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Abstract. In this study, a new method called Reverse Monte Carlo Localization
(R-MCL) for global localization of autonomous mobile agents in the robotic soc-
cer domain is proposed to overcome the uncertainty in the sensors, environment
and the motion model. This is a hybrid method based on both Markov Localiza-
tion(ML) and Monte Carlo Localization(MCL) where the ML module finds the
region where the robot should be and MCL predicts the geometrical location with
high precision by selecting samples in this region. The method is very robust and
fast and requires less computational power and memory compared to similar ap-
proaches and is accurate enough for high level decision making which is vital for
robot soccer.
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1 Introduction

The localization problem is estimation of the position of a robot relative to the en-
vironment, using its actions and sensor readings. Unfortunately these sensors and the
environment are uncertain, so the results are typically erroneous and inaccurate. Conse-
quently, localization still remains as a nontrivial and challenging problem and from the
simplest geometric calculations which do not consider uncertainty at all, to statistical
solutions which cope with uncertainty by applying sophisticated models, many solutions
have been proposed for this problem [1]], [2], [3]]. Although some of these approaches
produce remarkable results, due to the nature of the typical environments they are not
satisfactory because fast solutions with less memory and computational resources are
demanded. This is especially true for a real-time application in a dynamical soccer field
using robots with onboard computational resources. Generally, solutions producing pre-
cise results suffer from slowness, and high memory usage. Whereas a fast solution in
practice typically produces only coarse results. Even when they produce precise local
results, some approaches like Kalman filters, fail to find the global position.

This work is a part of the Cerberus Team Robot soccer project [4], and aims to localize
the legged robots in the soccer field globally, while solving problems mentioned above.
There are a several limitations and assumptions related to the rules of the Robocup
[S]. In this work, three approaches to solve this problem were developed in parallel.
The first of these new approaches is a new geometrical localization algorithm, which is
based on just a single landmark observation at a time. This approach is later extended
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to a ML based method. In addition, a novel hybrid approach called Reverse Monte
Carlo Localization(R-MCL) combining the ML and MCL methods is designed and
implemented.

The organization of the paper is as follows: In the second section, a survey of local-
ization methods is presented. In the third section detailed information about the proposed
approach can be found. In the fourth section, the results of the application of proposed
approach are present. In the fifth section, conclusions and suggestions for future work
are given.

2 Localization Methods

The simplest localization method depending on the range and bearing data is trian-
gulation, which uses geometry to compute a single point that is closest to the current
location. Butin real world applications a robot can never know where it is exactly because
of the uncertainty in its sensors, and the environment. Consequently, several different
approaches which estimate the position of robot probabilistically were introduced to
integrate this uncertainty into the solutions.

Kalman filter (Kalman-Bucy filter) is a well-known approach for this problem. This
filter integrates uncertainty into computations by making the assumption of Gaussian
distributions to represent all densities including positions, odometric and sensory mea-
surements. Since only one pose hypothesis can be represented, the method is unable to
make global localization, and can not recover from total localization failures [6], [[7], [3].

Many works consider Markov localization (ML) [1], [8]. ML is similar to the
Kalman filter approach, but it does not make a Gaussian distribution assumption and

Table 1. Comparison of Localization Methods

Method Capability of |Accuracy|Speed|Memory|Robustness to noise| Fast recovery
global localization usage from kidnapping

EKF no H H L L L
ML yes L#* M H** H H
MCL yes M** M H** M M
SRL1*%#% yes M#* M M** M L
SRL2%*%* yes M** M M#* L H
A-MCL yes M** M M** XH H
M-MCL yes M** M M** H H
ML-EKF yes M#* M H** H H
Fuzzy* yes L** M H** H H
Geometrical yes H** H L L L
R-MCL yes M#* H H** H H

* Fuzzy method is the method implemented in [12].
** These are grid based and sample based methods. So accuracy and memory usage changes
with the cell size, and the number of samples used. But they still remain in acceptable ranges.
*#% SRL1 and SRL2 differ in their wish to accept additional samples on each noisy observation.
This leads fast recovery from kidnapping but increase noise and decrease accuracy.
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allows any kind of distribution to be used. Although this feature makes this approach
flexible, it adds a computational overhead.

Monte Carlo Localization (MCL) is a version of Markov localization that relies on
sample-based representation and the sampling/importance re-sampling algorithm for
belief propagation [2], [9]. Beliefs are represented by a set of K weighed samples
(particles) which are of type ((z,y, 0), p), where p’s are positive numerical weighting
factors such that sum of all p is 1. Odometric and sensory updates are similar to ML.
Most of the MCL based works suffer from the kidnapping problem, since this approach
collapses when the current estimate does not fit observations. There are several extensions
to MCL that solve this problem by adding random samples at each iteration. Some of
these methods are Sensor Resetting Localization (SRL), Mixture MCL (Mix-MCL), and
Adaptive MCL (A-MCL). In SRL, when the likelihood of the current observation is below
athreshold, a small fraction of uniformly distributed random samples is added [[10]. Mix-
MCL additionally weights these samples with current probability density. This method
has been developed for extremely accurate sensor information [3]]. Adaptive MCL only
adds samples when the difference between short-term estimate (slow changing noise
level in the environment and the sensors) and the long-term estimate (rapid changes in
the likelihood due to a position failure) is above a threshold. The key idea is to use a
combination of two smoothed estimates (long term and short term) of the observation
likelihoods [3].

