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Abstract. Motion detection and tracking while moving is a desired ability for 
any soccer player. For instance, this ability allows the determination of the ball 
trajectory when the player is moving himself or when he is moving his head, for 
making or planning a soccer-play. If a robot soccer player should have a similar 
functionality, then it requires an algorithm for real-time movement analysis and 
tracking that performs well when the camera is moving. The aim of this paper is 
to propose such an algorithm for an AIBO robot. The proposed algorithm uses 
motion compensation for having a stabilized background, where the movement 
is detected, and Kalman Filtering for a robust tracking of the moving objects. 
The algorithm can be adapted for almost any kind of mobile robot. Results of 
the motion detection and tracking algorithm, working in real-world video 
sequences, are shown. 

1   Introduction 

Movement analysis is a fundamental ability for any kind of robot. It is especially 
important for determining and understanding the dynamics of the robot’s surrounding 
environment. In the case of robot soccer players, movement analysis is employed for 
determining the trajectory of relevant objects (ball, team mates, etc.).  

However, most of the existing movement analysis methods require the use of a 
fixed camera (no movement of the camera while analyzing the movement of objects). 
As an example, the popular background subtraction movement detection algorithm 
employs a fixed background for determining the foreground pixels by subtracting the 
current frame with the background model. The requirement of a fixed camera restricts 
the real-time analysis that a soccer player can carry out. For instance, a human soccer 
player very often requires the determination of the ball trajectory when he is moving 
himself, or when he is moving his head, for making or planning a soccer-play. If a 
robot soccer player should have a similar functionality, then it requires an algorithm 
for real-time movement analysis that can perform well when the camera is moving. 
The aim of this paper is to propose such an algorithm for an AIBO robot. This 
algorithm can be adapted for almost any kind of mobile robot. 

The rationale behind our algorithm is to compensate in software the camera 
movement using the information about the robot body and robot head movements. 

                                                           
1 This project was partially funded by the FONDECYT (Chile) project 1030500. 
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This information is used to correctly align the current frame and the background. In 
this way a stabilized background is obtained, although the camera is always moving. 
Afterward, different traditional movement analysis algorithms can be applied over the 
stabilized background. Another feature of our algorithm is the use of a Kalman Filter 
for the robust tracking of the moving objects. This allows to have reliable detections 
and to deal with common situations such as double detections or no detection in some 
frames because of lighting conditions. 

2   Related Work 

A large literature exists concerning movement analysis in video streams using fixed 
cameras. As an example, every year is held the PETS event, in which several state-of-
the-art tracking and surveillance systems are presented and tested (see for example [4] 
and [5]). Different approaches have been proposed for moving object segmentation; 
including frame difference, double frame difference, and background suppression or 
subtraction. In the absence of any a priori knowledge about target and environment, 
the most widely adopted approach is background subtraction [3]. Motion History is 
another simple and fast motion detection algorithm. According to [8], the Motion 
History and Background Subtraction algorithms have complementary properties, and 
when possible it is useful their join use. 

Image alignment using gradient descending is one of the most used alignment 
algorithms. It can be divided into two formulations: the additive approach, which 
consists on start from an initial estimation of the parameters, and iteratively find 
appropriates parameters increments until the estimated parameters converge [7]; and 
the compositional approach, which estimates the parameters using an incremental 
warp. This last approach iteratively solves the estimation problem using an 
incremental warp of the images to be aligned with respect to a template. This allows 
pre-computing the Jacobean more efficiently [1]. But the key for obtaining an 
efficient algorithm is switching the role of the image and the template. This leads to 
the formulation of the inverse compositional algorithm [2], where the most 
computationally expensive operations are pre-calculated, allowing a faster 
convergence. In [6] it was proposed the robust inverse compositional algorithm as an 
extension to the inverse compositional algorithm, allowing the existence of outliers 
into the alignment with almost the same efficiency. 

Regarding moving objects tracking, Kalman Filtering, Extended Kalman Filtering 
and Particle Filtering (also known as Condensation and Monte Carlo algorithms) are 
some of the most common used algorithms. Due to its simplicity, the Kalman filter is 
still been used in most of the general-purpose applications. 

