
The probably most robust are Hough transform[I0] based methods. There exist
numerous variants for the detection of lines, circles, ellipses and general polygonal
shapes. Each input item (i.e a point) votes for all possible parameters of the
desired feature and the votes are accumulated on a grid. The parameters with
the most votes determine the feature.

The counterpart of Hough transform methods, are techniques that probe pa-
rameter space. Instead of beginning with the input data and deriving the param-
eters in a bottom-up fashion, parameter space is searched top-down way[16}3].

Other approaches, rely on the initial presence or generation of hypothesis.
RANSACI6], and clustering algorithms such as fuzzy shell clustering (FCS) [5,4]
fall into this category. The advantage of an initial hypothesis is that outliers can
be detected easily by rejecting input points which are too distant.
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A completely different approach is the UpWrite[T}, T4] which iteratively builds
small line fragments from points, and higher features like circles and ellipses from
line fragments. In [T5] the method was compared with the Hough transform and
comparable robustness was reported. A similar approach was reported in [11]
where ellipses are constructed from arcs, the arcs from line fragments and the
line fragments from points.

These ideas have influenced our approach. We follow the principle of con-
structing higher geometric features, such as circles and corners from smaller
components such as lines and arcs. Typically, different types of higher features
are composed of the same kind of lower features. This hierarchical organization
in which higher features share common components makes the overall recogni-
tion process more efficient than approaches which try to detect the individual
features separately.

2 Extracting the Field Lines from the Images

We use our region tracking algorithm proposed in [20] to extract the field lines
from the images. We determine the boundary of all green regions in the images
and we search for green-white-green transitions, perpendicular to the bound-
ary curves. Figure [ illustrates this process for the omnidirectional images we
use. After having extracted the lines they are represented by the pair (P,C)
where P = pg,...,pn_1 is a set of n points with cartesian x,y-coordinates and
C = ¢y, ...,c;—1 supplies connectivity information that partitions P into [ point
sequences. Here each ¢; = (s;,€;) is a tuple of indices determining the start and
end point in P that belong to the corresponding point sequence. That is, point
sequence ¢ consists of the points ps,, ..., pe,. By manipulating the connectivity
information C', point sequences can be split or merged.

Fig. 2. (a) A local line detector is applied along the boundaries of the tracked regions.
(b) The resulting line contours consist of a set of lines, where each line is represented
by a sequence of points which are marked by small circles
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Fig. 3. Four examples of extracted line contours. Some long sequences of points corre-

spond precisely to the shape of the field lines. But there are also outliers, missing lines,
and small line fragments due to occlusion and detection errors

The line contours as illustrated in figure@b) are distorted due to the mirror in
the omnidirectional vision system. In the following we assume that the distortion
has been compensated. However, even without removing the distortion correctly,
we are still able to detect most of the features. Fig3l can provide an impression
of the initial data. In many cases, there are long point sequences that correspond
precisely to the shape of the field lines. However, there are also outliers, missing
lines, and small line fragments due to occlusion and detection errors.

3 The Feature Construction Process

In this section, we describe how features are detected in line contours. The overall
detection process is performed in several steps which iteratively construct higher
features from the components of prior steps. The input for the first step are the
line contours extracted from the images.
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3.1 Splitting the Lines

Field lines consist of curved and straight lines. We want to classify the perceived
line contours into these two categories. However, the initial contours often con-
sist of concatenated curved and straight segments. To classify them separately
we have to split the lines at the junctions. Junctions coincide with points of local
maximum curvature. We retrieve them by first calculating a curvature measure
for each point and then finding the local maxima. Although there exist sophis-
ticated methods to calculate curvature (see for instance [2]), we have adopted a
very simple approach for the sake of efficiency. For each point we consider two
more points, one before and one after the current point. With these three points
we compute two approximative tangent vectors, one reaching from the left to
the midpoint and one from the midpoint to the right point. Finally, we define
the curvature at the midpoint to be the angle by which the first vector has to
be rotated to fall on the second. In order to be resilient against local noise in
the curvature, we choose the enclosing points some distance from the midpoint.
Since all the points are approximately equally spaced, we can afford to use an
index distance instead of a precise geometric distance. That is, for a point p[i] at
index 7 we choose the enclosing points to be p[i — w] and p[i + w] (w =4 in our
implementation). At the beginning and end of each line, we continually decrease
w in order to be able to calculate the curvature. For the first and last point, the
curvature is not defined.