ML-EKF method is a hybrid method aiming to make use of the advantages of both
methods, taking into consideration the fact that ML is more robust and EKF is more
accurate. So this method finds the location of the agent coarsely by grid based ML and
then inside this area uses EKF to find a more accurate solution [3]].

Although there have been only a few fuzzy logic based approaches, they appear to be
promising [L1], [12]. In these approaches, the uncertainty in sensor readings (distance
and heading to beacons) is represented by fuzzy sets. The above mentioned localization
approaches and their capabilities are summarized in Table[Il

Some of the comparisons of the known algorithms in this part are based on [3]]. There
is an ongoing work for testing of these methods with same data set for comparison.

3  The Proposed Approach

In robot soccer, teams of robots, that are capable of seeing and moving, play matches
against each other, and the team with the highest goal score win the match. In order to
do this, the player robots must detect their location, the goals, the ball, the members of
their team and the opponent team members(optional for high level planning), and place
the ball in the opponent team’s goal to score a goal. A robot is typically expected to find
its own location using the six distinguishable unique landmarks in the field, and then use
this information to find the location of the ball and goal. Consequently, localization is a
vital problem for robot soccer.

Since, as discussed in section 2, no single method satisfies all the needs in terms
of single robot localization, three methods including a hybrid algorithm which tend to
integrate the advantageous parts of single methods and overcome the deficiencies were
developed in this work.



Robots from Nowhere 597

3.1 Geometrical Localization

The geometrical localization method assumes the input data is measured exactly (does
not contain noise), and therefore does not need any error modeling. Our previous algo-
rithm in [13] required at least two landmarks to be seen at any time to calculate the
position accurately. Although it worked also for the one landmark case, it could not give
satisfactory results. This new method is designed to work with one landmark information
which is much more realistic within the new field sizes. So even if the robot sees more
than one landmark, they are treated separately and one-landmark information is used
at each step. The ratio of the distance between the predicted location and the observed
location of the landmark is used to predict the new x and y coordinates of the robot.

The bearing is also found by using the new predicted « and y coordinates. Whenever
a new visual data comes, the new position is calculated based on the measurement and
old position. A point between the newly measured position and the old position is taken
as the new position. This new position is placed between the two positions proportional
to the belief of the robot on them. The assumption here is that: The more you believe in a
position the closer you are to that position. This is used to reduce the effect of inaccurate
measurements on the new position. When the odometric data arrives, the position is
blurred among the moved distance and heading. The bearing is added to the original
heading and it is normalized to give the new heading of the robot. The odometric data
consists of the distance moved forward, left and the bearing of turn. This method assumes
that the measurements are exact, or noise is below a threshold.

3.2 Markov Localization

The assumption made about error in the previous subsection is not correct in general. So
we need a method to handle the uncertainty in the visual and odometric data. Since ML
is a grid-based algorithm, it gives a coarse but robust result. Unfortunately it requires
complex computations since at every step all grid cells should be taken into account.
Although the accuracy of the result might not be sufficient for implementing high level
planning which is required for robot soccer. It can converge faster than the sample based
algorithms. So a ML based method is designed and implemented. This method works in
a similar manner as the geometrical localization algorithm (Figure [T)):

For all grid cells
If visual data available
Apply visual update
Else if odometric data availabla
Apply odometric update
Calculate probability of each cell according to ML
I use current beliefs and probability, and newly calculated belief and probability
Ilof each cell and calculate the weighted average
return the best cells (with maximum probability)

Fig. 1. The ML based proposed algorithm
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Unfortunately, as the uncertainty increases, the maximum probability decreases and
the number of grid cells with the maximum probability increases, so the accuracy of the
final position decreases. One solution is to use the averages of the centers of the cells,
as the final position. But this parameter will not cover all space uniformly. So it would
be useful to use a sample based method within the ML. method, in order to increase
coverage speed and accuracy. If a method is used to update only several cells but not all
at each update, then the computational complexity would decrease drastically, too.