The here-proposed motion detection and tracking system is based in the described 
algorithms: background difference and motion history for motion detection, robust 
inverse compositional algorithm for the image and background alignment, and 
Kalman filtering for the tracking of moving objects. 
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3   Proposed Motion Detection System 

3.1   System Overview 

In figure 1 is shown a block diagram of the proposed system. The system is composed 
by four main subsystems: Image Alignment, Motion Detection, Detection Estimation, 
and Background Update. In the Image Alignment module, the last updated 
background image (Bk-1) and the last frame image (Ik-1) are aligned with respect to the 
current frame image (Ik). The camera motion angles (ακ) are employed in this 
alignment operation. Both aligned images, Bk

*  and Ik−1
* , respectively, are then 

compared with Ik in the Motion Detection module for determining the current moving 
pixels. As a result of these comparisons the Motion History and Background 
Subtraction algorithms generate preliminary detections (a set of moving pixels),  

KHD  and 
KBD , respectively. These detections are joined in the Rejection Filter 

module, and a single set of candidate blobs (in this case moving objects), built using 
adjacent moving pixels, Detk, is obtained. The motion detections are analyzed in the 
Detection Estimation module using a Kalman Filter, and the final detections Detk* are 
obtained. Finally, the background is updated using Bk

* , Ik and Detk* (which defines 
the new foreground pixels) by the Background Update module. 

 

Fig. 1. Block diagram of the proposed system. Parameters are described in the main text 

3.2   Image Alignment 

The alignment of the last updated background image (Bk-1) and the last frame image 
(Ik-1) is implemented using the robust inverse compositional algorithm [6]. The 
alignment operation is implemented as a sequence of incremental warps (see section 
2). The initial estimation of the warp is calculated based on the camera motion angles 
(stored in the αk vector; they correspond to the tilt, pan and roll camera rotation 
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angles). The initial estimated warp is a composition of a rotation followed by a 
displacement. The angle of rotation is estimated as the variation of the roll angle of 
the camera, while the displacement Dx/Dy in the X/Y axis corresponds to the pan/tilt 
angle: 
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where 
Rα  represent the rotation in radians, Dx and Dy represent the displacement in 

pixels in their respective axis, BA is the angle of the body, and the angles 
1tiltα , 

1panα , 

1rollα , 
2tiltα , 

2panα , 
2rollα  are the tilt, pan and roll angles of the robot’s head in the last 

and in the current image, respectively, measured in radians. 
Then the warp is defined by a set of six parameters as: 

( )
( ) 6412

5311

PyPxPWy

PyPxPWx

+⋅++⋅=
+⋅+⋅+=                                              (2) 

where (Wx,Wy) define the new pixel coordinates which initial coordinates were (x,y). 
A pure displacement warp has the parameters P1 to P4 equals to zero, and the 
parameters P5 and P6 equals to the displacement in pixels in the x and y axis 
respectively. A pure rotation warp has the parameters P1 to P4 equals to the rotation 
matrix, and the parameters P5 and P6 equals to zero. Finally, a compound warp of a 
rotation followed by a translation have the parameters: ( ) 1cos1 −= RP α , 

( )RP α−= sin2 , ( )RP αsin3 = , ( ) 1cos4 −= RP α , DxP =5 , DyP =6 . 
For aligning Bk-1, the area of the current image (Ik), which has being estimated to 

overlap the background, is chosen as a template for the algorithm. This preliminary 
template is divided into nine blocks (sub-images). In each block is calculated the 
normalized variance of its pixels (intra-block variance), and the normalized variance 
of the error with respect to the correspondent block in the background (inter-block 
variance). A variability factor is computed as the quotient of the intra-block variance 
and the inter-block variance. The six blocks with the largest variability factor are 
selected as the final templates for the background alignment. Taking into account the 
normal camera motion, Bk-1 and Ik should have different spatial sizes for a correct 
alignment. In our implementation Bk-1 has the same height than Ik, but the double of its 
width. We will denote the set of parameters defining the warping of the background 
PB. The algorithm for obtaining PB is detailed described in [6].  