To detect local maxima of the curvature measure, we have adopted the fol-
lowing approach: While traversing the curvature values we detect intervals of
values which exceed a given threshold and within each interval, we determine
the index with the maximal value. To avoid extrema too close together, a new
interval is opened only if it is at least at some given distance from the previous
interval. Figure M shows the locations found for split points for various lines.
Splitting can be performed efficiently by modifying the connectivity information
in C (see section 2).
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Fig. 4. Some examples that demonstrate the location of the split points
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3.2 Classification

After the point sequences have been split, we classify each split sequence either
straight or curved, applying the following test criterion: Similarly as for the cur-
vature measure, we determine the angle between two vectors, but this time those
defined by the first, the mid and the last point of the current point sequence.
If the absolute value of the angle exceeds a threshold t4 (t4 = 0.4 radians in
our application), then the point sequence is declared to be curved, otherwise
straight. Independently of the actual choice of t4 wrong classifications can oc-
cur. However, the overall detection process can cope with a limited number of
erroneous classifications.

3.3 Constructing Arcs and Straight Lines

For each straight point sequence a line is constructed taking the respective start
and end point. Similarly, a circular arc is constructed for each curved point
sequence: The start point, the midpoint and the end point define two segments
whose perpendicular bisectors intersect at the center of the circular arc. In order
to verify, whether the points really form an arc, we calculate the mean deviation
of the points from the arc’s radius and discard the arc if the distance is above
the threshold t,.,q = 0.03. In order to allow larger arcs to have a larger deviation,
we divide the mean deviation by the radius before testing against the threshold.

3.4 Grouping Arcs and Detecting the Center Circle

Circular arcs which emerge from the same circle have centers which are close
together. In order to group them, we search for clusters of the center points of
the arcs. We apply the following cluster algorithm: Initially we have no clusters.
The first cluster center is set at the center of the first arc. Then, we traverse
the remaining arcs, and calculate the respective distance of their centers to the
cluster centers. We choose the closest existing cluster and verify the distance. If
it exceeds half of the actual arc’s radius, we start a new cluster at the respective
position. Otherwise, we adapt the cluster center to represent the weighted mean
position of all assigned arc’s centers. Here, the weights are the lengths of the arcs,
which we approximate by the number of points of the point sequence from which
the arc was constructed. We proceed in this way for all arcs and we obtain a set
of clusters from which we choose the one with the greatest weight which reflects
the number of assigned points. We demand, that at least 20 points have to be
assigned and that the radius should be approximately one meter (the radius of
the center circle). If these conditions are met, we generate a hypothesis for the
center circle which will be refined as described next.

3.5 Refining the Center Circle

The center circle was constructed from the arcs and the arcs where constructed
from point sequences which were classified as curved. However, it happens often
that point sequences which are part of the center circle are short and almost
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straight. Typically, they are classified as straight and no arcs are constructed
from them. We want to include this data for the precise detection of the center
circle. Thus, we traverse all straight point sequences and verify if they could
be part of the initial hypothesis for the center circle. We verify the distance of
the actual point sequence to the circle and whether the orientation of the point
sequence fits the tangent direction of the circle, at the corresponding location.
We allow some tolerance, since the initial hypothesis is not perfect. In this way
we obtain a set of points, the points of the arcs and the points of misclassified
straight lines which belong to the circle. Next, we refine the initial hypothesis of
the circle using Landau’s method [I2], a simple iterative technique which adjusts
the center and the radius to the set of points. Typically, only few iterations (1-4)
are required. Figure [ illustrates this step. Later, we will search for the center
line which passes through the circle in order to determine the corresponding
orientation.