3.3 R-MCL

As indicated in the previous method, ML is robust and converges fast, but coarse and
computationally complex. On the other hand, sample based MCL is not as computa-
tionally complex as ML, and gives accurate results. However, it can not converge to a
position as fast as ML, especially in the case of an external impact on the position of the
robot (such as kidnapping). In addition, the number of samples to be used is generally
kept very high to cover all space and converge to the right position. There are several
extensions for adaptive sample size usage, but these still do not solve the slow coverage
problem. So it might be useful to converge to several cells by ML or another grid based
method, then inside these bulk of grids, produce a limited number of samples to find
the final position. The average of these samples would give the final position and the
standard deviation might give the uncertainty of the final position as in the MCL based
methods. The algorithm in Figure @] simply works as shown in Figure B

In the original MCL, the number of samples is increased to decrease bias in the result.
In R-MCL since we converge by selecting cells with maximum probability, so the bias
is already decreased, therefore we do not need this to decrease bias.

After testing this version, some improvements were done on the current version
of R-MCL and ML. In the modified ML, not only the distance but also the bearing
information is used to find the best grids, so the number of chosen grids decrease and
confidence increases. As a result of these modifications, the accuracy of the results
improved considerably. Later when the samples are drawn, also the best samples are
selected using distance and the bearing from these very good cells, and their average is
returned as the current pose. Notice that, samples are taken into consideration only when
the position reaches to a certainty level, in other words the number of chosen cells are

Apply visual/odometric update to all cells
Choose grid cells with probability > threshold as in ML /fonly choosing the cells with maximum probability might not be
lladequate due to test field's conditions
Apply resampling
Calculate the number of cells to be produced according to your level of uncertainty
Produce random samples of this amount from the chosen cells
Pick up samples with probability> threshold from this sample set
Find the average of the positions of chosen samples and return as final position
Find standard deviation of the positions of samples and return as the uncertainty of the final position

Fig. 2. The R-MCL based proposed algorithm
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Fig. 3. The R-MCL working schema

below a limit(e.g. 50), and there is at least one very good cell which is below or equal to
the minimum error in both distance and bearing limitations. Also if there are no samples
which satisfy the minimum bearing and distance error condition then the results of ML
are used instead. Also the bearing of the new pose is found by the ML module inside the
R-MCL because it is more accurate and robust.

4 Tests and Results

A simulator was developed which is used to produce realistic data for testing the imple-
mentations. It produces both odometric and visual data according to the user’s choice,
besides it enables the addition of random noise to the produced data optionally, to make
it more realistic. The new algorithms are tested on a set of tests based on fixed paths in
the field. In the first group of tests there is active vision and in the second, the robot could
take information about one landmark so it is a very hard and challenging case. Also noise
with a magnitude of 20 cm (chosen very high-twice the cell size- to observe the effects
easily) is added in some tests, and likewise odometry is included in a group of tests. The
tests of R-MCL are repeated 50 times each, because the samples are drawn randomly
and this affects the accuracy of the results. The average and standard deviation of the
errors that are produced during the tests are presented in the Table 2l As seen from the

Table 2. Experimental results

test no|active vision noise|odometry| geometrical ml r-mcl
1 yes no no |18.13£35.60 4.27+1.97 | 3.68+1.84
2 yes yes no |20.12433.56/16.63+24.10{17.224+-24.08
3 yes no yes [18.13£35.61| 4.27+£1.97 | 3.72£1.55
4 yes yes yes |23.484+31.70| 11.30£2.73 | 9.13+3.46
5 no no no |168.60£1.68| 5.70+0.68 | 4.06+1.75
6 no yes no |169.2942.65|35.284+27.94(34.41+25.12
7 no no yes [168.761+1.75| 5.70+0.68 | 3.37+2.49
8 no yes yes |167.94£3.01| 5.6940.68 | 3.90+1.77
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test results, when active vision is used, the geometrical method performs relatively well.
ML performs very good, both in case of passive vision and noise. R-MCL outperforms
all, and its performance is close to ML as predicted, in the problematic cases, since it
uses the output of ML in these cases. The effect of odometry on the results of ML seems
ignorable since the step size is ignorable compared to the cell size. In currently ongoing
works, these effects are tested in details.

5 Conclusions

Localization in a totally unknown area is a very hard task for autonomous mobile robots.
This work aims to propose a fast, reliable, computationally and resource efficient solution
to global localization problem. The solution should be successful in environments like
the Robocup Games and the challenges which require very high accuracy and speed.
For this reason in this paper several new localization algorithms are developed. The first
method is a new geometrical localization method which is based on one observation at
a time. This property makes this method more robust and realistic. Extending this idea,
a ML based method is also developed. Next, to make use of the robustness of ML but to
make the results more precise, a hybrid method called R-MCL method is implemented.
This method recovers from kidnapping in a very fast manner and it is very robust to
even high levels of noise and inadequate environmental information. It is higly accurate
and its accuracy can be improved by improving resampling and choosing the best cells
and samples. It performs quite well when compared with the outperforming methods
such as ML-EKF, and A-MCL, and there is an ongoing research for testing it with these
methods on the same data set from ERS 210 quadrupled robots.
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