For aligning Ik-1 the calculated warp of Bk-1 is employed as a first approximation. 
However, given that Ik-1 and Ik have the same size, the calculated warp has to be 
actualized with a composition with a prior displacement to achieve the same spatial 
configuration of the background (Ik-1 should be translated into background spatial 
coordinates), and then with a composition with a post displacement to reach the 
spatial configuration of the current image (the warped image should be taken back to 
its original coordinates). Thus, defining P1 as the set of parameters needed to produce 
a displacement equal to the last position of Ik-1 inside the background, and defining P2 
as the set of parameters needed to produce a displacement equal to the inverse of the 
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estimated final position of Ik inside the background, the warp needed to align Ik-1 is 
(the set of parameters defining this warping are PI):  

  W (x,PI) = W (x, P2 ) (W (x, PB) W (x, P1 ))                              (3) 

For simplicity on the notation, x denotes both spatial image coordinates. The 
function W(x, P*) corresponds to a warping operation over x using the set of 
parameters P*. 

3.3   Motion Detection 

The motion detection module is composed by three algorithms, Motion History and 
Background Subtraction for movement detection, and Rejection Filter for filtering 
wrong detections and forming the movement blobs.  

3.3.1   Motion History 
The difference image DMk is defined as: 

⎩
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where mIncrement corresponds to a factor of increment in the motion and Tm 
corresponds to a motion threshold. DMk contains the initial set of points that are 
candidate to belong to the MVOs (Moving Visual Object). In order to consolidate the 
blobs to be detected, a 3x3 morphological closing [10] is applied to DMk. Isolated 
detected moving pixels are discarded applying a 3x3 morphological opening [10]. The 
motion history image MHk, calculated from DMk, is then updated as: 

kkk DMrDecayFactoMHMH += − *1
                                          (5) 

Finally, all pixels of MHk whose luminance is larger than a motion detection 
threshold (Th) are considered as pixels in motion. These pixels generate the detection 
image 

KHD . 3x3 morphological closing and opening are applied to 
KHD . 

3.3.2   Background Subtraction 
Foreground pixels are selected at each time k by computing the distance between the 
current image Ik and the current aligned background *

kB , obtaining 
KBD  as: 
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In order to consolidate the blobs to be detected, a 3x3 morphological closing is 
applied followed by a 3x3 morphological opening.  
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3.3.3   Rejection Filter 
By means of 8-connectivity movement blobs, composed by connected candidate 
moving pixels, are built using 

KHD  and 
KBD . For each blob b is defined a movement 

density MDb as: 
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∈
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=                                                     (7) 

MDb measures the average change in the last frame for the blob b. Ghosts (groups 
of pixel that are not moving, detected like movement because they were part of a 
MVO in the past) should have a low MDb, while the MVOs should have a large MDb. 
Then, blobs with a small area (area ≤ Tb), with a large area (area ≥ Ts) and blobs with 
a small movement density (MDb ≤ Td) are considered miss detections and discarded. 

3.4   Detection Estimation 

Targets (the MVOs) are tracked by keeping a list with the state of each of them. The 
state of a given target u includes: the position of the center of mass (xu, yu), the speed 
(Vxu, Vyu), the area (au) and the growing speed (Vau). For each received movement 
blob is calculated the area and the center of mass. These variables are used as sensor 
measurements, and integrated across the different motion detections (the ones coming 
from 

KHD  and 
KBD ) and over time using a first order Kalman Filter [10]. This process 

includes 6 stages: prediction, measure-target matching, update, detection of new 
targets, deprecated targets elimination and targets merge. After those 6 stages the 
target state list, whose values are estimated by the Kalman Filter, corresponds to the 
final motion detections (Detk*). 

Prediction. Using a first order cinematic model it predicts the state vector for each 
target, based on the last estimated state, and projects the error covariance ahead. 

Measure-Target matching. In order to update the targets is imperative identifying 
which (blob) measure affects each target. For each measure-target combination is 
calculated a confidence value as the probability function given by the Kalman filter 
for the target evaluated on the measure. For each target, all measures with a 
confidence value over a threshold Tt1 are associated with the target. If a measure does 
not have any associated target, then it is consider as a new target candidate and passed 
to the Detection of new targets stage. For each measure associated with a target, 
speeds (spatial speed: Vx and Vy, and growing speed Va) are to be estimated. This 
estimation is performed using the difference between the target state before the 
prediction and the measured state, divided by the elapsed time since last prediction. 