(a) (b)

Fig. 5. The position and radius of the initial circle is refined. Points which are consid-
ered to originate from the circle are shaded. Initially (a), only the points of curved point
sequences are considered to be part of the circle. Thus, the initial circle is not optimal.
In (b) additional points have been determined by identifying point sequences which
are close to the initial circle. The initial circle is iteratively adjusted to the points by
Landau’s method [12]. Only few iterations are required (two iterations in this example)

3.6 Determining the Principal Directions

Straight field lines of the playing field are either parallel or perpendicular. We
want to determine the corresponding two orientations in the extracted con-
tours. We will refer to them as principal directions. We will determine them
with the straight lines constructed previously. Typically, spurious straight lines
are present and we apply a clustering algorithm to cope with the outliers. For
each line ¢, we calculate its orientation ¢;, normalizing the orientation to lay
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Fig. 6. The original line contours are painted gray. In (a) the straight lines are drawn
by black arrows and the principal axis’ found are shown. Discarded straight lines are
drawn in gray. Theresults of grouping the lines into collinear sets are shown in (b).
The dashed thin lines reflect the groups. Each group is simplified by a single line. The
order of the groups is shown by numbers

within [0, ..., 7]. Each line votes for the angles ¢; and ¢; + m/2. Here, we ap-
ply the same clustering method as for the center circle, but this time working
on one-dimensional values. We open a new cluster if the angular difference to
the best cluster exceeds 0.3 radians. Otherwise, the cluster center is adjusted,
with the weights being the lengths of the contributing lines. Finally, the cluster
with the greatest weight determines the first principal direction 1g. The second
principal direction ¥, equals the first, rotated by 90 degree. In the following
sections we will consider two lines through the origin having the direction g
and 1)1, respectively. We will refer to these lines as the principal azis ag and aj.
Figure [Bh) shows an example.

3.7 Discarding Unreliable and Grouping Collinear Lines

Having determined the main axis’ ag and a; we consider three types of lines.
Those which are perpendicular to ag, those which are perpendicular to a;, and
those whose orientation differs from both 1y and 7 by more than 0.3 radians.
We consider the latter lines unreliable and discard them. The following step is
performed for both ag and a; together with the respective perpendicular lines.
Therefore, we will write a instead of ag and a; in the following.

Let L = {lg,l1,...,ln} denote the set of lines I; which are perpendicular to
a. Furthermore, let m; be the mid point of line [;. We consider the orthogonal
projections of all m; onto the axis a. Lines which are collinear will yield close
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projection points. Since a passes through the origin, each projection point of my;
can be represented by a single value ¢; which is the distance of the projected
point to the origin. Collinear lines will have the same values ;. However, since
the lines are not precisely collinear, the ¢; will differ slightly. Thus, to find groups
of collinear lines which are perpendicular to a we search for clusters of the ;.
Again, we apply the same clustering algorithm described for the circle detection
and the determination of the principal directions. A new cluster is opened if
the distance to an existing cluster is greater than 20 centimeters. Each cluster,
stores the lines which were assigned to it. Thus, each cluster represents a group
of collinear lines which are perpendicular to the respective main direction. The
lines within each group are replaced by a single line which encompasses the full
range of the original lines. Finally, we sort the groups by their one-dimensional
cluster centers t;. Note, that the difference t; — ¢, of two groups of parallel lines
is just the distance between the lines. By sorting for ¢;, we obtain a topological
order of the groups of collinear lines which will be very useful for the detection of
the penalty area and the corresponding corners. Figure[@b) illustrates the results
of this processing step.

3.8 Detecting the Corners of the Penalty Area

The rectangle marking the goal area and the rectangle marking the penalty area
produce three lines parallel to the baseline. The lines are spaced at a distance of
50 and 100 centimeters. Having grouped and sorted the sets of collinear lines, we
can easily detect such a structure. Here, we allow a tolerance of 20 centimeters
when verifying the distances. Note, that the structure emerges at the start or
end of the sequence of sorted collinear line groups, since the lines are the outmost
existing lines. Having detected such a structure, the direction towards the goal
is now known. Thus, we can distinguish between the left and right side of the
lines. In order to find the respective corners, we simply verify whether we find
perpendicular lines whose endpoints are close to the given lines. Some additional
constraints have been necessary in order to avoid spurious detections. First, if
we find three parallel lines that have the given structure in their distances, we
calculate the overall length of the structure, in the direction of the lines. This
length should not exceed the length of the penalty area, which is 5 meters. We
allow a tolerance of 50 centimeters. A second constraint is that no lines which
are perpendicular to the three lines are beyond the goal line.