Update. It computes the Kalman gain, updates the state vector for each target using 
their associated measures, and updates the error covariance. The targets without 
associated measures are not updated. 

Detection of new targets. All measures without an associated target are considered as 
new target candidates. Their spatial speed is calculated as the distance from the image 
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border, in the opposite direction of the image center, divided by the elapsed time since 
the last frame, and their growing speed is set to zero. 

Deprecated targets elimination. Targets without associated detections in the last 2 
frames are considered as disappeared MVO and eliminated from the target list. 

Targets merge. For each target-target combination two confidence value are 
calculated as the probability function given by the Kalman filter for one target 
evaluated on the other target state. If any of this confidence values is over a threshold 
Tj, then the two targets are considered equivalents, and the target with the largest 
covariance (measured as the Euclidian norm of the covariance matrix) is eliminated 
from the target list. 

3.5   Background Update 

The background model is computed as the weighted average of a sequence of 
previous frames and the previously computed background: 
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4   Experiments 

For the experiments, an AIBO robot using the motion software of the UChile1 AIBO 
soccer team [11], configured for allowing just head movements was used. The 
algorithm runs in the robot in real time. For analysis purposes, two video sequences 
were employed. In both, the robot moves its head in an ellipsoidal way, keeping the 
roll angle of the camera approximately aligned with the horizon. While the robot is 
moving its head, a ball is moving, once in the same direction of the camera 
movement, and once in the opposite direction. In figure 2 are shown the different 
stages of the algorithm while processing the frame 28 of the first video sequence. 

The here-proposed motion detection algorithm can be enhanced using additional 
object information, such as color when detecting moving balls. Thus, in the Rejection 
Filter module was implemented a ball color filter applied to the blobs. This color 
filter uses the average U-V values (YUV color space) from each blob for filtering. If 
the Euclidean distance between the U-V average value of a blob and the ball U-V 
value (model) is larger than a threshold Tc, then the blob is discard. This filter 
decreases significantly the number of false positives errors. It should be stressed that 
this filter can be applied only after blobs have been already detected. 

The first/second video sequence was 33/37 frames long. 11/14 frames contain a 
moving ball, but the first appearance of the ball cannot be detected because there is no 
way to know if the ball is moving or if it is stopped. Thus the relevant information are 
only 9/12 frames with moving ball, 6/9 of them were successfully detected, which 
correspond to a successful detections rate of 67%/75%. In table 1 are shown some 
statistics of the analysis of these video sequences, using and not using the color filter. 
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(a) (b) 

  
(c) (d) (e) 

  
(f) (g) (h) 

Fig. 2. Process stages at frame 28 in video sequence 1. (a) Motion history representation MHk. 
(b) Background model *

kB . (c) Motion history error image. (d) Background subtraction error. 
(e) Current Image Ik. (f) Motion history detection DHk in black overlapped to current image. (g) 
Background subtraction detection DBk in black overlapped to current image. (h) Final detections 
DETk*, generated by the Kalman Filter 

Table 1. Analysis of detections in the video sequence 1 and 2 

Sequence number 1 2 

Number of frames 33 37 

Frames with a moving ball present 11 14 

Ball color filter Off On Off On 

Frames with successful moving ball detection 6 (55%) 6 (55%) 9 (64%) 6 (43%) 
Frames with a moving ball present but not detected 5 (45%) 5 (45%) 5 (36%) 8 (57%) 

Detections corresponding to moving balls 7 6 9 6 
Detections corresponding to ghosts 9 0 7 0 
Detections corresponding to other moving objects 10 0 8 0 
Fake detections (excluding ghosts) 296 2 265 5 
Total number of detections 322 8 289 11 

False detections average by frame, excluding ghosts 8,97 0,24 7.16 0,14 
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5   Conclusions 

Results of the motion detection and tracking of objects in real-world video sequences 
using the proposed approach were shown. The system operates in real-time and the 
relevant moving objects, the ball in this case, are detected and tracked. 

In a future work we will extend our system by using also body displacement. This 
extension would consider additional image displacements and rotations based on the 
robot joint angles. We will also share the ball tracking information between different 
robots by implementation a cooperative tracking algorithm. Another feature of the 
system to be improved is the high amount of false detections. We are working on a 
heuristic for reducing this kind of detections, beyond the use of a simple color filter. 
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