4 Experimental Results

This section describes our experimental results. Feature detection is influenced
by many factors: By the preprocessing step which extracts the field lines, by
line occlusions, by the region tracking algorithm, by the geometrical distortion
calibration and on the lighting conditions.

We tried to focus on the main situations. In order to test the influence of
different environments we examined two different playing fields. The first with
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Fig. 7. The path shows a robot moving on the field along a predefined figure. As can

be seen, the maximum deviation is lower than 20 cm for a robot driving 0.8 m/s

a green carpet and artificial lighting, the second with a reflecting linoleum floor,
with natural light shining from one side through an array of windows. However,
since the reflections on the floor where almost white in the images, we reduced
the influence of natural light by adding artificial light from above and using
venetian blinds. However, we did not shut the blinds completely.

On both playing fields, we let the robot automatically move on a trajectory
forming an eight (see figure [7). Localization was achieved using odometry and
the recognized features, which yield unique robot poses, up to the symmetry of
the playing field. On both fields, the robot did not loose its position. After 10-20
minutes we stopped the experiment. Moreover, when the robot was manually
transferred to an unknown position, the robot immediately found its correct
position after perceiving a feature. The maximum positional error while driving
was about 20 cm.

While the robot moved, we logged all the extracted line contours in a file
and later, we manually verified the feature recognition for all frames. On both
fields not a single false positive was detected. However, there are situations when
features are not recognized.

The corners of the penalty area cannot be detected, if an obstacle is occluding
the corner. That is, the system does not infer the intersection point of two
perpendicular lines, but rather demands that the endpoints of two lines are close
together. Here, some improvements might be possible, however one must take
care, not to infer corners which do not exist. However, all four corners will be
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rarely occluded at the same time. With our robot, which has a very low mirror
and thus, has a limited range of sight, the robot can typically not detect the
corners in a distance greater than 3 meters. However, during attack and defense
when the robots are near the penalty area, at least one of the corners can be
seen most of the time.

The recognition of the center circle is possible up to a distance of approxi-
mately 3 meters, using our robots. We have some astonishing situations, where
the center circle is still detected, although large parts are occluded by obstacles.
This is possible, because a single fragment of a curved line can yield a hypoth-
esis for the circle, which is then verified. However, if not a single curved line is
found, the center circle is not detected. This typically occurs, when the center
circle is distant to the robot, and when the correction of the optical distortion
becomes imprecise. Then the splitting procedure tends to split noisy curved
lines into many small straight fragments. At this point, further improvements
are certainly possible. However, the important point is, that no false positives
are detected. Also, note that it is not necessary to detect the features in every
frame. Although the current system is able to run the recognition on every frame
with 15 fps, this not necessary. It suffices, to perform the recognition, say every
10th frame, since the features yield very strong position clues.

5 Conclusion

We have proposed a method for detecting the center circle and four different
types of corners in the neighborhood of the penalty area. Each of these features
allows to localize the robot, up to the symmetry of the playing field. The method
is robust and efficient and we have tested it thoroughly. Also, we have presented
a general framework for feature construction. It should be possible to easily ex-
tend the approach to detect other features, such as the corner circle sectors of the
playing field, for instance. Detected arcs, groups of straight lines, and the main
directions are already available and it should be possible to construct different
features from them. We hope that the palette of features will be extended con-
tinually by other researchers. Also, the individual algorithm can be improved or
extended. In our approach we have used the region tracking algorithm described
in [20]. However, maybe more efficient methods can be found that extract chains
of points, representing the field lines. Here again, adaptivity to the illumination
is the primary difficulty.
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